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I I I . I 

III. Generalized linear differential equations 

1. The generalized linear differential equation 
and its basic properties 

We assume that A: [0, 1] -> L(Rn) is an n x ri-matrix valued function such that 
var0 A < oo and gsBVn[0,1] = BVn. 

The generalized linear differential equation will be denoted by the symbol 

(1.1) dx = d[A] x + dg 

which is interpreted by the following definition of a solution. 

1.1. Definition. Let [a, b] a [0,1], a < b\ a function x: [a, b] -> Rn is said to be 
a solution of the generalized linear differential equation (1,1) on the interval [a, b] 
if for any t, r0 e [a, b] the equality 

(1.2) x(t) = x(t0) + f d[A(s)] x(s) + g(t) - g(t0) 
Jto 

is satisfied. 

In the original papers of J. Kurzweil (cf. [ l ] , [2]) on generalized differential 
equations and in other papers in this field the notation 

^ = D[/»(t)x + g(t)] 

was used for the generalized linear differential equation. 
It is evident that the generalized linear differential equation can be given on an 

arbitrary interval [a, b] cz R instead of [0,1]. 
If x0eJR„ and t0e\a, b] <= [0,1] are fixed and x: [a, fc]-> jRn is a solution 

of (1,1) on [a, b] such that x(r0) = x0, then x is called the solution of the initial 
value (Cauchy) problem 

(1.3) dx = d[A] x + dg, x(t0) = x0 

on [a, b]. 

104 



m i 

1.2. Remark. If B: [0, l] -* L(Rn) is an n x r/-matrix valued function, continuous 
on [0, 1] with respect to the norm of a matrix given in 1.1.1 and h: [0, l] -* Rn is 
continuous on [0, l] , then the initial value problem for the linear ordinary dif
ferential equation 

(1,4) x' = B(f)x + h(f), x(r0) = x0 

is equivalent to the integral equation 

x(f) = x0 + B(s) x(s) ds + h(s) ds, te [0,1] . 
J.o Jh) 

If we denote A(t) = Jf
0 B(r)dr, g(t) = f0 h(r)dr for f e [0,1], then this equation 

can be rewritten into the equivalent Stieltjes form 

x(f) = x0 + \'d[A(s)] x(s) + g(t) - g(t0), t e [0,1] . 

The functions A: [0,1]-> L(K„), g: [0,1] -• Rn are absolutely continuous and 
therefore also of bounded variation. In this way the initial value problem (1,4) has 
become the initial value problem of the form (1,3) with A, g defined above and both 
problems are equivalent. Essentially the same reasoning yields the equivalence of the 
problem (1,4) to an equivalent Stieltjes integral equation when B: [0,1] -> L(Rn), 
h: [0,1] -• Rn are assumed to be Lebesgue integrable and if we look for Caratheodory 
solutions of (1,4). 

1.3. Theorem. Assume that A: [0,1] -* L(Rn) is of bounded variation on [0,1], 
g e BVn. Let x: [a, b] -> Rn be a solution of the generalized linear differential equation 
(1,1) on the interval [a,b] c: [0,1]. Then x is of bounded variation on [a,b]. 

Proof. By the definition 1.1 of a solution of (1,1) the integral j"|o d[A(s)] x(s) exists 
for every t,t0e[a,b]. Hence by 1.4.12 the limit lim j[o d[_4(s)] x(s) exists for 

t-*to + 

t0 e [a, b) and lim j"|o d[_4(s)] x(s) exists for f0 e (a, b]. Hence by (1,2) the solution 
t~*to~ 

x(t) of (1,1) possesses onesided limits at every point f0 e [a, b] and for every point 
f0 G [a, b] there exists 3 > 0 and a constant M such that |x(f)| < M for 
f e (f0 — 5, t0 + S) n [a, b]. By the Heine-Borel Covering Theorem there exists a finite 
system of intervals of the type (f0 — <5, f0 + 3) covering the compact interval [a, b]. 
Hence there exists a constant K such that \x(t)\ < K for every te[a,b]. If now 
a = f0 < tl < ... < tk = b is an arbitrary subdivision of [a,b], we have by 1.4.27 

Mt.)-*(t.-,)|.- d[A(5)]x(S) 
ti-l 

+ liW-i(t.-.)l 

__íCvar|;.1A + |g(t,)-g(t l_1)| 
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for every i = l,...,/c. Hence 

k 

X |x(ff.) - x(r,. _ . )| < K varj A 4 var* g 

and var£ x < GO since the subdivision was arbitrary. 
Throughout this chapter we use the notations A + f(t) = f(t + ) - f(t), A~f(t) 

= f(t) - f{t — ) f°r a ny function possessing the onesided limits f(t-f-) = limf(r), 
r-*f + 

f (t —) = lim f (r). This applies evidently also to matrix valued functions. 
r-*t-

Since by definition the initial value problem (1,3) is equivalent to the Volterra-
Stieltjes integral equation 

(1,5) x(t) = x0 + \'d[A(s)] x(s) + g(t) - g(t0), t € [0,1] , 
J to 

the following theorem is a direct corollary of II.3.12. 

1.4. Theorem. Assume that A: [0,1] -+ L(Rn) satisfies var 0 A< oo. If t oe[0, 1), 
then the initial value problem (1,3) possesses for any ge BVn, x0 e Rn a unique solution 
x(t) defined on [t0,1] if and only if the matrix I — A" A(t) is regular for any t e (t0, 1]. 
If toe(0,1], then the initial value problem (1,3) possesses for any geBVn, x0sRn 

a unique solution x(t) defined on [0, t0] if and only if the matrix I 4 A+A(t) is regular 
for any t e [0, t0). If t0 G [0,1], then the problem (1,3) has for any g e BVn, x0 e Rn 

a unique solution x(t) defined on [0, l] if and only if I — A~A(t) is regular for any 
te(t0,1] and I + A + A(t) is regular for any te[0, t0). 

