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Abstract. We study the existence of positive solutions to the fourth-order two-point
boundary value problem

{

u′′′′(t) + f(t, u(t)) = 0, 0 < t < 1,

u′(0) = u′(1) = u′′(0) = 0, u(0) = α[u],

where α[u] =
∫ 1

0
u(t)dA(t) is a Riemann-Stieltjes integral with A > 0 being a nondecreasing

function of bounded variation and f ∈ C([0, 1]×R+,R+). The sufficient conditions obtained
are new and easy to apply. Their approach is based on Krasnoselskii’s fixed point theorem
and the Avery-Peterson fixed point theorem.

Keywords: boundary value problem; fixed point; positive solution; cone; existence
theorem

MSC 2020 : 34B10, 34B18

1. Introduction

The study of fourth-order boundary value problems (BVPs) has been a major

focus among researchers in recent years due to their applications to problems in

heat conduction, thermoelasticity, plasma physics, control theory, and many applied

sciences. The study of fourth-order differential equations becomes more important

when one uses nonlocal boundary conditions as is evident from the works in [1], [3],

[4], [6], [7], [9], [10], [11], [13]–[22]. As can be seen from the above cited articles,

the main approaches to the study of nonlocal fourth-order BVPs are the use of

Krasnoselskii’s fixed point theorem, the Leggett-William fixed point theorem, the

upper-lower solution method, the fixed point index property, and the method of

successive iterations.
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In a recent work, Benaicha and Haddouchi (see [3]) studied the existence of positive

solutions to the fourth-order two-point BVP

(1.1)

{

u′′′′(t) + f(u(t)) = 0, t ∈ (0, 1),

u′(0) = u′(1) = u′′(0) = 0, u(0) =
∫ 1

0
a(s)u(s) ds,

where a is a positive continuous function. Later, Haddouchi et al. in [5] extended

the results for (1.1) to the problem

(1.2)











u′′′′(t) + f(u(t)) = 0, t ∈ (0, 1),

u′(0) = u′(1) = u′′(0) = 0, u(0) = α

∫ 1

0

u(s) ds+

n
∑

i=1

βiu(ηi),

where f ∈ C([0, 1]× R+,R+), α > 0, βi > 0, 1 6 i 6 n, 0 < η1 < η2 < . . . < ηn < 1,

and α+
n
∑

i=1

βi < 1.

In this work, we propose to study the existence of a positive solution to the non-

linear fourth order two point boundary value problem (BVP)

(1.3)

{

u′′′′(t) + f(t, u(t)) = 0, t ∈ [0, 1],

u′(0) = u′(1) = u′′(0) = 0, u(0) = α[u],

where α[u] =
∫ 1

0 u(t) dA(t) is the Riemann-Stieltjes integral, A is a function of

bounded variation, and f ∈ C([0, 1] × R+,R+). By a solution of problem (1.3)

we mean a function u ∈ C(4)([0, 1],R+) that satisfies the equation and the boundary

conditions. Throughout this paper, we assume that

(H1) 0 < α[1] < 1 and A(t) > 0 is nondecreasing.

Riemann-Stieltjes integrals of the form α[u] play an important role in the literature

covering a variety of nonlocal boundary conditions including the cases:

α[u] = λu(η), λ > 0, η ∈ (0, 1);

α[u] =

l
∑

j=1

λju(µj), λi ∈ R, j = 1, 2, . . . , l, 0 < η1 < η2 < . . . < ηl < 1;

α[u] =

∫ 1

0

u(t)h(t) dt, h ∈ C((0, 1),R).

Some important features of α[u] are:

(i) If α[u] =
l
∑

i=1

αiu(ηi), 0 < ηi < 1, then assumption (H1) reduces to 0 <
l
∑

i=1

αi < 1.
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(ii) If α[u] = (η2 − η1)
−1

∫ η2

η1

αtu(t) dt with 0 < η1 < η2 < 1, and α is a positive

constant, then assumption (H1) reduces to 0 < α(η1 + η2) < 2.

(iii) If α[u] = α
∫ 1

0
tmu(t) dt, m > −1, then (H1) reduces to 0 < α < m+ 1.

In view of the above observations, our assumption (H1) is more general than the

assumptions considered for (1.1) and (1.2). This motivates us to study the positive

solutions of BVP (1.3).

This work is divided into four sections. Section 1 is the introduction. All basic

results and two fixed point theorems are presented in Section 2. Section 3 contains

the main results in this paper. Two examples are given in Section 4 to enhance

our results.

2. Preliminaries

Consider the BVP

(2.1)

{

u′′′′(t) + h(t) = 0, t ∈ [0, 1],

u′(0) = u′(1) = u′′(0) = 0, u(0) = α[u],

where h > 0 and α[u] =
∫ 1

0 u(t) dA(t) is a Riemann-Stieltjes integral with A > 0

being a function of bounded variation. It will be convenient to define

(2.2) ̺(t) = min{t3, t2(1− t)} =

{

t3, t 6 1
2 ,

t2(1− t), t > 1
2 ,

and

(2.3) δ := θ3
(

1− α[1] +

∫ 1−θ

θ

dA(t)

)

< 1.

BVP (2.1) can be expressed as an equivalent integral equation, which is given in the

following lemma.

