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ON THE DIFFERENTIAL GEOMETRY OF SOME CLASSES
OF INFINITE DIMENSIONAL MANIFOLDS

Maysam Maysami Sadr and Danial Bouzarjomehri Amnieh

Abstract. Albeverio, Kondratiev, and Röckner have introduced a type of
differential geometry, which we call lifted geometry, for the configuration space
ΓX of any manifold X. The name comes from the fact that various elements of
the geometry of ΓX are constructed via lifting of the corresponding elements
of the geometry of X. In this note, we construct a general algebraic framework
for lifted geometry which can be applied to various “infinite dimensional
spaces” associated to X. In order to define a lifted geometry for a “space”,
one dose not need any topology or local coordinate system on the space. As
example and application, lifted geometry for spaces of Radon measures on
X, mappings into X, embedded submanifolds of X, and tilings on X, are
considered. The gradient operator in the lifted geometry of Radon measures
is considered. Also, the construction of a natural Dirichlet form associated
to a random measure is discussed. It is shown that Stokes’ Theorem appears
as “differentiability” of “boundary operator” in the lifted geometry of spaces
of submanifolds. It is shown that (generalized) action functionals associated
with Lagrangian densities on X form the algebra of smooth functions in a
specific lifted geometry for the path-space of X.

1. Introduction

Albeverio, Kondratiev, and Röckner in [3, 4, 5] defined a type of differential
geometry for the configuration space ΓX of a smooth manifold X. (ΓX is the
set of all locally finite subsets of X and may be identified with the set of all
Radon measures on X of the form Σx∈Sδx where S is a countable subset of X
without any limit point.) Their main idea was to construct vector fields, differential
forms, metrics, and other basic objects of the geometry of ΓX , via lifting, in
a certain meaning, of the corresponding objects on X. (Note that ΓX is not
modeled on a single topological linear space and hence the ordinary differential
geometry of (infinite dimensional) manifolds ([13, 16]) can not be applied to it.) See
[1, 2, 7, 8, 11, 12, 15, 17, 18] for (some what) the same idea and its applications.
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The main goal of this note is to introduce, in an axiomatic and algebraic way, a
type of differential geometry called lifted geometry that generalizes the mentioned
geometry of ΓX to a rather large class of spaces and infinite dimensional manifolds
associated with X.

In §2 we describe basic elements of a type of differential geometry in an abstract
algebraic framework. Similar geometries have been considered by many authors, see
for instance [6] and [10]. In §2.1 we recall some algebraic preliminaries. In §2.2 we
define a geometry to be a pair (A,D) where A is a commutative real-algebra and D
is a Lie-algebra of derivations on A. The new aspect of our geometry (rather than
the similar concepts introduced by others) is that it is developed with respect to an
arbitrary Lie-algebra D of derivations instead the Lie-algebra of all derivations. (As
we will see, this key property enables us to apply effectively the geometry for our
favorite (infinite dimensional) manifolds.) In §2.3 and §2.4 we define respectively
differential forms and de Rham cohomology in our geometry. In §2.5 a geometry
on a set S is defined to be a geometry (A,D) such that A is an algebra of real
functions on S . Then the concepts of tangents space, vector fields, geometrization
of differential forms, and (weakly) differentiable mappings are considered.

In §3 we introduce a general framework for lifted geometry. Roughly speaking,
let S be a set of objects associated appropriately with a smooth manifold X such
that any (complete) vector field on X induces in a natural way a flow on S . Then
a lifted geometry for S is a geometry (A,D) on the set S such that A is an
algebra of functions on S obtained via a distinguished lifting procedure of smooth
functions (or differential forms) on X, and such that derivations in D are also
constructed by lifting of vector fields of X in a canonical way. The algebra A is
interpreted as the algebra of smooth functions on S and D as the Lie-algebra of
smooth vector fields on S . Significance of any lifted geometry for S is that it is
constructed without any using of local chart or even topology on S .

In the rest sections we consider various examples of lifted geometry and its
applications: In §4 we extend some contents of [4] and construct a lifted geometry
for the space MX of Radon measures on X, and its suitable subsets. In §5 we
consider construction of gradient operator in the lifted geometry of MX where X
is a Riemannian manifold. Also there is a little discussion about the corresponding
Dirichlet form associated with a random measure. In §6 we consider a lifted
geometry for the set FY

X (and its suitable subsets) of measurable mappings from a
measurable space Y into X. In §7 we construct a lifted geometry for the set E k

X of
k-dimensional embedded submanifolds of X. Also we show that in our framework
stokes’ theorem may be interpreted as differentiability of the boundary operator
∂ : E k

X → E k−1
X . In §8 we construct a lifted geometry for the set TX of tilings of X.

In §9 we consider a lifted geometry for the set CX of smooth curves in X such that
its algebra is defined to be the algebra of generalized action functionals associated
to Lagrangian densities on X.

Although, in §§4–9, in each case we describe only one type of lifted geometry, the
reader will recognize that our methods can be appropriately modified to produce
various lifted geometries for the mentioned spaces.
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Notations. For a smooth manifold X we denote by C∞(X) the algebra of
smooth real-valued functions on X. Ωn(X) and Vec(X) respectively denote the
C∞(X)-module of n-differential forms and the Lie-algebra of vector fields on X. The
subset of functions with compact support is denoted by C∞c (X). Similarly, Ωnc (X)
and Vecc(X) denote the subsets of forms and vector fields with compact support.
The Lie-derivative w.r.t. v ∈ Vec(X) is denoted by dv. The exterior-derivative is
denoted by d.

2. A differential geometry for commutative algebras

2.1. Preliminaries. Throughout all vector spaces and algebras are over the real
field R. Algebras have unit and modules are unital. Algebra morphisms preserve the
units. For vector spaces V,W , the vector space of linear mappings from V into W is
denoted by Lin(V,W ). Composition of linear mappings makes Lin(V ) := Lin(V, V )
into an algebra. We consider Lin(V ) also as a Lie-algebra with the canonical bracket
[a, a′] := aa′−a′a (a, a′ ∈ Lin(V )). Let A be a commutative algebra. For A-modules
M,N the set of A-module morphisms fromN intoM is denoted by Mod(N,M). The
vector space Lin(V,M) is a A-module with the module operation induced by that of
M in the obvious way. The vector space Mod(N,M) is considered as a sub-A-module
of Lin(N,M). We let Mod0(N,M) := M and Mod1(N,M) := Mod(N,M). We
also let Modn(N,M) := Mod(N⊗nA ,M) (n ≥ 2) and consider it as a sub-A-module
of Lin(N⊗nA ,M). (Here ⊗A denotes the tensor product of A-modules.) We denote
by Λn(N,M) ⊂ Modn(N,M) the sub-module of alternating morphisms i.e. the
morphisms ω ∈ Modn(N,M) satisfying

ω(xσ(1) ⊗ · · · ⊗ xσ(n)) = sgn(σ)ω(x1 ⊗ · · · ⊗ xn) .