1.5. Remark. Let us mention that by 1.3 the solutions of the problem (1,3) whose 
existence and uniqueness is stated in Theorem 1.4 are of bounded variation on their 
intervals of definition. Further, if in the last part of the theorem we have t0 = 0, 
then the regularity of / 4- A+A(0) is not required. Similarly for t0 = 1 and for 
the regularity of / — A~A(1). 

Let us mention also that Theorem 1.4 gives the fundamental existence and unicity 
result for BV„-solutions of the initial value problem (1,3). 

Let us note that if A: [0,1] -> L(Rn) is of bounded variation in [0,1], then there 
is a finite set of points t in [0,1] such that the matrix / — A~A(t) is singular and 
similarly for the matrix / + A+A(t). In fact, since varj A < oo the series £ A"A(t) 

re(a,b] 

converges. Hence there is a finite set of points te [0,1] such that |A~A(t)| > | . For 
all the remaining points in [0, 1] we have |A~A(t)| < \, and consequently 

oo 

[/ — A~A(t)}-1 = ]T (A~A(t))k exists since the series on the right-hand side con-
fc = 0 

verges at these points. For the matrix / 4- A+A(t) this fact can be shown analogously. 

106 



mi 

1.6. Proposition. Assume that A: [0,1] -* L(Rn), var0 A < oo, geBVn. Let x be 
a solution of the equation (1,1) on some interval [a, b] c: [0, 1], a < b. Tlien all the 
onesided limits x(a + ), x(t + ), x(t —), x(b —), te(a,b) exist and 

(1,6) x(t + ) = [/ + A + A(f)] x(t) + A + g(t) /or a// te [a,b), 

x ( t - ) = [ / -A"A( t ) ]x(r ) -A-g( t ) /or a// re(a,b] 
ho/as. 

Proof. Let te[a , b). By the definition of the solution x: [a, b] -» Rn we have 

x(t + S) = x(f) + | '+ 'd[A(s)] x(s) + g(t + 3)- g(t) 

for any 6 > 0. For (5 -• 0+ we obtain by 1.4.13 the equality 

x(r + ) = x(t) + (A(r + ) - A(t)) x(t) + g(r + ) - g(r) 

= x(t) + A+A(t) x(t) + A+g(t) 

where the limit on the right-hand side evidently exists. The second equality in (1,6) 
can be proved similarly. 

1.7. Theorem. Assume that A: [0,1] -> L(Rn), var0 A < oo, toe[0,1] and that 
I + A+A(t) is a regular matrix for all t e [0, t0) and I — A~A(t) is a regular matrix 
for all te(t0,1]. Then there exists a constant C such that for any solution x(t) of the 
initial value problem (1,3) with geBVn we have 

(1.7) |x(r)| < C(|x0| + var^ g) exp (C var;o A) for t e [t0,1] 

and 

(1.8) |x(t)| < C(|x0| + varj? g) exp (C war? A) for t e [0, t0] . 

Proof. We consider only the case t < t0 and prove (1,8). The proof of (1,7) can be 
given in an analogous way. Let us set B(t) = A(t + ) for te [0, t0) and B(t0) = A(t0). 
Hence B(t) - A(t) = A+A(t) for t e [0, t0), B(t0) - A(t0) = 0, i.e. B(t) - A(t) = 0 
for all t e [0, t0] except for an at most countable set of points in [0, t0) and evidently 
var0° (B — A) < oo. Hence for every xeBVn and te [0, t0) we have by 1.4.23 

d[B(s) - A(sj] x(s) = -A+A(t)x(t) 

and by the definition we obtain 

x(t) = x0 + d[B(sj] x(s) - A+A(t) x(t) + g(t) - g(t0), t e [0, t0) 

i.e. 

(1.9) x(t) = [/ + A ^ t ) ] " 1 (x 0 + g(t) - g(t0) + |'°d[B(s)]x(s)), ts[0,to). 
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Let us mention that for all t e [0, f0) we have 

(1,10) |[I + A + A(t)]~l\ < C, C = const. 
x> 

This inequality can be proved using the equality [/ + A + A(t)]~ l = £ ( - 1)' (A + A(r))' 
j = 0 

which holds whenever |A + _4(r)| < 1. Hence 

^m--*—i1 
J = 0 

|[/ + A+A(ř)]-Ч<i:|Л+A(ř)|
i = < 2 

1 - |A+A(r)| 

provided |A + /\(t)| < y, i.e. for all t e [0, t0) except for a finite set of points in [0, t0). 
The estimate (1,10) is in this manner obvious. Using (1,10) we obtain by (1,9) the 
inequality 

x(í)| < C |x0 | + |g(ř) - g(t0)| + d[B(s)]x(s) 

t e [0, t 0 ] . This inequality together with 1.4.27 yields 

(LПÌ x(f)| < C x0 + var'0°g + \x(s)\ d vať0 B 

C(|x0| + var'0
üg) + Cj°|x(s)|dh(s) 

where h(s) = var0 B is defined on [0, f0] and is evidently continuous from the 
right-hand side on [0, t0) since B has this property by definition. Using 1.4.30 for 
the inequality (1,11) we obtain 

|x(t)| < C(|x0| + varo°g)exp(C(h(g - h(t))) 

< C(|x0| + var0°g)exp(C(var0°B - varr
0 B)) 

= C(|x0| + var'0°g)exp(Cvar;°B) 

and this implies (1,8) since var|° B < var|° A. 

Remark. A slight modification in the proof leads to a refinement of the estimates 
(1,7), (1,8). It can be proved that 

|x(r)| < C(|x0| + var'f0 g) exp (C varj0 A) for t e [t0,1] 
and 

|x(r)| < C(|x0| + var;° g) exp (C var[° A) for t e [0, t0] 

holds. 