Lemma 2.1. For any h ∈ C[0, 1], BVP (2.1) has the unique solution u(t) given by

(2.4) u(t) =

∫ 1

0

G(t, s)h(s) ds+
1

(1− α[1])

∫ 1

0

∫ 1

0

G(t, s)h(s) ds dA(t),

where G(t, s) is Green’s kernel

(2.5) G(t, s) =
1

6

{

t3(1− s)2 − (t− s)3, 0 6 s 6 t 6 1,

t3(1− s)2, 0 6 t 6 s 6 1.
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P r o o f. Repeated integration of the equation u′′′′(t) + h(t) = 0 from 0 to t gives

u′′(t) = −

∫ t

0

(t− s)h(s) ds+ c1t+ c2,(2.6)

u′(t) = −
1

2

∫ t

0

(t− s)2h(s) ds+
c1
2
t2 + c2t+ c3(2.7)

and

u(t) = −
1

6

∫ t

0

(t− s)3h(s) ds+
c1
6
t3 +

c2
2
t2 + c3t+ c4,(2.8)

where c1, c2, c3 and c4 are arbitrary constants. The conditions u
′(0) = 0 and

u′′(0) = 0 imply c2 = 0 and c3 = 0. Hence, from (2.7) we have

u′(t) = −
1

2

∫ t

0

(t− s)2h(s) ds+
c1
2
t2,

which, together with the condition u′(1) = 0, gives

c1 =

∫ 1

0

(1− s)2h(s) ds.

Thus, (2.8) becomes

(2.9) u(t) =
t3

6

∫ 1

0

(1− s)2h(s) ds−
1

6

∫ t

0

(t− s)3h(s) ds+ c4.

Multiplying both sides of (2.9) by dA(t) and integrating the resulting identity from 0

to 1, we obtain

(2.10) α[u] =
1

6
α[t3]

∫ 1

0

(1− s)2h(s) ds−
1

6

∫ 1

0

∫ t

0

(t− s)3h(s) ds dA(t) + c4α[1],

where α[t3] =
∫ 1

0 t
3 dA(t). Thus, from (2.9), (2.10), and the boundary condition

u(0) = α[u], we obtain

c4 =
1

6(1− α[1])

(

α[t3]

∫ 1

0

(1 − s)2h(s) ds−

∫ 1

0

∫ t

0

(t− s)3h(s) ds dA(t)

)

.
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Hence, from (2.9) we have

u(t) =
t3

6

∫ 1

0

(1− s)2h(s) ds−
1

6

∫ t

0

(t− s)3h(s) ds

+
1

6(1− α[1])

(

α[t3]

∫ 1

0

(1− s)2h(s) ds−

∫ 1

0

∫ t

0

(t− s)3h(s) ds dA(t)

)

=
1

6

∫ t

0

[t3(1 − s)2 − (t− s)3]h(s) ds+
1

6

∫ 1

t

t3(1− s)2h(s) ds+
1

6(1− α[1])

×

(
∫ 1

0

∫ t

0

t3(1 − s)2h(s) ds dA(t) +

∫ 1

0

∫ 1

t

t3(1 − s)2h(s) ds dA(t)

)

−
1

6(1− α[1])

∫ 1

0

∫ t

0

(t− s)3h(s) ds dA(t)

=
1

6

∫ t

0

[t3(1 − s)2 − (t− s)3]h(s) ds+
1

6

∫ 1

t

t3(1− s)2h(s) ds+
1

6(1− α[1])

×

∫ 1

0

(
∫ t

0

[t3(1− s)2 − (t− s)3]h(s) ds+

∫ 1

t

t3(1 − s)2h(s) ds

)

dA(t)

=

∫ 1

0

G(t, s)h(s) ds+
1

(1− α[1])

∫ 1

0

∫ 1

0

G(t, s)h(s) ds dA(t).

This proves the lemma. �

Green’s function G(t, s) defined in (2.5) is the same as the one obtained in [3]. We

apply the following lemma, which can be found in [3], Lemma 2.3 or [5], Lemma 2.6.

Lemma 2.2. Let θ ∈ (0, 12 ) be fixed. Then Green’s function G(t, s) has the

following properties:

(i) G(t, s) > 0 for all t, s ∈ [0, 1];

(ii) for all t, s ∈ [0, 1] we have

(2.11)
1

6
̺(t)s(1− s)2 6 G(t, s) 6

1

6
s(1− s)2.

Since (2.11) is true for any t, s ∈ [0, 1], for any fixed θ ∈ (0, 12 ) we have

(2.12)
1

6
θ3s(1− s)2 6 G(t, s) 6

1

6
s(1− s)2 for all s ∈ [0, 1] and t ∈ [θ, 1− θ].

In this paper, we take X = C[0, 1] to be the Banach space with the standard norm

(2.13) ‖u‖ = max
06t61

|u(t)|.

Then we have the following lemma.
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Lemma 2.3. Let θ ∈ (0, 12 ). Any solution u(t) of (2.1) in X satisfies

(2.14) min
t∈[θ,1−θ]

u(t) > δ‖u‖.

P r o o f. From (2.4) and (2.11) we have

(2.15) ‖u‖ = max
06t61

∣

∣

∣

∣

∫ 1

0

G(t, s)h(s) ds+
1

(1− α[1])

∫ 1

0

∫ 1

0

G(t, s)h(s) ds dA(t)

∣

∣

∣

∣

6
1

6

∫ 1

0

s(1 − s)2h(s) ds+
1

6(1− α[1])

∫ 1

0

∫ 1

0

s(1− s)2h(s) ds dA(t)

=
1

6

(
∫ 1

0

s(1 − s)2h(s) ds+
α[1]

(1− α[1])

∫ 1

0

s(1− s)2h(s) ds

)

=
1

6(1− α[1])

∫ 1

0

s(1− s)2h(s) ds.