We let Alt : Modn(N,M)→ Λn(N,M) be the A-module morphism defined by

Alt(f)(x1 ⊗ · · · ⊗ xn) := 1
n!
∑
σ

sgn(σ)f(xσ(1) ⊗ · · · ⊗ xσ(n)) .

Thus Alt is a left inverse for the inclusion Λn(N,M) ↪→ Modn(N,M). We have
the exterior-algebra Λ∗(N,A) := ⊕∞n=0Λn(N,A) with the wedge product

ω ∧ η := (k + l)!
k!l! Alt(ω ⊗ η)

(
ω ∈ Λk(N,A), η ∈ Λl(N,A)

)
.

A derivation d : A→M is a linear map satisfying d(ab) = d(a)b+ad(b) for a, b ∈ A.
The set of all derivations from A to M is denoted by Der(A,M). This may be
considered as a sub-A-module of Lin(A,M). Also note that Der(A) := Der(A,A) is a
sub-Lie-algebra of Lin(A). For any graded-algebra B = ⊕∞n=0Bn a graded-derivation
of degree k ∈ Z is a homogeneous linear mapping d : B → B of degree k (i.e.
d(Bn) ⊆ Bn+k) satisfying d(ab) = d(a)b + (−1)knad(b) for a ∈ Bn and b ∈ B. A
differential graded-algebra is a pair (B, d) where B is a graded-algebra and d is a
graded-derivation on B of degree 1 satisfying d2 = 0. Then Ker(d) is a subalgebra
of B and Img(d) is an ideal in Ker(d). The graded-algebra Ker(d)/Img(d) is called
cohomology-algebra of (B, d). Also the vector space (Ker(d) ∩ Bn)/(Img(d) ∩
Bn) is called n’th cohomology group of (B, d). A graded-algebra B is called
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graded-commutative if ab = (−1)nmba for a ∈ Bn and b ∈ Bm. (Thus Λ∗(N,A) is
graded-commutative.)

2.2. Algebraic differential geometries. By a geometry we mean a pair G =
(A,D) where A is a commutative algebra and D is a sub-Lie-algebra of Der(A)
(not necessarily sub-A-module). For any geometry G = (A,D) we let D denote the
sub-A-module of Der(A) generated by D. Note that D is also a sub-Lie-algebra of
Der(A) and any β ∈ D is of the form

(1) β =
n∑
i=1

aiαi (ai ∈ A,αi ∈ D) .

A morphism φ : G′ → G between geometries is given by an algebra morphism
φ : A→ A′ such that for every α′ ∈ D′ there exists α ∈ D with the property
(2) α′(φ(a)) = φ(α(a)) (a ∈ A) .
A weak morphism φ : G′ → G is an algebra morphism φ : A → A′ such that for
every α′ ∈ D′ there is α ∈ D satisfying (2). Note that any weak morphism G′ → G
which is surjective as the algebra morphism A→ A′, is a morphism. It is easily seen
that compositions of (weak) morphisms between geometries are (weak) morphisms.
Thus we have the category of geometries with (weak) morphisms.

To any smooth manifold X we may associate the classical geometry
X =

(
C∞(X),Vec(X)

)
where by the abuse of notations Vec(X) also denotes the set of all directional-deriva-
tives dv : C∞(X)→ C∞(X) for v ∈ Vec(X). (In the case that X is not compact we
have also the another geometry (C∞(X),Vecc(X)) associated to X.) Note that we
have Vec(X) = Vec(X). If f : X ′ → X is a proper embedding of smooth manifold
X ′ into X then it follows from [14, Problem 8–15] that the algebra morphism

f̃ : C∞(X)→ C∞(X ′) a 7→ a ◦ f
defines a morphism X′ → X. Thus the category of smooth manifolds and proper
embeddings may be regarded as a subcategory of the category of geometries.

2.3. Differential forms. For any geometry G = (A,D) let
d: A→ Λ1(D,A) = Mod(D,A) (da)(α) := α(a) (a ∈ A,α ∈ D) .

Then d is a derivation called exterior-derivative. Consider the exterior-algebra
Λ∗(D,A) and let Ω∗(G) denote the subalgebra of Λ∗(D,A) generated by A and
the image of d. Let

Ωn(G) := Ω∗(G) ∩ Λn(D,A) (n ≥ 0) .
Then Ω∗(G) = ⊕∞n=0Ωn(G) is a graded-commutative graded-algebra called the
exterior-algebra of G. Any element of Ωn(G) is called a (differential) n-form for G.
Note that Ω0(G) = A and any ω ∈ Ωn(G) is of the form

(3) ω =
k∑
j=1

aj0(daj1) ∧ · · · ∧ (dajn) (aji ∈ A) .
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Theorem 2.1. d: Ω0(G)→ Ω1(G) extends uniquely to a graded-derivation

d: Ω∗(G)→ Ω∗(G)

of degree 1 satisfying dd = 0. Thus the pair (Ω∗(G), d) is a differential graded-algebra.

Proof. Suppose that for a, b ∈ A we have a(db) = 0. Thus aγ(b) = 0 for every
γ ∈ D. For every α, β ∈ D it follows from α(aβ(b)) = 0 that α(a)β(b)+a(αβ)(b) = 0.
Similarly β(a)α(b)+a(βα)(b) = 0. On the other hand we have a([α, β](b)) = 0 (since
[α, β] ∈ D). Thus α(a)β(b)− β(a)α(b) = 0. This means that (da) ∧ (db) = 0. Thus
from a(db) = 0 we have concluded that (da)∧(db) = 0. Similarly it can be shown that
if for a family {aji}

j=1,...,k
i=0,...,n of elements of A we have

∑k
j=1 a

j
0(daj1)∧ · · · ∧ (dajn) = 0

then
∑k
j=1(daj0) ∧ (daj1) ∧ · · · ∧ (dajn) = 0. Thus the assignment

a0(da1) ∧ · · · ∧ (dan) 7→ (da0) ∧ (da1) ∧ · · · ∧ (dan)

defines a linear map d: Ωn(G) → Ωn+1(G). The desired properties of d can be
checked. �

For the classical geometry X the objects d and Ωn(X) coincide with the clas-
sical exterior-derivative and the module Ωn(X) of differential n-forms on X. In
the following theorem we see that the classical concepts of Lie-derivative and
interior-product associated to a vector field can be stated for geometries. The proof
is similar to the classical case and omitted.

Theorem 2.2. For every α ∈ D there exists a unique graded-derivation

dα : Ω∗(G)→ Ω∗(G)

of degree zero such that it commutes with d and such that dα(a) = α(a) for every
a ∈ A. There exists also a unique graded-derivation

iα : Ω∗(G)→ Ω∗(G)

of degree −1 such that for every a ∈ A, iα(a) = 0 and iα(d(a)) = α(a). Moreover,
for any two derivations α, β ∈ D we have :

dα = iα ◦ d + d ◦ iα = (iα + d)2 and i[α,β] = dα ◦ iβ − iβ ◦ dα .