1.8. Corollary. Let A: [0,1] -> L(Rn) fulfil the assumptions given in 1.7 for some 
t0 e [0,1], g,ge BVn, x0, x 0 e Rn. Then if xe BVn is a solution of (1,3) and xeBVn 

is a solution of 
dx = d[A] x + dg, x(t0) = x 0 , 
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we have 

(1,12) |x(f) - x(t)\ < C(|x0 - x0| + vaitf (g - g)) exp (C varj" A) for t e [0, r0] 

|x(r) - x(r)| < C(|x0 - x0| + var/o (g - g)) exp (C var|o A) for r e [r0, 1] , 

where C > 1 is a constant. Hence 

(M3) \x(t) - x(t)| < K(|x0 - x0| + var0 (g - g)) 

/or a// r G [0,1] where K = C exp (C var0 A). 

1.9. Remark. The inequality (1,13) yields evidently x(t) = x(t) for all te[0, l] 
whenever x0 = x0 and var0 (g — g) = 0. In this way the unicity of solutions of the 
initial value problem (1,3) is confirmed. 

1.10. Theorem. Assume that t0 e [0,1] is fixed. Let A: [0,1] -• L(Rn) be such that 
var0 A < oo, / — A~A(t) is a regular matrix for te(t0,1] and I + A + A(t) is a re
gular matrix for te [0, t0). Then the set of all solutions x: [0,1] -* Rn of the homo
geneous generalized differential equation 

(1,14) dx = d[A]x 

with the initial value given at the point t0 e [0,1] is an n-dimensional subspace in BVn. 

Proof. The linearity of the set of solutions is evident from the linearity of the integral. 
Let us set e(fc) = (0,...,0,1,0,...,0)*eRn, k = l,...,w (the value 1 is in the fe-th 
coordinate of e{k)eRn) and let <p{k): [0,1] -+ Rn be the unique solution of (1,14) 
such that <p{k)(t0) = e(fc), fe= J,..., n (they exist by 1.4). The unicity result from 1.4 

yields that £ ck q>{k)(t) = 0, ckeR if and only if ck = 0, fc = 1,..., n. If x: [0,1] - Rn 
k=\ 

is an arbitrary solution of (1,14), then clearly 

*(t)=ixjt0)9*\t) 

for all t e [0,1], i.e. x is a linear combination of the linearly independent solutions 
</>(fc), fe = 1,..., n and this is our result. 

1.11. Example. We give an example of a generalized linear differential equation 
which demonstrates the role of the assumptions concerning the regularity of the 
matrices / + A+A(t), I - A~A(t) in 1.4. Let us set 

* - Q - -»-CD 
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for 0 < t < \, \ < t < 1 respectively; for this 2 x 2-matrix A: [0,1] -• L(R2) 
we have evidently A+A(t) = 0 for all te [0,1), A'A(t) = 0 for all te(0,1], r #= i 
and 

fa, 0> 

^0, 1, 
Hence 

is not regular. We consider the initial value problem 

(1,15) dx = d [ A ] x , x(0) = xo 

where x 0 = (c1? c2)* e R2. For a solution x(t) of this problem we have 

x(í) = x0 + d[A(s)]x(s) = x0 = (Cl,c2)* if íє [ 0 , i ) . 

Further, by 1.6 we obtain x(\-) = [I - A~A(|)] x(£), i.e. (c-, c2)* = [/ - A"A(i)] x(i) 
= (^(DJO)*. This equality is contradictory for c2 =t= 0. Hence the above problem 
(1,15) cannot have a solution on [0, | ] when x0 = (cl9c2)* e R2 with c2 #= 0. 

Let us now assume that x0 = (cl9 0)* e R2. Then we have for t > \ 

x(t) = x0 + f d[A(s)] x(s) = x(i) + f d[A(s)] x(s) = x(i). 
JO J l /2 

By 1.6 necessarily 

[/-A-A(|)]xШ = ^ o J x ( | ) 
1,0 

Hence x(|) = (c1? d)*9 where deK is arbitrary, satisfies this relation. It is easy to 
show that any vector valued function x: [0,1] -> ,R2 defined by x(t) = (c l50)* 
for 0 < t < | , x(t) = (cl9 d)* for \ < t < 1, satisfies our equation. 

Summarizing these facts we have the following. If x(0) = (cl9c2)* and c2 =1= 0, 
then a solution of (1,15) does not exist on the whole interval [0,1], If x(0) = (cl9 0)*, 
then the equation (1,15) has solutions on the whole interval [0,1] but the uniqueness 
is violated. 

If we consider the initial value problem dx = d[A]x, x(\) = (cl9c2)* for the 
given matrix A(t), then it is easy to show that this problem possesses the unique 
solution x(t) = (cl9 0)* if t e [0, | ) , x(t) = (cl9 c2)* if t e [j91]. Hence the singularity 
of the matrix / — A~A(t) for t = \ is irrelevant for the existence and uniqueness 
of solutions to the initial value problem mentioned above. 
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2. Variation of constants formula. The fundamental matrix 

In this section we continue the consideration of the initial value problem 

(2.1) dx = d[A] x + dg, x(t0) = x0 

with A: [0,1] - L(/g, var0A < oo, geBVn[0,1] = BV„ t oe[0,1] , x0eRn. 

2.1. Proposition. Assume that A: [0,1] -> L(Rn), var 0 A< oo, toe[0,1] is fixed, 
the matrix I — A~A(t) is regular for all te(t0 ,1] and the matrix I + A + A(t) is 
regular for all t e [0, t0). 

Then the matrix equation 

(2.2) X(0 = X + fd[A(r)]X(r) 
Jtl 

has for every X e L(Rn) a unique solution X(t)eL(Rn) on [tl9l~\ provided t0 < f. 
and on [0, f J provided tx < t0. 