On the other hand, from (2.12),

min
t∈[θ,1−θ]

u(t) =

∫ 1

0

min
t∈[θ,1−θ]

G(t, s)h(s) ds

+
1

(1− α[1])

∫ 1

0

∫ 1

0

min
t∈[θ,1−θ]

G(t, s)h(s) ds dA(t)

>
θ3

6

∫ 1

0

s(1 − s)2h(s) ds+
θ3

6(1− α[1])

∫ 1

0

s(1− s)2h(s) ds

∫ 1−θ

θ

dA(t)

=
θ3

6

(1 − α[1] +
∫ 1−θ

θ
dA(t))

(1 − α[1])

∫ 1

0

s(1− s)2h(s) ds,

which, in view of (2.15), implies (2.14). The lemma is now proved. �

We define two cones K and P on X by

K = {u ∈ X : u(t) > 0, u(t) > ̺(t)‖u‖, 0 6 t 6 1}(2.16)

and

P =
{

u ∈ X : u(t) > 0, min
t∈[θ,1−θ]

u(t) > δ‖u‖
}

,(2.17)

and an operator T : K → X by

(2.18)

Tu(t) =

∫ 1

0

G(t, s)f(s, u(s)) ds+
1

(1− α[1])

∫ 1

0

∫ 1

0

G(t, s)f(s, u(s)) ds dA(t),

where G(t, s) is Green’s function given in (2.5). Then in view of Lemmas 2.1–2.3,

we have the following lemma.

588



Lemma 2.4. A continuous function u(t) is a positive solution of BVP (1.3) if and

only if u(t) is a fixed point of the operator T on the cone K. Also, T (K) ⊂ K.

Let us denote, for any r > 0,

Kr = {u ∈ K : ‖u‖ < r} and ∂Kr = {u ∈ K : ‖u‖ = r}.

Lemma 2.5. The operator T : Kr2 \Kr1 → K is completely continuous, where r1
and r2 are positive real numbers with r1 < r2.

P r o o f. Since f is continuous on [0, 1], there exists a continuous function Pf :

(0, 1) → [0,∞) and positive numbers r1 and r2 with r1 < r2, such that f(t, u) 6 Pf (t)

for 0 6 t 6 1 and δr1 6 u 6 r2, and
∫ 1

0
s(1 − s)2Pf (s) ds < ∞. Clearly, T is

continuous on Kr2 \Kr1 . For any u ∈ Kr2 \Kr1 we have

|Tu| =

∫ 1

0

G(t, s)f(s, u(s)) ds+
1

(1− α[1])

∫ 1

0

∫ 1

0

G(t, s)f(s, u(s)) ds dA(t)

6
1

6

∫ 1

0

s(1− s)2f(s, u(s)) ds+
1

6(1− α[1])

∫ 1

0

∫ 1

0

s(1 − s)2f(s, u(s)) ds dA(t)

=
1

6

(
∫ 1

0

s(1 − s)2f(s, u(s)) ds+
α[1]

(1 − α[1])

∫ 1

0

s(1− s)2f(s, u(s)) ds

)

=
1

6(1− α[1])

∫ 1

0

s(1− s)2Pf (s) ds,

which implies that T is uniformly bounded. SinceG(t, s) is continuous on [0, 1]×[0, 1],

it is uniformly continuous there, so for every ε > 0 there exists δ1 > 0 such that for

all (t1, s), (t2, s) ∈ [0, 1]× [0, 1] with |t1 − t2| < δ1, we have |G(t1, s)−G(t2, s)| < ε.

So, for any u ∈ Kr2 \Kr1 and t1, t2 ∈ [0, 1] with |t1 − t2| < δ1, we have

|(Tu)(t2)− (Tu)(t1)| 6 ε
1

(1− α[1])

∫ 1

0

Pf (s) ds.

Hence, T is equicontinuous. Consequently, T is relatively compact on Kr2 \Kr1 , and

hence compact on Kr2 \Kr1 . Thus, the operator T : Kr2 \Kr1 → K is completely

continuous, and this proves the lemma. �

In this paper, we shall use two very valuable fixed point theorems, Krasnosel’skii’s

fixed point theorem and the Avery-Peterson fixed point theorem, to prove our results.

Theorem 2.1 ([8], Krasnosel’skii’s fixed point theorem). Let X be a real Banach

space and K ⊂ X be a cone in X. Assume that K1 and K2 are bounded open subsets

of X with 0 ∈ K1, K1 ⊂ K2, and T : K ∩ (K2 \K1) → K is a completely continuous

operator such that either
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(i) ‖Tu‖ 6 ‖u‖, u ∈ K ∩ ∂K1 and ‖Tu‖ > ‖u‖, u ∈ K ∩ ∂K2; or

(ii) ‖Tu‖ > ‖u‖, u ∈ K ∩ ∂K1 and ‖Tu‖ 6 ‖u‖, u ∈ K ∩ ∂K2.

Then T has a fixed point in K ∩ (K2 \K1).

In order to state the Avery-Peterson fixed point theorem, we need to define some

functions in a cone. A map Φ is said to be a nonnegative continuous concave func-

tional on a cone K in a real Banach space X if Φ: K → [0,∞) is continuous and

Φ(tx+ (1− t)y) > tΦ(x) + (1− t)Φ(y)

for all x, y ∈ K and t ∈ [0, 1]. Similarly, the map ϕ is a nonnegative continuous

convex functional on K if ϕ : K → [0,∞) is continuous and

ϕ(tx + (1− t)y) 6 tϕ(x) + (1− t)ϕ(y)

for all x, y ∈ K and t ∈ [0, 1]. We use the following notations as introduced by

Avery and Peterson (see [2]). Let ϕ and Θ be nonnegative convex functionals on K

and let Φ be a nonnegative continuous concave functional on K. Also, let ψ be

a nonnegative continuous functional on K. Then, for positive numbers r1, r2, r3

and r4, we define the sets:

K(ϕ, r4) = {u ∈ K : ϕ(x) < r4}, K(ϕ, r4) = {u ∈ K : ϕ(x) 6 r4},(2.19)

K(ϕ,Φ, r2, r4) = {u ∈ K : r2 6 Φ(u), ϕ(u) 6 r4},

K(ϕ,Θ,Φ, r2, r3, r4) = {u ∈ K : r2 6 Φ(u),Θ(u) 6 r3, ϕ(u) 6 r4},

K(ϕ, ψ, r1, r4) = {u ∈ K : r1 6 ψ(u), ϕ(u) 6 r4}.