2.4. de Rham cohomology. The cohomology-algebra of (Ω∗(G),d) is denoted
by

H∗dR(G) = ⊕∞n=0Hn
dR(G)

and called de Rham cohomology of G. Note that H∗dR(G) is graded-commutative.
For the classical geometry X, H∗dR(X) coincides with the usual de Rham cohomology
of X.

Theorem 2.3. For any morphism φ : G′ → G there exists a unique algebra mor-
phism φ : Ω∗(G) → Ω∗(G′) of degree 0 (i.e. φ(Ωn(G)) ⊆ Ωn(G′)) which extends
φ : A→ A′ and commutes with the exterior-derivatives (i.e. φd = dφ). Hence this
extended morphism induces an algebra morphism

H∗dR(φ) : H∗dR(G)→ H∗dR(G′) .
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Proof. φ extends to differential forms by the formula
φ(a0(da1) ∧ · · · ∧ (dan)) := (φa0)(dφa1) ∧ · · · ∧ (dφan) .

The well-definiteness and desired properties of this extended φ can be checked. �

2.5. Geometries on sets. Let S be a set and G = (A,D) a geometry. We say
that S has the geometry G (or G is a geometry on S ) if A is an algebra of
real-valued functions on S with pointwise algebra operations. (Thus the unit of A
is the constant function with value 1.) We shall see in the following that A may
be regarded as the algebra of smooth functions on S and D as the Lie-algebra of
vector fields on S .

Let S be a set having the geometry G = (A,D). For any point p ∈ S we let

Tp(S ) := D/{α ∈ D : (αa)(p) = 0,∀a ∈ A} ∼= D/{α ∈ D : (αa)(p) = 0,∀a ∈ A}
where ∼= denotes the isomorphism of vector spaces induced by the embedding
α 7→ α from D into D. We call the vector space Tp(S ) the tangent space to S at
p. The disjoint union set T(S ) := ∪̇p∈S Tp(S ) is called the tangent bundle of S .
For any α ∈ D the geometrization α† of α is defined to be the mapping

α† : S → T(S ) p 7→ [α]p
where [α]p denotes the image of α in Tp(S ). Any α† is called a vector field on S .
The set of all vector fields on S is denoted by Vec(S ). For α ∈ D it is reasonable
to call α† a basic vector field. Thus any vector field on S is a combination of the
form

∑n
i=1 aiα

†
i where ai ∈ A and α†i is a basic vector field on S . Note that D is

identified with Vec(S ) through the assignment α 7→ α† and hence the Lie-algebra
and the A-module structures on D transform to the corresponding structures on
Vec(S ). We denote Ω∗(G) by Ω∗(S ). For any ω ∈ Ω1(S ) the geometrization of ω
is defined to be the mapping with domain S that assigns to any p ∈ S the linear
functional

Tp(S )→ R [α]p 7→
(
ω(α)

)
(p) .

Note that the above linear functional is well-defined: We know that ω =
∑
i bidai

for some ai, bi ∈ A; thus if [α]p = [β]p then we have

(ω(α)
)
(p) =

∑
i

bi(p)
(
α(ai))(p) =

∑
i

bi(p)
(
β(ai))(p) = (ω(β)

)
(p) .

More generally, for any ω ∈ Ωn(G) the geometrization of ω is defined to be the
mapping that assigns to any p ∈ S the well-defined alternating n-linear functional

Tp(S )× · · · × Tp(S )→ R
(
[α1]p, . . . , [αn]p

)
7→
(
ω(α1 ⊗ · · · ⊗ αn)

)
(p) .

Note that any ω ∈ Ωn(S ) is completely distinguished by its geometrization. It
follows that if D is finite dimensional with dim(D) = m then Ωr(S ) = 0 for every
r > m.

Let G′,G be geometries respectively on S ′, S . A mapping f : S ′ → S is called
algebraic if for every a ∈ A we have a ◦ f ∈ A′. For the algebraic mapping f the
assignment a 7→ a ◦ f defines an algebra morphism f† : A→ A′ called algebrisation
of f .
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An algebraic mapping f : S ′ → S , as above, is called (weakly) differentiable if
f† is a (weak) morphism from G′ to G. Such a f induces the natural mapping

(4) T(S ′)→ T(S ) [α′]p′ 7→ [α]f(p′)

where α′ and α are related with each other as in (2). The bundle mapping (4)
which is also fiberwise linear may be regarded as the derivative of f .

The classical geometry X is obviously a geometry on the set X. For any p ∈ X,
Tp(X) coincides with the usual tangent space to X at p. Also for any ordinary
vector field v on X the geometrization of dv coincides with v. If f : X ′ → X is
a proper embedding of smooth manifolds then f is differentiable as a mapping
between sets having geometries.

3. A general framework for lifted geometry

From now on X is a fixed smooth finite dimensional manifold without boundary.
We denote by Difeo(X) the group of diffeomorphisms of X. The flow R×X → X
of any complete vector field v ∈ Vec(X) is denoted by

(t, x) 7→ etv(x) (t ∈ R, x ∈ X) .

Let U be a set with a left group-action

Difeo(X)×U → U (θ, s) 7→ θ ∗ s .

A subset S ⊆ U is called almost Vecc(X)-invariant if for any s ∈ S and
v ∈ Vecc(X) there exists ε > 0 such that etv ∗ s ∈ S for every t with |t| < ε. As
example, for any S ⊆ U the sets{

θ ∗ s : θ ∈ Difeo(X), s ∈ S
}

{
(et1v1 · · · etnvn) ∗ s : n ≥ 1, t1, . . . , tn ∈ R, v1, . . . , vn ∈ Vecc(X), s ∈ S

}
are almost Vecc(X)-invariant. Let S ⊆ U be almost Vecc(X)-invariant and let
f : S → R be a function. The directional-derivative d̃vf of f is defined by

(d̃vf)(s) := lim
t→0

f(etv ∗ s)− f(s)
t

(v ∈ Vecc(X), s ∈ S ) .

The function f is called 1-differentiable if for every v ∈ Vecc(X) and s ∈ S the
above limit exists. If f is 1-differentiable then it is continuous in the following
sense:

lim
t→0

f(etv ∗ s) = f(s) (v ∈ Vecc(X), s ∈ S ) .