Proof. Let us denote by Bk the k-th column of a matrix BeL(Rn). For the k-th 
column of the matrix equation (2,2) we have 

(2.3) X,(t) = Xk + Pd[A(r)] Xk(r), k = 1,..., n. 
Jti 

If t0 < tly then for every te(tl91] the matrix / - A"A(t) is regular. Hence by 1.4 
the equation (2,3) for Xk(t) has a unique solution on [tu 1] for every k = 1,..., n 
and this implies the existence and unicity of an n x n-matrix X(t): [tl91] -> L(Rn) 
satisfying (2,2). The case when tl < t0 can be treated similarly. 

2.2. Theorem. 7f the assumptions of 2.1 are satisfied, then there exists a unique 
n x n-matrix valued function U(t, s) defined for t0 < s < t < 1 and 0 < t < s < t0 

such that 
<*t 

(2.4) U(t9s) = \+ d[A(r)]U(r,s). 
Js 

Proof. If e.g. t0 < s < 1 and s is fixed, then the matrix equation 

(2.5) X(t) = / + £d[A(r)]X(r) 

has by 2.1 a uniquely determined solution X: [s, 1] -> L(Rn). If we denote this 
solution by U(t, s), then U(f, s) is uniquely determined for t0 < s < t < 1 and 
satisfies (2,4). 

Similarly if 0 < s < t0, s being fixed, the matrix equation (2,5) has by 2.1 a unique 
solution X: [0, s] -• L(Rn) which will be denoted by U(t,s), and U(t,.s) evidently 
satisfies (2,4) for 0 < t < s < t0. 
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2.3. Lemma. Suppose that the assumptions of 2A are fulfilled. Then there exists 
a constant M > 0 such that \U(t,s)\ < M for all t,s such that 0 < t < s < t0 or 
t0 < s < t < 1. Moreover we have 

(2,6) \U(t2, s) - U(tl9 s)\ < M var^ A 

for all 0 < tx < t2 < s if s < t0 and all s < tx < t2 < 1 if t0 < s. Consequently 
var0 U(.,s) < M var0 A, var,1 U(.,s) < M var] A if 0 < s < t0, t0 < s < 1 
respecnve/y. 

Proof. Since U(t, s) satisfies (2,4) in its domain of definition, the k-th column 
(k = 1,..., n) of U(t, s) denoted by Uk(t, s) satisfies the equation 

Uk(t,s) = ëk> + ţ'd[A(rj]Uk(r,s) 

for every t e [0, s] when s < t0 (eik) means the fc-th column of the identity matrix 
/ G L(Rn), i.e. Uk(t, s) is a solution of the problem dx = d[A] x -f dg, x(s) = e(k)). 
Hence by 1.7 we have 

|Uk(r, s)\ < C\e(k)\ exp (C varj A) < C exp (C var0 A), k = 1,..., n 

for every 0 < t < s < t0 where C > 1 is a constant and evidently also 

|U(r, s)\ < f \Uk(t, s)\ < nC exp (C var0 A) = M . 
k= 1 

If t0 < s, then 1.7 yields the same result for s < t < 1 and the boundedness of 
U(t, s) is proved. 

Assume that 0 < t{ < t2 < s < t0. Then we have by 1.4.16 

\U(t2,s)-U(tl,s)\ = 

f 
J í l 

, 2d[4(r)]U(r,s)- Í"d[.4(r)] U(r, s)| 
$ J s 

< M var^ A . d[A(r)]U(r,s) 

A similar inequality holds if f0 < s < tx < t2 < 1 and (2,6) is proved. 

2.4. Theorem. Suppose that the assumptions of 2.1 are fullfilled and t± e [0, l ] . Then 
the unique solution of the homogeneous initial value problem 

(2.7) dx = d[A]x, x(tx) = x 

defined on [t-, 1] if t0 < tx and on [0, t t ] if t{ < t0 is given by the relation 

(2.8) x ( r ) = U ( r , t x ) x 

on the intervals of definition, where U is the n x n-matrix from 2.2 satisfying (2,4). 

112 



III .2 

Proof. Under the given assumptions the existence and uniqueness of a solution 
of (2,7) is quaranteed by 1.4. Let us assume that t0 < tx. Since by 2.2 U(t,tx) is 
uniquely defined for tx < t < 1, by (2,8) a function x: [f,, 1] -> Rn is given. By 2.3 
we have var.̂  U(.,t{) < oo and consequently var^ x = var/t Ui^t^x < / . For 
x: [tj, 1] -» Rn given by (2,8) the integral {J. d[A(s)] x(s) evidently exists (see 1.4.19) 
for every te [tl91] and by (2,4) we have 

'd[A(s)] x(s) = *d[A(s)] U(s, t{) x = (U(r, t,) - /) x = x(t) - x , 
»J f i Jti 

i.e. x(r) = U(r, t{)x is a solution of (2,7) on [tl91]. The proof of this result for the 
case tj < t0 is similar. 

2.5. Corollary. If the assumptions of 2.1 are satisfied and U(t,s) is the n x n-matrix 
determined by (2,4) for t0 < s < t < I and 0 < t < s < t0, then 

(2.9) U(t9s)= U(t9r)U(r9s) 

if t0 < s < r < t < 1 or 0 < t < r < s < t0 and 

(2.10) U(t,t) = / 

for every te [0,1]. 