The following theorem will be used to establish the existence of multiple positive

solutions to our BVP.

Theorem 2.2 ([2], Avery-Peterson fixed point theorem). LetK be a cone in a real

Banach space X , let ϕ and Θ be nonnegative continuous convex functionals on K,

let Φ be a nonnegative continuous concave functional on K, and ψ be a nonnegative

continuous functional on K satisfying ψ(ku) 6 kψ(u) for 0 6 k 6 1, and such that

for some positive numbers M and r4 we have Φ(u) 6 ψ(u) and ‖u‖ 6 Mϕ(u) for

all u ∈ K(ϕ, r4). Assume that T : K(ϕ, r4) → K(ϕ, r4) is a completely continuous

operator and there exist constants r1, r2 and r3 with r1 < r2 such that:

(S1) {u ∈ K(ϕ,Θ,Φ, r2, r3, r4) : ϕ(u) > r2} is nonempty and Φ(Tu) > r2 for

u ∈ K(ϕ,Θ,Φ, r2, r3, r4);

(S2) Φ(Tu) > r2 for u ∈ K(ϕ,Φ, r2, r4) with Θ(Tu) > r3;

(S3) 0 /∈ K(ϕ, ψ, r1, r4) and ψ(Tu) < r1 for u ∈ K(ϕ, ψ, r1, r4) with ψ(u) = r1.

Then T has at least three fixed points u1, u2, u3 ∈ K(ϕ, r4) such that ϕ(ui) 6 r4,

i = 1, 2, 3, r2 < Φ(u1), r1 < Φ(u2), Φ(u2) < r2 and ψ(u3) < r1.
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3. Main results

In this section, we shall apply Theorems 2.1 and 2.2 to obtain the existence of

positive solutions to BVP (1.3). We introduce the following height function to control

the growth of the nonlinear term f(t, u). For any r > 0 and 0 6 t 6 1, let

f1(t, r) = min{f(t, u) : ̺(t)r 6 u 6 r}

and

f2(t, r) = max{f(t, u) : ̺(t)r 6 u 6 r}.

Proceeding as in the lines of the proof of Theorem 4.5 in [12], we can prove the

following theorem.

Theorem 3.1. Assume there exist constants r1 and r2 with 0 < r1 < r2 such

that either

(H2) r1 6 1
48 (1−α[1])

−1
∫ 1

0
s(1−s)2f1(s, r1) ds <∞ and 1

6 (1−α[1])
−1

∫ 1

0
s(1−s)2 ×

f2(s, r2) ds 6 r2, or

(H3) 1
6 (1−α[1])

−1
∫ 1

0
s(1−s)2f2(s, r1) ds 6 r1 and r2 6 1

48 (1−α[1])
−1

∫ 1

0
s(1−s)2×

f1(s, r2) ds <∞.

Then BVP (1.3) has at least one positive solution u∗(t) in K with r1 6 u∗(t) 6 r2
for 0 6 t 6 1.

R em a r k 3.1. Although the conditions in Theorem 3.1 look simple and exam-

ples can be easily constructed, the following result for the existence of positive solu-

tions to (1.3) covers a wide range of functions and is easily verifiable.

For convenience, we introduce the following notations:

f0 = lim
u→0+

{

min
t∈[0,1]

f(t, u)

u

}

, f0 = lim
u→0+

{

max
t∈[0,1]

f(t, u)

u

}

,

f∞ = lim
u→∞

{

min
t∈[0,1]

f(t, u)

u

}

, f∞ = lim
u→∞

{

max
t∈[0,1]

f(t, u)

u

}

.

Set

(3.1) Λθ =
72(1− α[1])

θ3(1− 2θ)(1 − 2θ2 + 2θ)
(

1− α[1] +
∫ 1−θ

θ dA(t)
)

for any θ ∈ (0, 12 ).

Theorem 3.2. If either

(H4) f0 = 0 and f∞ = ∞, or

(H5) f0 = ∞ and f∞ = 0,

then problem (1.3) has at least one positive solution.
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P r o o f. We consider the cone P defined in (2.17) to prove this theorem. Fix

θ ∈ (0, 12 ). First, suppose that (H4) holds. Since f
0 = 0, there exists r1 > 0 such

that f(t, u) 6 εu for all 0 < u 6 r1 and t ∈ [0, 1], where ε > 0 is chosen so that
1
72ε/(1− α[1]) 6 1. Set Ωr1 = {u ∈ P : ‖u‖ < r1}. Then for u ∈ P ∩ ∂Ωr1 we have

δr1 = δ‖u‖ 6 min
t∈[θ,1−θ]

u(t) 6 ‖u‖ = r1, and so using (2.12),

‖Tu‖ = max
06t61

∣

∣

∣

∣

∫ 1

0

G(t, s)f(s, u(s)) ds+
1

(1− α[1])

∫ 1

0

∫ 1

0

G(t, s)f(s, u(s)) ds dA(t)

∣

∣

∣

∣

6
1

6

∫ 1

0

s(1 − s)2f(s, u(s)) ds+
1

6(1− α[1])

∫ 1

0

∫ 1

0

s(1− s)2f(s, u(s)) ds dA(t)

=
1

6(1− α[1])

∫ 1

0

s(1− s)2f(s, u(s)) ds 6
1

6(1− α[1])

∫ 1

0

s(1− s)2εu(s) d

6 ‖u‖ε
1

72(1− α[1])
6 ‖u‖.