The function f is called n-differentiable (n ≥ 2) if for every v ∈ Vecc(X) the function
d̃vf exists and is (n− 1)-differentiable. f is called smooth if f is n-differentiable
for every n. f is called linear-derivable if it is 1-differentiable and the mapping
v 7→ d̃vf from Vecc(X) into the vector space of all functions on S , is linear. f is
called Lie-compatible if it is 2-differentiable and the following identity holds:

(d̃vd̃w)(f)− (d̃wd̃v)(f) = d̃[v,w](f) (v, w ∈ Vecc(X)) .
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If f is smooth, linear-derivable and Lie-compatible then for any u ∈ Vecc(X), d̃uf
is smooth, linear-derivable and Lie-compatible. The mentioned fact can be seen
from the following observations (r ∈ R):
d̃v+rw(d̃uf) = d̃u(d̃v+rwf) + d̃[v+rw,u](f)

= d̃u(d̃vf + rd̃wf) + d̃[v,u](f) + rd̃[w,u](f)
= (d̃ud̃v)(f) + r(d̃ud̃w)(f) + d̃[v,u](f) + rd̃[w,u](f)
= d̃v(d̃uf)+ d̃[u,v](f)+ rd̃w(d̃uf)+ rd̃[u,w](f) + d̃[v,u](f) + rd̃[w,u](f)
= d̃v(d̃uf) + rd̃w(d̃uf) .

(d̃vd̃w)(d̃uf)− (d̃wd̃v)(d̃uf) = (d̃vd̃ud̃w)(f) + (d̃vd̃[w,u])(f)
− (d̃wd̃ud̃v)(f)− (d̃wd̃[v,u])(f)

= (d̃ud̃vd̃w)(f) + (d̃[v,u]d̃w)(f) + (d̃vd̃[w,u])(f)
− (d̃ud̃wd̃v)(f)− (d̃[w,u]d̃v)(f)− (d̃wd̃[v,u])(f)

= (d̃ud̃[v,w])(f) + d̃[[v,u],w](f) + d̃[v[w,u]](f)
= (d̃[v,w]d̃u)(f) + d̃[u,[v,w]](f) + d̃[[v,u],w](f) + d̃[v[w,u]](f)
= d̃[v,w](d̃uf) .

Let A be an algebra of real functions on S with pointwise operations such that:
(C1) any function a in A, is smooth, linear-derivable and Lie-compatible, and
(C2) every of its directional-derivatives d̃va belongs to A.

Then for every v ∈ Vecc(X), the mapping d̃v : A→ A is a derivation and the set
(5) D =

{
d̃v : v ∈ Vecc(X)

}
is a sub-Lie-algebra of Der(A). Thus G = (A,D) is a geometry on S . As it is
clear from the definition of G and the results of §2.5 the tangent vectors to G are
obtained as a natural lifting of vector fields on X. We call the geometry G a lifted
geometry on S if the functions in A are obtained via a uniform and distinguished
lifting procedure of smooth functions, differential forms, or other smooth objects
associated with X. (The meaning of the preceding sentence will become more clear
by the examples given in the following sections.) Then once we have a distinguished
way to produce smooth functions on S , by (1) and (3) we can also produce all
vector fields and differential forms on S . Thus the basic elements of any lifted
geometry on S have two properties: (i) They can be explicitly obtained from the
basic elements of the geometry of X. (ii) To define them there is no need to any
local coordinate system or even topology on S .

It can be easily checked that if f , g : S → R are smooth (resp. linear-derivable,
Lie-compatible) then the functions rf (r ∈ R), f + g, and fg are also smooth
(resp. linear-derivable, Lie-compatible). This fact together with the above results
imply that the set B of all smooth, linear-derivable and Lie-compatible functions
on S is an algebra satisfying (C1) and (C2). Thus for any lifted geometry G as
above we have A ⊆ B. But note that the geometry (B,D) on S (with D as in



ON INFINITE DIMENSIONAL MANIFOLDS 9

(5)) in general can not be considered as a lifted geometry on S because we have
no control on the nature of the functions in B. If G = (A,D) is a lifted geometry
on S and S ′ ⊂ S is almost Vecc(X)-invariant then G|S ′ := (A|S ′ , D) is a lifted
geometry on S ′ where

A|S ′ :=
{
a|S ′ : a ∈ A

}
and where D similar to the above is the set of derivations of the form d̃v on A|S ′
for v ∈ Vecc(X). Then also the inclusion S ′ ↪→ S is differentiable. We may call
G|S ′ a restricted lifted geometry on S ′.

Remark 3.1. All the above definitions and materials and almost all the results in
§4–9 (with some appropriate changes) remaind valid when Vecc(X) is replaced by
an arbitrary Lie-algebra L of complete vector fields on X. Thus we may consider
the notion of almost L-invariant subset S ⊆ U and the notions of L-smooth,
linear-L-derivable, and Lie-L-compatible functions f : S → R. Accordingly, we
may define a lifted L-geometry on S to be a geometry (A,DL) where A is an
algebra of functions on S obtained via a lifting procedure and satisfying the
analogues of (C1) and (C2), and where DL = {d̃v : v ∈ L}.

4. Lifted geometry of spaces of Radon measures

In this section we extend some aspects of differential geometry for configuration
spaces considered in [4] and other papers. Let MX denote the cone of positive
Radon measures on X. For any µ ∈MX and every θ ∈ Difeo(X) let θ∗µ denote the
push-forward measure of µ under θ i.e. θ∗µ(U) := µ(θ−1U) for any Borel subset U
of X. Thus we have the group-action

Difeo(X)×MX →MX (θ, µ) 7→ θ∗µ.

We are going to define a lifted geometry on MX . Then also as we saw in §3 any
almost Vecc(X)-invariant subset of MX has the restricted lifted geometry. Suppose
φi ∈ C∞c (X) for i = 1, . . . , n and ψ ∈ C∞(Rn). We let

F = F [ψ : φ1, . . . , φn] F : MX → R

be defined by

(6) F (µ) := ψ
(∫

X

φ1dµ, . . . ,
∫
X

φndµ
)
.

For any v ∈ Vecc(X) we may compute d̃vF as follows: For a small ε > 0 let the
function

ϕ = (ϕ1, . . . , ϕn) ϕ : (−ε,+ε)→ Rn

be defined by

ϕ(t) :=
(∫

X

φ1d(etv∗ µ), . . . ,
∫
X

φnd(etv∗ µ)
)

=
(∫

X

(φ1◦etv)dµ, . . . ,
∫
X

(φn◦etv)dµ
)
.

We have

(d̃vF )(µ) = (ψ ◦ ϕ)′(0) =
n∑
i=1

ϕ′i(0) ∂ψ
∂ri

(
ϕ(0)

)
and ϕ′i(0) =

∫
X

(dvφi)dµ .
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Thus if ξ : R2n → R is defined by

(7) (r1, . . . , rn, s1, . . . , sn) 7→
n∑
i=1

si
∂ψ

∂ri
(r1, . . . , rn) ,

then we have

(8) d̃v
(
F [ψ : φ1, . . . , φn]

)
= F [ξ : φ1, . . . , φn,dvφ1, . . . ,dvφn] .