Proof. Let e.g. 0 < t < r < s < r0, then by (2,4) we obtain 

U(r, s) = / + [ d[A(o)] U(Q, s) = / + J d[A(g)] U(o, s) + [ d[A(o)] U(o, s) 

= U(r,s)+ rd[A(e)]U(e,s) 
Jr 

for every 0 < t < f. Hence U(t, s) satisfies the matrix equation 

X(t)=U(r,s) +Jd[A(o)]X(o) 

for 0 < t < r and by 2.4 this solution can be expressed in the form U(t, r) U(r, s), 
i.e. (2,9) is satisfied. If t0 < s < r < t < 1, then (2,9) can be proved analogously. 
The relation (2,10) obviously follows from (2,4). 

2.6. Lemma. If the assumptions of 2.1 are satisfied, then for U(t,s) given by 2.2 
we have 

(2,11) \U(t,s2) - U(t,s.)| < M2 var*? A 

for any sl9 s2 such that t0 < s1 < s2 < t < 1 or 0 < t < sx < s2 < t0 where M is 
the bound ofU(t9 s) (see 2.3). Hence var|0 U(f, .) < M2 var[o A ift0 < t and varf0 U(t, .) 
< M2 varj0 A if t < t0. 
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Proof. Let us consider the case when t0 < S l s s2 < r. By (2,4) we have 

U(t,s2) - U(t,Sl) = Pd[A(r)] U(r,s2) - Pd[A(r)] U(r,Sl) 
Js2 Jsi 

= Pd[A(r)]U(r,s 2 )- f 'd[4(r) ]U(r , S l )- [ " d ^ r ) ] U(r,Sl), 
Js2 Js2 Jsi 

i.e. the difference U(t,s2) — U(t,sx) satisfies the matrix equation 

* ( ' ) = - d[Л(r) ]Цr, S l )+ d[A(r)]X(r 

for s2 < t < 1. Hence by 2.4 we obtain 

U(t,s2) - U(t,Si) = U(t,s2)(- £2d[4(r)] U(r,s^ 

and by 2.3 and 1.4.16 it is 

\U(t,s2)-U(t,Sl)\<M ľ 2 d[A(r)]Цr, S l ) 
Jsi 

< M2 var?2 A. 

The proof for the case 0 < t < sl < s2 < t0 can be given similarly and (2,11) is valid. 

2.7. Lemma. Suppose that the assumptions of 2.1 are satisfied. Let us define 

(2,12) 0(r, s) = U(t, s) for t0<s<t<l, 

Q(t, s) == U(t, t) = / for t0 < t < s < 1, 

and 

(2,13) Ö(ř, s) = U(í, s) for 0 < t < s < t0 , 

Ö(ř, s) -= U(ř, ŕ) = J for 0 < s < t < t0 , 

where U(t, s) e L(Rn) is given by 2.2. 
Then for the twodimensional variations of 0 on the squares [t0,1] x [t0,1] and 

[0, t0] x [0, t0] on which 0 is defined we have v[fo>1]x[,o>1](0) < oo and v[0>fo]x[0>,o](U) 
< 00. 

Proof. Assume that t0 = a0 < OL1 < ... < ock = 1 is an arbitrary subdivision of the 
interval [t0,1] and JtJ = [a,-i,a,] x [«/-i,a/]> U = I,.-.,* the corresponding 
net-type subdivision of [r0,1] x [t 0,1]. We consider the sum (see 1.6.2, 1.6.3) 

i \m0(
jij)\-i ( I W - M + H(ju)\ + i ho(̂ )i) • 
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0 k 

where we use the convention that £ |̂ o(^u)l = ^ anc* Z lmu(̂ u)l = 0- **y (2,12) 
j = i j = k + i 

we have m.-,^) = m^J,-,) if I < i - 1, 

mu(Jn) = °(ai' a0 ~ °(aPa i- i) " 0(ai-i>ai) + 0(a i - i?
a i - i ) 

= 0(a, a.) - 0(a, a4_ _) = U(a„a,) - U(a, a._,) 

and m^Jij) = 0 if i 4- 1 < J Hence 

(2,14) _ |m0(J0.)| = I _ W u ) l + - l U K ««) - U(«" ««- i)l • 
> , j = l i = l j = l i = l 

If j < i — 1, then a^_, < a_, < af_ _ < af and by 2.5 

mu(Jij) = u(a.'aj) ~ u(a.-.aj-i) - U(a.-i.«j) + U(a.-i.aj-i) 

= U(a, «,-_ i) U(a,_ j,«;) - U(a,._., a,) - U(a, «,_,) U(af_., «_.-_ j) + U(a,._„ «,-_,) 

= [U(«, «,_.) - I] U(ai_1,«j) - [U(a,«j_1) - I] U(af_ „«,._,) 

- [U(a,ai_1) - /] [U(ai_1,a,) - U(af_,,«,_,)] 

- [U(a, a,_,) - U(a,_ „ af_.)] [U(a,._„ a,) - U(a,._ „ «,-_ t)] . 

Hence by 2.3 and 2.6 we obtain 

K(<y = m«*«.-i) - u^-i^i-i)! m«_-i>«,) - ^-_.«,-_). 
< M(var_; _. A) M2 var£ _ x A = M3 var£ _. A var̂ j _. A 

and 

I l W u ) l ^ M ' 1 var"!-.A Eva- . i . , -* -- ^3(vari A)2. 
i = l j=l i = l j = l ' 

Further, by (2,11) from 2.6 we have 

_ |U(«,«f) - U(«,«,_!)! < £ M2var£_, A - M2var/0A. 
i = l i = l 

Hence by (2,14) we have 

I |mD(J0.)| < M^var^A)2 + M2 var^A 
*J=i 

and since the net-type subdivision was chosen arbitrarily, we have by the definition 
also 

VnxKo,^ 0 ) -- M3(va<>»)2 + M2 var^A < co . 