Thus, ‖Tu‖ 6 ‖u‖ for u ∈ P ∩ ∂Ωr1 . Since f∞ = ∞, there exists r2 > 0 such

that f(t, u) > µu for all u > r2 and t ∈ [θ, 1 − θ], where µ > 0 is chosen so that

µδΛθ > 1. Now set r2 = max{r1/δ, r2/δ} and Ωr2 = {u ∈ P : ‖u‖ < r2}. Then for

all u ∈ P ∩ ∂Ωr2 we have δr2 = δ‖u‖ 6 min
t∈[θ,1−θ]

u(t) 6 ‖u‖ = r2 and so

‖Tu‖ > min
t∈[θ,1−θ]

Tu(t) =

∫ 1

0

(

min
t∈[θ,1−θ]

G(t, s)
)

f(s, u(s)) ds

+
1

(1− α[1])

∫ 1

0

∫ 1

0

(

min
t∈[θ,1−θ]

G(t, s)
)

f(s, u(s)) ds dA(t)

>
θ3

6

∫ 1

0

s(1− s)2f(s, u(s)) ds

+
θ3

6(1− α[1])

∫ 1

0

s(1− s)2f(s, u(s)) ds

∫ 1−θ

θ

dA(t)

=
θ3

6

(1− α[1] +
∫ 1−θ

θ
dA(t))

(1− α[1])

∫ 1

0

s(1− s)2f(s, u(s)) ds

> µ
θ3

6

(1− α[1] +
∫ 1−θ

θ dA(t))

(1− α[1])

∫ 1

0

s(1− s)2u(s) ds

> µ
θ3

6

(1− α[1] +
∫ 1−θ

θ
dA(t))

(1− α[1])

∫ 1−θ

θ

s(1− s)2u(s) ds

> µδ‖u‖
θ3

6

(1− α[1] +
∫ 1−θ

θ dA(t))

(1− α[1])

∫ 1−θ

θ

s(1− s)2 ds > ‖u‖

since
∫ 1−θ

θ s(1 − s)2 ds = 1
12 (1 − 6θ2 + 4θ3). This implies that ‖Tu‖ > ‖u‖ for

u ∈ P ∩ ∂Ωr2 . Hence, by Theorem 2.1 (i), BVP (1.3) has a positive solution.
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Next, suppose that (H5) holds. Since f0 = ∞, there exists r1 > 0 such that

f(t, u) > µu for all 0 < u 6 r1, where µ > 0 is chosen so that µδΛθ > 1. Then for

all u ∈ P ∩ ∂Ωr1 , a similar calculation shows that

‖Tu‖ > min
t∈[θ,1−θ]

Tu(t) > ‖u‖.

Hence, ‖Tu‖ > ‖u‖ for u ∈ P ∩ ∂Ωr1 .

Now, f∞ = 0, so there exists r̃2 > r1 such that f(t, u) 6 εu for all t ∈ [0, 1] and

u > r̃2, where ε > 0 is chosen so that 0 < 1
72ε/(1− α[1]) 6 1. We consider two

possibilities.

If f is bounded, then there exists L > 0 such that f(t, u) 6 L. Let Ωr2 = {u ∈ P :

‖u‖ < r2}, where r2 = max{r1/δ, LΛθ}. Then, proceeding as in the first part of the

proof of this theorem, where (H4) holds, we obtain ‖Tu‖ 6 r2 = ‖u‖ for u ∈ P ∩Ωr2 .

If f is unbounded, then there exists ̺ > 0 such that f(t, u) 6 ε̺ with 0 < u 6 r̃2
and t ∈ [0, 1]. Let Ωr2 = {u ∈ P : ‖u‖ < r2}, where r2 = max{̺, r̃2}. So, for

u ∈ P ∩ ∂Ωr2 we have f(t, u) 6 εr2, and proceeding as above, we obtain ‖Tu‖ 6

r2 = ‖u‖.

Hence, by Theorem 2.1 (ii), BVP (1.3) has at least one positive solution. This

completes the proof of the theorem. �

Now, we shall apply Theorem 2.2 to find sufficient conditions for the existence of

three positive solutions to BVP (1.3). We let K be a cone in a Banach space X and

define sets as in (2.19).

Theorem 3.3. Let θ ∈ (0, 12 ) be fixed and assume that there exists a continuous

function f0 : [0, 1] → [0,∞) such that

(H6)
∫ 1

0 s(1− s)2f0(s) ds 6 6(1− α[1]).

In addition, assume that there exist constants r1, r2, r3 and r4 with

0 < r1 < r2 <
r2
δ

= r3 6 r4

such that:

(H7) f(t, u) < f0(t)r1 for 0 6 u(t) 6 r1 and 0 6 t 6 1;

(H8) f(t, u) > Λθr2 for r2 6 u(t) 6 r2/δ and θ 6 t 6 1− θ;

(H9) f(t, u) 6 f0(t)r4 for 0 6 u(t) 6 r4 and 0 6 t 6 1.

Then BVP (1.3) has at least three positive solutions ui with ‖ui‖ 6 r4, i = 1, 2, 3,

r2 < min
t∈[θ,1−θ]

|u1(t)|, r1 < min
t∈[θ,1−θ]

|u2(t)| < r2 and ‖u3‖ < r1.
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P r o o f. We define a nonnegative continuous concave functional Φ on the

cone K by

Φ(u) = min
t∈[θ,1−θ]

|u(t)|

so that Φ(u) 6 ‖u‖. We also consider two nonnegative continuous convex func-

tionals ϕ and Θ on K given by Θ(u) = ϕ(u) = ‖u‖, and a nonnegative continuous

functional ψ on K defined by ψ(u) = ‖u‖. Then

ψ(ku) = ‖ku‖ 6 |k|‖u‖ 6 |k|ψ(u) = kψ(u) for 0 6 k 6 1,

Φ(u) = min
t∈[θ,1−θ]

|u(t)| 6 ‖u‖ = ψ(u),

and we can find a constant M > 1 such that

‖u‖ = ϕ(u) 6Mϕ(u) for every u ∈ K(ϕ, r4).