Applying (8) two times, for F as above and v, w ∈ Vecc(X) we have[(
d̃wd̃v

)
F
](
µ
)

=
n∑

j,i=1

(∫
X

(dwφj)dµ
)(∫

X

(dvφi)dµ
)

×
[ ∂ψ

∂rj∂ri

(∫
X

φ1dµ, . . . ,
∫
X

φndµ
)]

+
n∑
k=1

(∫
X

(dwdvφk)dµ
)[ ∂ψ
∂rk

( ∫
X

φ1dµ, . . . ,
∫
X

φndµ
)]
.

Similarly
[
(d̃vd̃w)F

]
(µ) may be computed explicitly, and then we find out that[(

d̃vd̃w
)
F
](
µ
)
−
[(

d̃wd̃v
)
F
]
(µ)

=
n∑
k=1

(∫
X

(dvdwφk − dwdvφk)dµ
)[ ∂ψ
∂rk

(∫
X

φ1dµ, . . . ,
∫
X

φndµ
)]

=
n∑
k=1

(∫
X

(d[v,w]φk)dµ
)[ ∂ψ
∂rk

(∫
X

φ1dµ, . . . ,
∫
X

φndµ
)]

=
[
d̃[v,w]F

]
(µ) .

Thus we have showed that any function F [ψ : φ1, . . . , φn] is Lie-compatible. We
have

F [ψ+̄ψ′ : φ1, . . . , φn, φ
′
1, . . . , φ

′
n′ ] = F [ψ : φ1, . . . , φn] + F [ψ′ : φ′1, . . . , φ′n′ ]

F [ψ×̄ψ′ : φ1, . . . , φn, φ
′
1, . . . , φ

′
n′ ] =

(
F [ψ : φ1, . . . , φn]

)(
F [ψ′ : φ′1, . . . , φ′n′ ]

)(9)

where ψ+̄ψ′, ψ×̄ψ′ ∈ C∞(Rn+n′) are given respectively by (r1, . . . , rn+n′) 7→

ψ(r1, . . . , rn) + ψ′(rn+1, . . . , rn+n′) and ψ(r1, . . . , rn)ψ′(rn+1, . . . , rn+n′) .

Let

A :=
{
F [ψ : φ1, . . . , φn] : ψ ∈ C∞(Rn), φ1, . . . , φn ∈ C∞c (X), n ≥ 1

}
.

It is concluded from (9) that A is an algebra of functions on MX . Also it follows
from the formula (8) that the functions in A are smooth and linear-derivable. Thus
the conditions (C1) and (C2) for A are satisfied and we have the geometry (A,D) on
MX where D is given by (5). The functions in A are obtained via the uniform and
distinguished lifting procedure, given by the formula (6), of the smooth functions
on X. Thus (A,D) may be regarded as a lifted geometry on MX .
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For any µ ∈MX let ∼µ be the equivalence relation on Vecc(X) given by(
v ∼µ w

)
⇐⇒

(
v(x) = w(x) for almost all x ∈ X w.r.t. µ

)
.

Then it can be checked that the assignment v 7→ d̃v induces a vector-space
isomorphism from Vecc/ ∼µ onto Tµ(MX).

The restricted lifted geometry on the following Difeo(X)-invariant subsets of
MX could be considered: (i) The subset M f

X of finite measures. (ii) The subset of
measures µ with µ(X) ≤ r for some fixed number r. (iii) The subset of measures
with values in N. (iv) The configuration space of X [3, 4, 5], that is the subset
of measures µ of the form

∑
x∈K δx where K is a subset of X without any limit

point. (Thus K is countable.) (v) The subset of probability measures on X. (vi)
The subset of measures on X induced by Riemannian metrics on k-dimensional
submanifolds of X for some fixed k ≤ dim(X). (vii) The subset M c

X of measures
with compact supports. (viii) The subset of measures without any atom. (ix) The
set of Radon measures which are absolutely continuous w.r.t. a measure induced
by a Riemannian metric on X.

Let Υ: X ′ → X be a proper embedding of a smooth manifold X ′ into X.
Consider the induced mapping Υ̂ : MX′ →MX given by µ′ 7→ Υ∗µ′. We have(

F [ψ : φ1, . . . , φn]
)
◦ Υ̂ = F [ψ : φ1 ◦Υ, . . . , φn ◦Υ] .

Thus Υ̂ is algebraic. Also it follows from [14, Lemma 5.34] that its algebrisation
is a surjective algebra morphism. We know that for every v′ ∈ Vecc(X ′) there is
v ∈ Vecc(X) that extends v′ i.e. v′ = v ◦Υ where T(X ′) is identified with a subset
of T(X). We have

d̃v′((F [ψ : φ1, . . . , φn]) ◦ Υ̂) = d̃v′(F [ψ : φ1 ◦Υ, . . . , φn ◦Υ])
= F [ξ : φ1◦Υ, . . . , φn◦Υ,dv′(φ1◦Υ), . . . ,dv′(φn◦Υ)]
= F [ξ : φ1 ◦Υ, . . . , φn ◦Υ, (dvφ1) ◦Υ, . . . , (dvφn) ◦Υ]

= (F [ξ : φ1, . . . , φn,dvφ1, . . . ,dvφn]) ◦ Υ̂

= (d̃vF [ψ : φ1, . . . , φn]) ◦ Υ̂ .

Thus Υ̂ is differentiable. We may regard X 7→MX as a functor from the category
of manifolds and proper embeddings to the category of sets having geometries.

Suppose that X has a Lie-group structure. For any measure ν ∈M c
X) consider

the convolution-mapping ν̂ given by µ 7→ µ ? ν from M f
X into itself. We have(

F [ψ : φ1, . . . , φn]
)
◦ν̂ = F

[
ψ :
(
x 7→

∫
X

φ1(xy)dν(y)
)
, . . . ,

(
x 7→

∫
X

φn(xy)dν(y)
)]
.

Thus ν̂ is algebraic. Similarly, µ 7→ ν ? µ is algebraic.
For any f ∈ C∞(X) let f̂ : MX → MX be defined by d(f̂µ) := fdµ. The

following identity shows that f̂ is algebraic:(
F [ψ : φ1, . . . , φn]

)
◦ f̂ = F [ψ : fφ1, . . . , fφn] .
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5. Gradient in lifted Riemannian geometry

In this section we extend some contents considered in [2, 3, 4, 11, 12, 15, 18].
Suppose that X has a Riemannian metric g and let MX and A be as in §4. Let
M ⊆ MX be an almost Vecc(X)-invariant subset. For µ ∈ MX , we have the
well-defined inner product

〈[v]µ, [w]µ〉g :=
∫
X

〈v(x), w(x)〉gdµ(x)

on Tµ(M ). Hence we may regard M as a Riemannian manifold. For F ∈ A the
gradient ∇F of F is a vector field on M satisfying(

dF (µ)
)
[v]µ = 〈[v]µ,∇F (µ)〉g (µ ∈M , v ∈ Vecc(X)) .