The ilniteness of v[0 Io] x [0,rOj(^) c a n ^e Prove(i similarly. 
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2.8. Theorem (variation-of-constants formula). Let A: [0,1] -> L(Rn) satisfy the as-
sumptions given in 2.1 where £0 e [0,1] is fixed. Then for every x0eRn, geBVn 

the unique solution of the initial value problem (2,1) can be expressed in the form 

(2,15) x(í) = Цř, t0) x 0 + g(t) - g(t0) - ds[Цt,s)](ř(s)-g(to)) 

where U is the uniquely determined matrix satisfying (2,4) from 2.2. 

Proof. We verify by computation that x: [0,1] -» Rn from (2,15) is really a solution 
of (2,1). Let us assume that t < t0. Then 

(2,16) ['d[A(r)] x(r) = Pd[A(r)] U(r, t0) x0 + Pd[A(r)] (g(r) - g(t0)) 
J to J to J to 

- fd[A(r)] fd s[U(r,5)](g(5)-g(g) 
J to J to 

= (U(t, t0) - I) x 0 + f'd[A(r)] (g(r) - g(t0)) - ['d[A(r)] f ds[U(r, 5)] (g(s) - g(t0)) 
Jio Jto Jto 

since U satisfies 2.4. Let us now consider the last term from the right-hand side 
in (2,16). We have 

'd[A(r)] fd 5 [U(r,5)](g(5)-g(g)= P°d[A(r)] f'°ds[0(r, 5)] (g(s) - g(t0)) 
Jto Jto Jt Jt 

where 0 is defined in 2.7 and satisfies by 2.7, 2.3 and 2.6 the assumptions of 1.6.20 
on the square [t, t 0] x [t, r0]. Hence we interchange by 1.6.20 the order of integration 
and obtain by the definition of U 

d[A(r)] d s[Цr,5)](g(5)-g(д) = d[A(r)]ö(r,5) M-ІЇo)) 

d[A(r)]Ö(r,5)+ d[A(r)]G(r,s; Ш-M) 

= d 

Jto 

Ш - г(fo)) d[A(r)]Цr,s)+ d[A(r)] 
Jt0 

= I d s[Цt, s) - / + A(s) - A(í0)] (g(s) - g(t0)) 
Jt0 

'ás[U(t,,)] (g(s) - g(t0)) + ľd[A(s)] (g(s) - g(t0)). 
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Using this expression we obtain by (2,16) 

'd[A(r)] x(r) = U(t, t0)x0 - x 0 + |'d[A(r)] (g(r) - g(f0)) 
O * l*0 

- 'ds[U(t,,)] (g(s) - g(t0)) - \'d[A(s)] (g(s) - g(t0)) 
Jfo J*o 

= U(f, t 0 )x 0 + g(t) - g(f0) - I'ds[U(t, s)] (g(s) - g(t0)) - (g(f) - g(t0)) - x0 

= x(t)-x0-(g(t)-g(t0)). 

Hence x(t) is a solution of (2,1) for t < t0. For the case t0 < t the proof can be 
given analogously. Using 1.4 the solutions of (2,1) are uniquely determined and this 
completes the proof. 

2.9. Remark. Let us mention that the operator x e BVn -> j | 0 d[_4(s)] x(s) appearing 
in the definition of the generalized linear differential equation (2,1) can be written 
in the Fredholm-Stieltjes form j 0 ds [K(t, s)] x(s) where K: [0,1] x [0,1] -> L(Rn) 
is defined as follows: if t0 < t < 1, then 

K(t,s) = A(t0) 

K(t,s) = A(s) 

K(t,s) = A(t) 

and if 0 < t < t0, then 

K(t,s)= -A(t) 

K(t,s)= -A(s) 

K(t,s)= -A(t0) 

for 0 < s < t0, 

for ř0 < s < t, 

for t < s < 1, 

for 0 < s < t, 

for ř < s < t0, 

for t0 < s < 1. 

If this fact is used and IL2.5 is taken into account, then the solution of the equation 
(2,1) can be given by the resolvent formula (II.2.16) in the form 

(2,17) x(t) = x0 + g(t) - g(t0) + j ds[r(r, s)] (x0 + g(t) - g(t0)), 

for te[0,1] since (2,1) has a solution uniquely defined for every x0eRn, geBVn. 
The resolvent kernel f: [0,1] x [0,1] -> L(Rn) satisfies 

r(t,s) = K(t,s)+ dr[K(t,r)]r(r,t). 
Jo 

If we set U(u s) = I + T(t, s) - T(t, t), then the variation-of-constants formula (2,15) 
can be derived from (2,17). 
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In the following we consider the initial value problem (2,1) with the assumptions 
on A: [0,1] -> L(Rn) strengthened. 

2.10. Theorem. Assume that the matrix A: [0,1] -• L(Rn), var0 A < oo is such that 
I — A"A(t) is regular for all te(0,1] and I + A+A(t) is regular for all fe[0,1). 

Then there exists a unique n x n-matrix valued function U: [0, l] x [0, l] -> L(Rn) 
such that 

%t 

(2.18) U(t,s) = / + d[A(r)]U(r,s) 
Js 

for all r, s e [0,1]. 
The matrix U(t, s) determined by (2,18) has the following properties. 

(i) U(M) = / far all t e [ 0 , l ] . 
(ii) There exists a constant M > 0 such that \U(t, s)\ < M for all t ,se [0,1], 

var0 U(t, .) < M, var0 U(.,s)< M for all t,se [0,1]. 
(iii) For any r,s,te [0,1] the relation 

(2.19) U(t,s)=U(t,r)U(r,s) 

holds. 
(iv) U(t + ,s) = [/ +A+A(t)]U(r,s) forte[0,l), S G [ 0 , 1 ] , 

U(r-,s) = [/-A"A(t)]U(t,s) for te (0 , l ] , s e [ 0 , l ] , 
U(t,s + )=U(t,s)[l + A-^^s)]"1 for t e [ 0 , l ] , S G [ 0 , 1 ) , 

U ( t , s - ) = U(t,s)[»-A-A(s)]"1 for t e [ 0 , l ] , s e ( 0 , l ] . 
(v) Trie matrix U(t, s) is regular for any t,se [0, l ] . 
(vi) The matrices U(t, s) and U(s, t) are mutually reciprocal, i.e. [U(t, s)]~l = U(s, t) 

/or every t, se[0,1] . 
(vii) The twodimensional variation ofU is finite on [0, l ] x [0,1], i.e. v[0 1]x[0 t](U) 

< oo. 