We consider the operator T : K → X defined in the same way as in (2.18). Clearly,

u(t) is a solution of BVP (1.3) if and only if it is a fixed point of T on K. It can

also be shown that T (K) ⊆ K.

Let u ∈ K(ϕ, r4). Then ϕ(u) = ‖u‖ 6 r4 for 0 6 u 6 r4 and 0 6 t 6 1. Hence,

by (2.12), (H6) and (H9), we have

ϕ(Tu) = ‖Tu‖

= max
06t61

∣

∣

∣

∣

∫ 1

0

G(t, s)f(s, u(s)) ds+
1

(1− α[1])

∫ 1

0

∫ 1

0

G(t, s)f(s, u(s)) ds dA(t)

∣

∣

∣

∣

6
1

6

∫ 1

0

s(1− s)2f(s, u(s)) ds+
1

6(1− α[1])

∫ 1

0

∫ 1

0

s(1 − s)2f(s, u(s)) ds dA(t)

=
1

6(1− α[1])

∫ 1

0

s(1− s)2f(s, u(s)) ds

6 r4
1

6(1− α[1])

∫ 1

0

s(1− s)2f0(s) ds 6 r4.

This shows that T : K(ϕ, r4) → K(ϕ, r4).

Next, we prove that T : K(ϕ, r4) → K(ϕ, r4) is completely continuous. From the

continuity of G(t, s) and f(t, u) for t, s ∈ [0, 1], it follows that T is continuous on K.

Setting

M1 = max
06t61, u∈[0,r4]

f(t, u),

we have

|(Tu)(t)| 6
M1

72(1− α[1])
,

which implies that T is uniformly bounded on K(ϕ, r4). Since G(t, s) is continuous

on [0, 1]× [0, 1], it is uniformly continuous there. Hence, for every ε > 0 there exists
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δ1 > 0 such that |G(t1, s) − G(t2, s)| < ε for (t1, s) and (t2, s) ∈ [0, 1] × [0, 1] with

|t1−t2| < δ1. Consequently, for any u ∈ K(ϕ, r4) and t1, t2 ∈ [0, 1] with |t1−t2| < δ1,

we have

|(Tu)(t2)− (Tu)(t1)| 6 ε
1

(1− α[1])
M1.

That is, T (K(ϕ, r4)) is equicontinuous and so the set T (K(ϕ, r4)) is relatively com-

pact. Thus, by the Arzelà-Ascoli theorem, for the convex functional ϕ(u) = ‖u‖, the

mapping T : K(ϕ, r4) → K(ϕ, r4) is completely continuous. Set

u0(t) =
r2 + r3

2
=

1

2

(

r2 +
r2
δ

)

=
r2
2δ

(1 + δ) <
r2
δ

= r3,

Φ(u0) = min
t∈[θ,1−θ]

|u0| =
r2 + r3

2
>

2r2
2

= r2

and

ϕ(u0) =
r2 + r3

2
=
r2
2δ

<
r2
δ

= r3 6 r4.

This implies that the set {u ∈ K(ϕ,Θ,Φ, r2, r3, r4) : Φ(x) > r2} is nonempty.

Now, let r2 6 u(t) 6 r3 = r2/δ with t ∈ [θ, 1 − θ]. Then, by (2.12), (H6), (H8)

and (3.1), we have

Φ(Tu) = min
t∈[θ,1−θ]

Tu(t) =

∫ 1

0

min
t∈[θ,1−θ]

G(t, s)f(s, u(s)) ds

+
1

(1− α[1])

∫ 1

0

∫ 1

0

min
t∈[θ,1−θ]

G(t, s)f(s, u(s)) ds dA(t)

>
θ3

6

∫ 1

0

s(1− s)2f(s, u(s)) ds

+
θ3

6(1− α[1])

∫ 1

0

s(1− s)2f(s, u(s)) ds

∫ 1−θ

θ

dA(t)

=
θ3

6

(1− α[1] +
∫ 1−θ

θ
dA(t))

(1− α[1])

∫ 1

0

s(1− s)2f(s, u(s)) ds > r2

for u ∈ K(ϕ,Θ,Φ, r2, r3, r4). Hence, condition (S1) of Theorem 2.2 is satisfied.

Next assume that u ∈ K(ϕ,Φ, r2, r4) with Θ(Tu) > r3. Since T (P ) ⊂ P ,

Φ(Tu) = min
t∈[θ,1−θ]

(Tu)(t) > δ‖Tu‖ = δΘ(Tu) > δr3 = r2,

which shows that (S2) of Theorem 2.2 is satisfied.
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Since ϕ(0) = 0 < r1 implies that ϕ ∈ R(ϕ, ψ, r1, r4), for u ∈ R(ϕ, ψ, r1, r4) with

ψ(u) = ‖u‖ = r1 we have, using (2.12), (H6) and (H7),

ψ(Tu) = ‖Tu‖

= max
06t61

∣

∣

∣

∣

∫ 1

0

G(t, s)f(s, u(s)) ds+
1

(1 − α[1])

∫ 1

0

∫ 1

0

G(t, s)f(s, u(s)) ds dA(t)

∣

∣

∣

∣

6
1

6

∫ 1

0

s(1− s)2f(s, u(s)) ds+
1

6(1− α[1])

∫ 1

0

∫ 1

0

s(1− s)2f(s, u(s)) ds dA(t)

=
1

6(1− α[1])

∫ 1

0

s(1− s)2f(s, u(s)) ds

6 r1
1

6(1− α[1])

∫ 1

0

s(1− s)2f0(s) ds < r1.