We prove that ∇F is actually a member of Vec(M ): Suppose that the function
F ∈ A be given by (6). For any fixed µ ∈ M we show that there is a canonical
vector field wµ ∈ Vecc(X) satisfying

(10)
(
dF (µ)

)
[v]µ = 〈[v]µ, [wµ]µ〉g (v ∈ Vecc(X))

The more explicit form of equation (10) for every v ∈ Vecc(X) is

(11)
n∑
i=1

Fi(µ)
∫
X

(
dvφi

)
dµ =

∫
X

〈v(x), wµ(x)〉gdµ(x)

where Fi denotes the function F [ ∂ψ∂ri : φ1, . . . , φn] in A. Let O be any open subset
of X which is identified with Rm (dim(X) = m) via a local coordinate mapping.
Using the identification O ∼= Rm we may regard the restriction of any object
appearing in (11) as the corresponding object on Rm. Then for any v ∈ Vecc(X)
with Supp(v) ⊂ O, (11) becomes

(12)
n∑
i=1

Fi(µ)
∫

Rm

m∑
j=1

vj
∂φi
∂xj

dµ =
∫

Rm

( m∑
j,k=1

vjw
µ
kgjk

)
dµ .

It is important to note that since Supp(v) ⊂ O the left (resp. right) hand sides of
(11) and (12) are equal. Rearranging the sums in (12) we get

m∑
j=1

∫
Rm

vj

( n∑
i=1

Fi(µ)∂φi
∂xj

)
dµ =

m∑
j=1

∫
Rm

vj

( m∑
k=1

wµkgjk

)
dµ.

Since v is arbitrary it is concluded that for every j = 1, . . . ,m we must have
n∑
i=1

Fi(µ)∂φi
∂xj

=
m∑
k=1

wµkgjk almost every where w.r.t. µ .

Hence for every k = 1, . . . ,m we must have

(13) wµk =
m∑
j=1

n∑
i=1

g−1
kj Fi(µ)∂φi

∂xj
almost every where w.r.t. µ.
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For every i = 1, . . . , n let ui = ∇φi denote the gradient of φi w.r.t. g on X.
ui ∈ Vecc(X) and its components in a local coordinate system O ∼= Rm as above is
given by

(14) uik :=
m∑
j=1

g−1
kj

∂φi
∂xj

(k = 1, . . . ,m).

Now it is concluded from (13) and (14) that if we let wµ to be defined by

wµ :=
n∑
i=1

Fi(µ)ui ∈ Vecc(X)

then it satisfies in equation (10). Then also it is clear that

∇F =
n∑
i=1

Fi(ui)† ∈ Vec(M ) .

More explicitly we have

∇F [ψ : φ1, . . . , φn](µ) =
n∑
i=1

F
[ ∂ψ
∂ri

: φ1, . . . , φn

]
(µ)
[
∇φi

]
µ
.

We endow M with the weak topology that is defined to be the smallest topology
under which every function M 3 µ 7→

∫
X
φd(µ) for φ ∈ C∞c (X) is continuous. It

can be checked that the weak topology is Hausdorff. Any function F ∈ A may be
regarded as a continuous function on M . Let Θ be a Borel probability measure on
M . Thus Θ may be regarded as a random Radon measure on X. We are going to
consider a construction of the formal Laplace operator for M w.r.t. the pair (g,Θ),
by means of its associated quadratic form L on L2(Θ). Let Ac ⊂ A be the subset
of those functions of the form (6) with ψ ∈ C∞c (Rn). Then Ac is a subalgebra of
bounded continuous functions on M and hence Ac ⊂ L2(Θ). If M is compact (e.g.
X is compact and M is the set of probability measures) then Ac is also dense in
L2(Θ). We let the symmetric positive-definite bilinear functional

L : Ac ×Ac → R ,

which may be called Dirichlet form associated with Θ, be defined by

L(F, F ′) :=
∫

M

〈∇F (µ),∇F ′(µ)〉gdΘ(µ) .

More explicitly for F = F [ψ, φ1, . . . , φn] and F ′= F [ψ′, φ′1, . . . , φ′n′ ] in Ac, L(F, F ′)
is the integral of the following function of µ on M w.r.t. Θ:

(15)
n∑
i=1

n′∑
i′=1

F
[ ∂ψ
∂ri

: φ1, . . . , φn

]
(µ)F

[ ∂ψ′
∂ri′

: φ′1, . . . , φ′n′
]
(µ)
∫
X

〈∇φi,∇φ′i′〉gdµ .

Suppose that ε ∈ C∞(R). Then we have

(16) ε ◦ F [ψ, φ1, . . . , φn] = F [ε ◦ ψ, φ1, . . . , φn] ,
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F
[∂(ε ◦ ψ)

∂ri
: φ1, . . . , φn

]
(µ) =

(∂ε
∂t

(
F [ψ, φ1, . . . , φn](µ)

))
× F

[ ∂ψ
∂ri

: φ1, . . . , φn

]
(µ) .(17)

Let F = F [ψ, φ1, . . . , φn] be in Ac. Suppose that ε as above has the properties

ε(0) = 0 and − 1 ≤ ∂ε

∂t
≤ 1 .

Since ε◦ψ ∈ C∞c (Rn), (16) implies that ε◦F ∈ Ac. (17) shows that L(ε◦F, ε◦F ) is the
integral w.r.t. Θ of the positive function given by (15) with n′ = n, ψ′ = ψ, φ′i = φi,
multiplied by the function

µ 7→
(∂ε
∂t

(
F (µ)

))2
.

Thus we have
L(ε ◦ F, ε ◦ F ) ≤ L(F, F ) (F ∈ Ac) .

This implies that L is a Markovian form in the sense of [9].

6. Lifted geometry of mapping spaces

Let Y be a set with a σ-algebra Σ of its subsets. Denote by FY
X the set of all

Borel measurable mappings from Y into X. We have the canonical group-action

Difeo(X)×FY
X → FY

X (θ, P ) 7→ θ ◦ P .

We are going to define a class of lifted geometries for FY
X . For any n-tuple

(µ1, . . . , µn) of finite positive measures on (Y,Σ) and any function φ ∈ C∞c (Xn) let
the function

F = F [φ : µ1, . . . , µn] F : FY
X → R

be defined by

F (P ) :=
∫
Y n

φ(P, . . . , P )d(µ1 × · · · × µn) (P ∈ FY
X ) .