Proof. By 2.1 for every fixed se[0,1] the matrix equation 

X(0 = X + £d[A(r)]X(r), XeL(Rn) 

has a unique solution X: [0,1] -* L(Rn\ which is defined on the whole interval [0,1]. 
Hence the existence of U(t, s) satisfying (2,18) is quaranteed. 

(i) is obvious from (2,18). (ii) follows immediately from 2.3 and 2.6. For (iii) we 
have 

U(t,s) = l + d[A(Є)] U(Q,S) = I + £d[A(í>)] Ч M + ['d[A(<?)] ЩQ,І 

= U(r,s) +J'd[A(Є)]U(ß,s), 
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i.e. U(t, s) satisfies the matrix equation 

X(r)-=U(r,s)+|d[A(r)]X(r). 

Hence by 2.4 we obtain U(t,s) = U(t,r)U(r,s) for every r,s, £e[0,1], and (2,19) 
is satisfied. 

The first two relations in (iv) are simple consequences of 1.6. To prove the third 
relation in (iv) let us mention that for any t e [0,1], se [0,1) and sufficiently small 
(3>0we have by definition 

U(t,s + ð)- U(t,s) d[A(r)] U(r, s + 8)- d[A(r)] U(r, s) 
6 Js 

d[A(r)] (U(r, s + 5)- U(r, s)) - j d [ A ( r ) ] U(r, s), 
s + d Js 

i.e. the difference U(t, s + d) — U(t, s) satisfies the matrix equation 

Гs + Ô 

d[A(r)-]U(r,s) + d[A(r)]X(r) 
S + ô 

X(t) = -

and consequently by 2.4 it is 

U(t, s + d) - U(U s) = U(U s + d)(- | *d[A(r)] U(r9 s)). 

For 6 -> 0+ this equality yields 

U(t,s + ) - U(t,s)= -U(t,s + )A+A(s)U(s,s)= -U(t, s + ) A+A(s). 

Hence U(t,s) = U(u s+) [I + A+A(s)] for any te[0,1], se[0,1) and the as
sumption of the regularity of the matrix / + A+A(s) gives the existence of the inverse 
[/ + A+A(s)]-1 and also the third equality from (iv). The fourth equality in (iv) 
can be proved analogously. 

By (iii) we have U(t, s) U(s, t) = I and U(s, t) U(t, s) = / for every t, s e [0,1]. 
Hence U(t,s) = U(s,t)~x and U(s,t) = U(r,s)_1 and (vi) is proved. From (vi) the 
statement (v) follows immediately. (In this connection we note that a direct proof 
of (v) can be given without using (iii), see Schwabik [1].) 

Finally by (iii) we have U(t,s)= U(t,0)U(0,s) for every (t,s)e[0,1] x [0,1]. 
By (ii) it is var0 U(.,0) < oo and varj U(0, .) < oo. Hence by 1.6.4 we have 
v[o,i]x[o,i](L/) < oo and (vii) is also proved. 

2.11. Corollary. If A: [0,1] -• L(Rn), var0 A < oo, satisfies the assumptions given 
in 2.10, then 

(2,20) U(f, s) = X(r) X" l(s) for every s, t e [0,1] 
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where X: [0, l] -• L(Rn) satisfies the matrix equation 

(2,21) X(t) = I + d[A(r)] X(r), t e [0, l] . 
Jo 

Proof. Since the matrix equation (2,21) has a unique solution, it is easy to compare 
it with (2,18) and state that X(t) = U(f,0). By (hi) from 2.10 we have U(t,s) 
= U(t,0)U(0,s) and by (vi) from 2.10 it follows U(0,s) = [U(s,0)]_1 = X^js). 
Hence (2,20) hold. 

2.12. Remark. If the matrix A: [0, l] -> L(Rn) satisfies the assumptions of 2.10, 
then evidently the assumptions of 1.4, 2.1—2.8 are satisfied for every £0e[0,1]. 
Hence by 1.4 the initial value problem (2,1) has for every foe[0,1], x0eRn, 
ge BVn a unique solution x: [0,1] -> Rn defined on the whole interval [0,1]. 

The variation-of-constants formula 2.8 leads to the following. 

2.13. Theorem (variation-of constants formula). Let us assume that A: [0,1] ->L(iRM) 
satisfies the conditions given in 2.10. Then for any t oe[0,1] , x0eR„ geBVn the 
solution of the nonhomogeneous initial value problem (2,1) is given by the expression 

x(t) U(t, t0) x0 + g(() - g{t0) - f ds[Цf, 5)] tøs) - g(ř0)), t є [0, 1] 
Jfo 

where U(t,s): [0,1] x [0,1] -> L(Rn) is the matrix whose existence was stated 
in 2.10. 

The proof follows immediately from 2.8. 

2.14. Corollary. If A: [0, l] -> L(Rn) satisfies the assumptions from 2.10, then the 
above variation-of-constants formula can be written in the form 

(2.22) x(t) = g(t) - g(t0) + X(t) j x - %) x 0 - | ' d s [ X - \s)] (g(s) - g(f0))J 

for t e [0,1] where X: [0^ l] -> L(Rn) is the uniquely determined solution of the matrix 
equation (2,21). 

The proof follows immediately from 2.13 and from the product decomposition (2,20) 
given in 2.11. 