Hence, (S3) of Theorem 2.2 is satisfied. Therefore, by Theorem 2.2, BVP (1.3) has

at least three positive solutions ui with ‖ui‖ 6 r4, i = 1, 2, 3, r2 < min
t∈[θ,1−θ]

|u1(t)|,

r1 < min
t∈[θ,1−θ]

|u2(t)| < r2, and ‖u3‖ < r1. The proof of the theorem is now complete.

�

The use of conditions (H7) and (H9) in Theorem 3.3 forces us to assume that

condition (H6) holds. These conditions can also be replaced by some easily verifiable

conditions as given in the following theorem.

Theorem 3.4. Let θ ∈ (0, 12 ) be fixed and assume that there exists a continuous

function f0 : [0, 1] → [0,∞] such that (H6) holds,

(H10) lim sup
u→∞

max
06t61

f(t, u)/f0(t)u = 0,

(H11) lim sup
u→0

max
06t61

f(t, u)/f0(t)u = 0, and

(H12) there is a constant c2 > 0 such that f(t, u) > Λθc2 for c2 6 u(t) 6 c2/δ and

θ 6 t 6 1− θ.

Then BVP (1.3) has at least three positive solutions.

P r o o f. By (H10), there exists

(3.2) 0 < ε <
6(1− α[1])

∫ 1

0
s(1− s)2f0(s) ds

and η > 0 such that f(t, u) 6 εf0(t)u(t) for x(t) > η and 0 6 t 6 1. Set

Mf = max
06u6η, t∈[0,1]

f(t, u).

Then we have f(t, u) 6 εf0(t)u(t) + Mf for u(t) > 0 and 0 6 t 6 1. Choose a

constant c4 > 0 such that

c4 > max
{c2
δ
,

Mf

12
(

6(1− α[1])− ε
∫ 1

0 s(1− s)2f0(s) ds
)

}
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and consider a nonnegative continuous concave functional ϕ on the cone K defined

by ϕ(u) = ‖u‖. Then for u ∈ K(ϕ, c4) we have

ϕ(Tu) = ‖Tu‖

= max
06t61

∣

∣

∣

∣

∫ 1

0

G(t, s)f(s, u(s)) ds+
1

(1− α[1])

∫ 1

0

∫ 1

0

G(t, s)f(s, u(s)) ds dA(t)

∣

∣

∣

∣

6
1

6

∫ 1

0

s(1− s)2f(s, u(s)) ds+
1

6(1− α[1])

∫ 1

0

∫ 1

0

s(1− s)2f(s, u(s)) ds dA(t)

=
1

6

(
∫ 1

0

s(1− s)2f(s, u(s)) ds+
α[1]

(1− α[1])

∫ 1

0

s(1− s)2f(s, u(s)) ds

)

=
1

6(1− α[1])

∫ 1

0

s(1 − s)2f(s, u(s)) ds

6
1

6(1− α[1])

∫ 1

0

s(1 − s)2(εf0(s)u(s) +Mf ) ds

6
1

6(1− α[1])

∫ 1

0

s(1 − s)2(εf0(s)c4 +Mf ) ds 6 c4.

Hence, T : K(ϕ, c4) → K(ϕ, c4). Proceeding along the lines of the proof of Theo-

rem 3.3, we can show that the mapping T is completely continuous. Also, we can

choose functionals Θ, ψ and Φ to show that conditions (S1) and (S2) of Theorem 2.2

are satisfied.

Thus, to complete the proof of the theorem, it remains to show the existence of a

constant c1, with 0 < c1 < c2, such that condition (S3) of Theorem 2.2 is satisfied.

The existence of such c1 can be obtained from (H11). Indeed, by (H11), there exist

constants ε and c1 satisfying

0 < ε <
6(1− α[1])

∫ 1

0 s(1− s)2f0(s) ds
and 0 < c1 < c2,

such that f(t, u) 6 εf0(t)u(t) for 0 6 u(t) 6 c1 and 0 6 t 6 1. Hence, for the

continuous functional ψ(u) = ‖u‖ on the cone K and 0 6 t 6 1, we have

ψ(Tu) = ‖Tu‖

= max
06t61

∣

∣

∣

∣

∫ 1

0

G(t, s)f(s, u(s)) ds+
1

(1 − α[1])

∫ 1

0

∫ 1

0

G(t, s)f(s, u(s)) ds dA(t)

∣

∣

∣

∣

6
1

6

∫ 1

0

s(1− s)2f(s, u(s)) ds+
1

6(1− α[1])

∫ 1

0

∫ 1

0

s(1− s)2f(s, u(s)) ds dA(t)

6 εc1
1

6(1− α[1])

∫ 1

0

s(1− s)2f0(s) ds < c1.

This proves the theorem. �
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As an application of Theorem 3.4, consider the BVP

(3.3)







u′′′′(t) +
ul

1 + um
= 0, t ∈ [0, 1],

u′(0) = u′(1) = u′′(0) = 0, u(0) = α[u].

The nonlinear term in this equation sometimes appears in models of red blood cell

production. The following result provides a sufficient condition for the existence of

three positive solutions to (3.3).

Corollary 3.1. Let θ ∈ (0, 12 ) be fixed, let l > 1, m > l − 1 > 0, and

(3.4)
m− l + 1

m

( l − 1

m− l + 1

)(l−1)/m

> Λθ,

where Λθ is given in (3.1). Then BVP (3.3) has at least three positive solutions.

P r o o f. Set f0(t) ≡ 1. Then (H6) is equivalent to α[1] < 71
72 . With f(t, u) =

ul/(1 + um) and f0(t) ≡ 1, conditions (H10) and (H11) are satisfied. In order

to apply Theorem 3.4, we need to find a positive constant c2 such that condi-

tion (H12) is satisfied. Clearly, for c2 6 u 6 c2/δ we have f(t, u) = ul/(1 + um) >

δmcl2/(δ
m + cm2 ). Hence, (H12) is satisfied if

(3.5)
δmcl−1

2

δm + cm2
> Λθ.