For any v ∈ Vecc(X) we have

(d̃vF )(P ) = lim
t→0

1
t

∫
Y n

[
φ
(
etv(Py1), . . . , etv(Pyn)

)
− φ

(
Py1, . . . , Pyn

)]
dµ1(y1) · · · dµn(yn)

=
∫
Y n

(
dv⊕nφ

)(
P, . . . , P

)
d(µ1 × · · · × µn)

where v⊕n ∈ Vecc(Xn) denotes the direct sum of n copies of v. Thus we have

(18) d̃v
(
F [φ : µ1, . . . , µn]

)
= F [dv⊕nφ : µ1, . . . , µn] .
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For v, w ∈ Vecc(X) and F as above by applying (18) we have that

(d̃vd̃wF )(P )− (d̃wd̃vF )(P )

=
∫
Y n

[
(dv⊕ndw⊕nφ)(P, . . . , P )

− (dw⊕ndv⊕nφ)(P, . . . , P )
]
d(µ1 × · · · × µn)

=
∫
Y n

(dv⊕ndw⊕nφ− dw⊕ndv⊕nφ)(P, . . . , P )d(µ1 × · · · × µn)

=
∫
Y n

(d[v,w]⊕nφ)(P, . . . , P )d(µ1 × · · · × µn)

=
(
d̃[v,w]F

)
(P ) .

(19)

We have also the identities
F [φ+̄φ′ : µ1, . . . , µn, µ

′
1, . . . , µ

′
n′ ] = F [φ : µ1, . . . , µn] + F [φ′ : µ′1, . . . , µ′n′ ]

F [φ×̄φ′ : µ1, . . . , µn, µ
′
1, . . . , µ

′
n′ ] =

(
F [φ : µ1, . . . , µn]

)(
F [φ′ : µ′1, . . . , µ′n′ ]

)(20)

where φ+̄φ′, φ×̄φ′ ∈ C∞c (Xn+n′) are given respectively by (x1, . . . , xn+n′) 7→

φ(x1, . . . , xn) + φ′(xn+1, . . . , xn+n′) and φ(x1, . . . , xn)φ′(xn+1, . . . , xn+n′) .

Let Y be any nonempty family of finite positive measures on (Y,Σ). Let

A :=
{
F [φ : µ1, . . . , µn] : φ ∈ C∞c (Xn), µ1, . . . , µn ∈ Y, n ∈ N

}
.

It follows from (18)-(20) that A is an algebra of functions on FY
X satisfying (C1)

and (C2). Thus we have defined a lifted geometry (A,D) for FY
X where D is

given by (5). For any P ∈ FY
X and every v, w ∈ Vecc(X) we write v ∼P w if the

mappings v ◦ P and w ◦ P from Y into the tangent bundle of X are almost every
where equal w.r.t. every µ ∈ Y. Then ∼P is an equivalence relation on Vecc(X)
and it can be checked that the assignment v 7→ d̃v induces a surjective vector space
isomorphism Vecc(X)/ ∼P→ TP (FY

X ).
For any proper embedding Υ: X ′ → X consider the induced mapping

Υ̂ : FY
X′ → FY

X P ′ 7→ Υ ◦ P ′.

We have (
F [φ : µ1, . . . , µn]

)
◦ Υ̂ = F [φ ◦Υ⊕

n

: µ1, . . . , µn] .

If φ′ ∈ C∞c (X ′n) there exists φ ∈ C∞c (Xn) such that φ′ = φ ◦ Υ⊕n . Thus the
algebrisation of Υ̂ is surjective. If v ∈ Vecc(X) extends v′ ∈ Vecc(X ′) then

d̃v′
(
(F [φ : µ1, . . . , µn]) ◦ Υ̂

)
= F [dv′⊕n (φ ◦Υ⊕

n

) : µ1, . . . , µn]

= F [dv⊕nφ : µ1, . . . , µn] ◦ Υ̂

=
(
d̃v(F [φ : µ1, . . . , µn])

)
◦ Υ̂ .

Thus Υ̂ is differentiable.
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Let π : (Y,Σ)→ (Y ′,Σ′) be a measurable mapping and Y ′ a set of finite positive
measures on Y ′ such that π∗µ ∈ Y ′ for every µ ∈ Y . Consider the induced mapping

π̂ : FY ′

X → FY
X P ′ 7→ P ′ ◦ π .

We have (
F [φ : µ1, . . . , µn]

)
◦ π̂ = F [φ : π∗µ1, . . . , π∗µn] ,

and hence π̂ is differentiable.
The assignments X 7→ FY

X and (Y,Σ,Y) 7→ FY
X may be regarded as (co)functors.

In case Y is a smooth manifold the restricted lifted geometry of the Difeo(X)-in-
variant set C∞(Y,X) of all smooth mappings from Y into X can be considered.
The geometry of C∞(Y,X) as an infinite dimensional manifold locally modeled on
appropriate topological vector spaces has been considered by many authors.

7. Lifted geometry of spaces of submanifolds

Let E k
X denote the set of all embedded oriented submanifolds of X (with or

without boundary) of the fixed dimension k ≤ dim(X). We have the obvious
group-action

Difeo(X)× E k
X → E k

X (θ,E) 7→ θ(E).
For any n-tuple (ω1, . . . , ωn) of k-differential forms ωi ∈ Ωkc (X) on X with compact
support and any ψ ∈ C∞(Rn) we let the function

F = F [ψ : ω1, . . . , ωn] F : E k
X → R

be defined by
F (E) := ψ

(∫
E

ω1, . . . ,

∫
E

ωn

)
.

Similar to §4 it can be shown that for any v ∈ Vecc(X) we have
(21) d̃v

(
F [ψ : ω1, . . . , ωn]

)
= F [ξ : ω1, . . . , ωn,dvω1, . . . ,dvωn]

where ξ : R2n → R is defined by (7). Also it can be checked that the set
Ak :=

{
F [ψ : ω1, . . . , ωn] : ψ ∈ C∞(Rn), ω1, . . . , ωn ∈ Ωkc (X), n ≥ 1

}
is an algebra of functions on E k

X satisfying (C1) and (C2). Thus (Ak, D) may be
regarded a lifted geometry on E k

X where D is given by (5). For any E ∈ E k
X and

every v, w ∈ Vecc(X) write v ∼E w if v|E = w|E . Then the vector spaces Vecc/ ∼E
and TE(E k

X) are canonically isomorphic.
For any proper embedding Υ: X ′ → X consider the mapping Υ̂ : E k

X′ → E k
X

defined by E′ 7→ Υ(E′). We have(
F [ψ : ω1, . . . , ωn]

)
◦ Υ̂ = F [ψ : Υ∗ω1, . . . ,Υ∗ωn] .