Consider the function g(r) = δmrl−1/(δm + rm). Then setting

c2 = δ
( l − 1

m− l+ 1

)1/m

,

we observe that g′(r2) = 0, g′(r) > 0 for r < c2, and g
′(r) < 0 for r > c2. Thus, the

minimum value of g(r) in the interval [c2, c2/δ] is attained at c2/δ and is given by

m− l+ 1

m

( l − 1

m− l + 1

)(l−1)/m

.

Thus, (3.5) is satisfied if (3.4) is satisfied, and the theorem is proved. �

R em a r k 3.2. From the conditions of Theorem 2.2, it is clear that the theorem

cannot be applied to the equations where the nonlinear function f(t, u) satisfies

(H13) lim sup
u→0

max
06t61

f(t, u)/f0(t)u = ∞ and lim sup
u→∞

max
06t61

f(t, u)/f0(t)u = ∞,

which includes functions of the type (λ/tβ)(c/uσ + uγ), where σ, β, λ, c and γ are

constants with c > 0, λ > 0, 0 < β < 1, γ > 1 and σ + 1 > 0. In this case,

the following theorem provides a sufficient condition to obtain positive solutions of

BVP (1.3). Its proof is based on Theorem 2.1.
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Theorem 3.5. Let θ ∈ (0, 12 ) be fixed. Assume that there exists a continuous

function f0 : [0, 1] → [0,∞] such that condition (H13) is satisfied and

(H14) there exists a constant r2 > 0 such that
∫ 1

0
s(1−s)2f(s, u(s)) ds 6 6r2(1−α[1])

for δr2 6 u 6 r2 and 0 6 t 6 1.

Then problem (1.3) has at least two positive solutions.

P r o o f. To prove the theorem, we consider the cone P given in (2.17). From the

first part of (H13) with

(3.6) µθ =

(

δ
θ3

6

(1− α[1] +
∫ 1−θ

θ
dA(t))

(1− α[1])

∫ 1−θ

θ

s(1− s)2f0(s) ds

)−1

for any µ > µθ, there exists r1 ∈ (0, δr2] such that f(t, u) > µf0(t)u for all t ∈ [0, 1]

and 0 < u 6 r1.

Set Ωr1 = {u ∈ P : ‖u‖ < r1}. Then for u ∈ P ∩ ∂Ωr1 we have

‖Tu‖ > min
t∈[θ,1−θ]

Tu(t)

=

∫ 1

0

(

min
t∈[θ,1−θ]

G(t, s)
)

f(s, u(s)) ds

+
1

(1− α[1])

∫ 1

0

∫ 1

0

(

min
t∈[θ,1−θ]

G(t, s)
)

f(s, u(s)) ds dA(t)

>
θ3

6

∫ 1

0

s(1− s)2f(s, u(s)) ds

+
θ3

6(1− α[1])

∫ 1

0

s(1− s)2f(s, u(s)) ds

∫ 1−θ

θ

dA(t)

=
θ3

6

(1− α[1] +
∫ 1−θ

θ dA(t))

(1− α[1])

∫ 1

0

s(1 − s)2f(s, u(s)) ds

> µ
θ3

6

(1− α[1] +
∫ 1−θ

θ
dA(t))

(1− α[1])

∫ 1

0

s(1 − s)2f0(s)u(s) ds

> µ
θ3

6

(1− α[1] +
∫ 1−θ

θ dA(t))

(1− α[1])

∫ 1−θ

θ

s(1− s)2f0(s)u(s) ds

> µδ‖u‖
θ3

6

(1− α[1] +
∫ 1−θ

θ
dA(t))

(1− α[1])

∫ 1−θ

θ

s(1− s)2f0(s) ds > ‖u‖,

which means that ‖Tu‖ > ‖u‖ for u ∈ P ∩ ∂Ωr1 . On the other hand, from the

second part of (H13), there exists r3 > r2 such that f(t, u) > µf0(t)u for any

µ > µθ and u > r3, where µθ is given in (3.6). Let r3 > r3 > r2/δ and set

Ωr3 = {u ∈ P : ‖u‖ < r3}. Then proceeding as above, we can prove that ‖Tu‖ > ‖u‖

for u ∈ P ∩ ∂Ωr3 .
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Finally, set Ωr2 = {u ∈ X : ‖u‖ < r2}. Then for any u ∈ P ∩ ∂Ωr2 , by (H14)

we have

‖Tu‖ = max
06t61

∣

∣

∣

∣

∫ 1

0

G(t, s)f(s, u(s)) ds+
1

(1− α[1])

∫ 1

0

∫ 1

0

G(t, s)f(s, u(s)) ds dA(t)

∣

∣

∣

∣

6
1

6

∫ 1

0

s(1− s)2f(s, u(s)) ds+
1

6(1− α[1])

∫ 1

0

∫ 1

0

s(1− s)2f(s, u(s)) ds dA(t)

=
1

6

(
∫ 1

0

s(1− s)2f(s, u(s)) ds+
α[1]

(1− α[1])

∫ 1

0

s(1− s)2f(s, u(s)) ds

)

=
1

6(1− α[1])

∫ 1

0

s(1 − s)2f(s, u(s)) ds 6 r2 = ‖u‖,

which implies ‖Tu‖ 6 ‖u‖ for u ∈ P ∩ ∂Ωr2 . Since r1 < r2 < r3, from the above

estimates it follows from Theorem 2.1 that T has a fixed point u1 ∈ P ∩ (Ωr2 \ Ωr1)

and another fixed point u2 ∈ P ∩ (Ωr3 \ Ωr2), which are positive solutions of (1.3).

The proof of the theorem is now complete. �

A c k n ow l e d gm e n t. The authors would like to thank the reviewer for making

several suggestions that improved the presentation of the results.
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