It is well-know that any ω′ ∈ Ωk
c (X ′) extends to some ω ∈ Ωk

c (X) i.e. ω′ = Υ∗ω.
Thus the algebrisation of Υ̂ is surjective. For v ∈ Vecc(X) that extends v′ ∈
Vecc(X ′) we have

d̃v′
(
(F [ψ : ω1, . . . , ωn]) ◦ Υ̂

)
= F [ξ : Υ∗ω1, . . . ,Υ∗ωn,dv′(Υ∗ω1), . . . ,dv′(Υ∗ωn)]

=
(
d̃v(F [ψ : ω1, . . . , ωn])

)
◦ Υ̂ .
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Thus Υ̂ is differentiable.
Let E k,b

X ⊂ E k
X denote the subset of submanifolds with nonempty boundary. Thus

E k,b
X has the restricted lifted geometry induced from E k

X . Consider the boundary
operator

∂ : E k,b
X → E k−1

X

that associates to any E ∈ E k,b
X its boundary ∂E. By Stokes’ theorem we have(

F [ψ : ω1, . . . , ωn]
)(
∂E) =

(
F [ψ : dω1, . . . ,dωn]

)(
E
)

(E ∈ E k,b
X )

for every F [ψ : ω1, . . . , ωn] in Ak−1(X). Thus ∂ is algebraic. For v ∈ Vecc(X) we
have

d̃v
(
(F [ψ : ω1, . . . , ωn]) ◦ ∂

)
= d̃v

(
F [ψ : dω1, . . . ,dωn]

)
= F [ξ : dω1, . . . ,dωn,dv(dω1), . . . ,dv(dωn)]
= F [ξ : dω1, . . . ,dωn,d(dvω1), . . . ,d(dvωn)]
= (F [ξ : ω1, . . . , ωn,dvω1, . . . ,dvωn]) ◦ ∂
=
(
d̃v(F [ψ : ω1, . . . , ωn])

)
◦ ∂ .

Thus ∂ is weakly differentiable.

8. Lifted geometry of spaces of tilings

By a tiling on X we mean a (countable) set T of pairwise disjoint connected
open subsets of X satisfying the following three conditions:

(i) The closure U of any U ∈ T is compact.
(ii) X = ∪U∈TU .
(iii) For every x ∈ X there is an open set Vx containing x with Vx ∩U 6= ∅ only

for a finite number of members U of T .
We denote by TX the set of all tilings on X. We have the group-action given by

Difeo(X)×TX → TX θ ∗ T :=
{
θ(U) : U ∈ T

}
.

Suppose that X is oriented and dim(X) = k. We consider every open subset of X
as an oriented submanifold. For any T ∈ TX and any open subset V of X we let

T |V := ∪U∈T,U∩V 6=∅U.

It can be checked that if V is compact then
(iv) T |V is compact, and
(v) for any v ∈ Vecc(X) there exists ε > 0 such that for every t with |t| < ε

we have:
(etv ∗ T )|V = T |V .

For n-tuples (V1, . . . , Vn) and (ω1, . . . , ωn) of open subsets Vi of X with Vi compact
and k-differential forms ωi ∈ Ωk(X) on X, and any ψ ∈ C∞(Rn) we let the function

F = F [ψ : ω1|V1, . . . , ωn|Vn] F : TX → R
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be defined by

F (T ) := ψ
(∫

T |V1

ω1, . . . ,

∫
T |Vn

ωn

)
.

Using the above properties of T |V and similar with (21) for any v ∈ Vecc(X) we
have

d̃v
(
F [ψ : ω1|V1, . . . , ωn|Vn]

)
= F [ξ : ω1|V1, . . . , ωn|Vn,dvω1|V1, . . . ,dvωn|Vn]

where ξ : R2n → R is defined by (7). Also similar with the results of §7 it is proved
that the set A of all functions on TX of the forms F [ψ : ω1|V1, . . . , ωn|Vn] is an
algebra satisfying (C1) and (C2). Thus we have the lifted geometry (A,D) on TX

where D is given by (5).

9. Action functionals as functions of lifted geometry

In this section we consider a variant of the lifted geometry described in §6. Let
CX denote the set of all smooth curves C in X defined on an arbitrary compact
interval in R. There is a canonical group-action given by

Difeo(X)× CX → CX C 7→ θ ◦ C .

For Lagrangian densities L1, . . . , Ln on X i.e. smooth functions Li on the tangent
bundle TX of X, and any ψ ∈ C∞(Rn), let the generalized action functional

F = F [ψ : L1, . . . , Ln] F : CX → R

be defined by

F (C) := ψ
(∫ b

a

L1(C, Ċ), . . . ,
∫ b

a

Ln(C, Ċ)
)

(C : [a, b]→ X) .

We show that for any v ∈ Vecc(X) and any Lagrangian density L the directional
derivative d̃vF0 of the action functional F0 : C 7→

∫ b
a
L(C, Ċ) is equal to the action

functional associated to a Lagrangian density which is the directional derivative of
L along a vector field v† on the tangent bundle TX. We give the proof only in the
simple case that X = Rk. But using the concept of prolongation of vector fields
on jet bundles it can be stated in the general case. So suppose L : Rk × Rk → R
and v : Rk → Rk are smooth and C : [a, b] → Rk is a curve. Using the linear
approximation etv(x) ∼ x+ tv(x) we have(
d̃vF0

)
(C) =

∫ b

a

lim
t→0

L
(
(etv ◦ C)(s), (etv ◦ C)′(s)

)
− L

(
C(s), C ′(s)

)
t

ds

=
∫ b

a

lim
t→0

L
(
C(s)+tv(C(s)), C ′(s)+tv′(C(s))(C ′(s))

)
−L
(
C(s), C ′(s)

)
t

ds

=
∫ b

a

(
dv†L

)(
C(s), C ′(s)

)
ds

where v† : Rk × Rk → Rk × Rk is defined by

v†
(
x, y
)

:=
(
v(x), v′(x)(y)

)
.
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(In the above v′(x) : Rk → Rk is the derivative of v at x and C ′(s) ∈ Rk is the
tangent vector to C at C(s).) It follows that

d̃v
(
F [ψ : L1, . . . , Ln]

)
= F [ξ : L1, . . . , Ln,dv†L1, . . . ,dv†Ln]

where ξ : R2n → R is defined by (7). Then it can be checked that
A :=

{
F [ψ : L1, . . . , Ln] : ψ ∈ C∞(Rn), L1, . . . , Ln ∈ C∞(TRk), n ≥ 1

}
is an algebra of functions on CRk satisfying (C1) and (C2). Thus (A,D) may be
regarded as a lifted geometry for CRk where D is given by (5).

Conclusion. We defined the concept of Lifted Geometry and gave various examples
and elementary applications of it. It was clear that because of independence of any
lifted geometry for an object off the existence of any topology or local coordinate
system on the object, Lifted Geometry becomes a tool to define differentiable
structures on geometric objects with infinite dimensional nature. There are many
aspects of Lifted Geometry that needs to be explored and we have plan to do it
in future works. In our opinion the three concepts of flow, symmetry, and critical
points of functions and vector fields in Lifted Geometry must have interesting
applications in Mathematical Mechanics.
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