2.15. Proposition. If A: [0,1] -> L(Rn) satisfies the assumptions given in 2.10 and 
X: [0,1] -> L(Rn) is the unique solution of the matrix equation (2,21), then 

(2.23) X" \s) = / + A(0) - X" '(s) A(s) + Pd[X- *(r)] A(r) 

for every se[0,1]. 
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Proof. For X: [0,1] -» L(R„) we have by (2,21) 

X(s) - l = | d[A(r)] X(r) = Pd[A(r)] (X(r) - ») + A(s) - A(0) 
Jo Jo 

for every se[0,1]. Using the variation-of-constants formula (2,22) in the matrix 
form we get 

X(s) - / = A(s) - A(0) - X(s) £d[X"'(/")] (A(r) - A(0)) 

= A(s) - A(0) - X(s) Pd[X- '(r)] A(r) + X(s) [X~ >(s) - X" '(0)] A(0) 
Jo 

= A(s) - X(s) A(0) - X(s) f d[X~ >(r)] A(r). 
0 

Multiplying this relation from the left by X x(s) we obtain for every se [0,1] 

/ - X~\s) = -A(0) + X-^s) A(S) - PdtX-1^)] A(r) 

and (2,23) is satisfied. 

2.16. Definition. The matrix U(t,s): [0,1] x [0,1] -> L(Rn) given by 2.10 is called 
the fundamental matrix (or transition matrix) for the homogeneous generalized linear 
differential equation dx = d[A] x. 

2.17. Remark. If B: [0,1] -• L(Rn) is an n x n-matrix, continuous on [0,1] and 
x = B(t)x is the corresponding ordinary linear differential system, then in the 
theory of ordinary differential equations the transition matrix 0(r, t0) is defined 
as a solution of the matrix differential equation 

X' = B(t)X 

satisfying the condition X(t0) = / e L(Rn), Hence for # we have 

#(t,t0) = / + B(T)#(T,r0)dT, 
J to 

i.e. 4> satisfies the generalized matrix differential equation 

Ф(t, t0) = / + d[A(t)]Ф(т,t0) 

where A(t) = j 0 B(T) dT (see also 1.3). The variation-of-constant formula for the 
generalized linear differential equation 

dx = d[*4] x + dg, x(t0) = x0 
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where g(t) = |Joh(s)ds, which corresponds by 1.3 to the ordinary linear system 

x' = B(t)x + h(t), x(t0) = x0 

has the form 

d.[*M](ř(-)--«(ío)) x(t) = <P(t,t0)x0 + g(t)-g(t0) 

= <P(M0)x0 + h(s)ds+ *( t , s )d( h(a)da)-$(t,t) h(s)ds 
Jt0 Jt0 \Jt0 / Jto 

= 0(t,to)xo+ <P(t,s)h(s)ds. 
Jt0 

This is the usual form of the variation-of-constants formula for ordinary linear 
differential equations. 

2.18. Definition. The n x n-matrix U(t,s) defined for t, se [0,1] is called harmonic 

if var0 U(t, .) < oo for every f e[0,1], varj U(.,s) < co for every se[0,1]. 

(2,19) U(t, s) = U(t, r) U(r, s) for any three points r, s, t e [0,1] , 

(2.24) U(t, t) = / for any t e [0,1] . 

For the concept of harmonic matrices see e.g. Hildebrandt [2], Mac Nerney [1], 
Wall [1]. 

As was shown in 2.10 for A: [0,1] -> L(Rn), var0 A < oo with the matrices 
/ — A~A(t), I + A+A(t) regular for te(0,1], te[0,1) respectively, the corresponding 
fundamental matrix U(t, s) is harmonic (see (i), (ii) and (iii) in 2.10). In other words, 
to any n x n-matrix valued function A: [0,1] -> L(Rn) with the above mentioned 
properties through the relation 

U(t, s) = I + J d[A(r)] U(r, s), t,se [ 0 , 1 ] 

a uniquely determined harmonic matrix U(t, s) corresponds. In the opposite direction 
the following holds. 

2.19. Theorem. If the n x n-matrix U(t,s): [0,1] x [0,1] -• L(Rn) is harmonic, then 
there exists A: [0,1] -* L(Rn) such that v a r 0 A < o o , the matrices I — A~A(t), 
I + A+A(t) are regular for all te(0,1], te[0,1), respectively and U satisfies the 
relation 

(2.25) U(t, s) = / + f'd[A(r)] U(r, s), t, s e [ 0 , 1 ] , 

i.e. U(t, s) is the fundamental matrix for the homogeneous generalized linear differential 
equation with the matrix A (see 2.16). 
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Proof. Let us set 

A(t,т)= ľdr[U(r,т)]U(т,r) 
Jo 

for t,TG[0, 1]. This integral exists for every t,x by 1.4.19. For every t,ie[0,1] 
we have by (2,19) and (2,24) 

Mf-1) = I dr[U(r, T) U(T, 0)] U(0, T) U(T, r) = f dr[U(r, 0)] U(0, r) = A(t, 0). 
Jo Jo 

Hence the matrix A(t, T) is independent of T and we denote A(t) = A(t, T) = A(t, 0) 
for t e [0,1]. Evidently var0 A < oo by 1.4.27. Further we have by the definition 
of A, by the substitution theorem 1.4.25 and by (2,19), (2,24) 

j d[A(r)] U(r, s) = Pd r [ [de[U(g, 0)] U(0, o)l U(r, s) 
Js Js LJo J 

dr[U(r,0)]U(0,r)U(r,s) = dr[U(r,0)]U(0,s) 

= (U(t,0) - U(s,0)) U(0,s) = U(t,s)-l, 

i.e. U(t, s) satisfies (2,25) for every t, s e [0,1]. Finally we show that A: [0,1] -* L(Rn) 
satisfies the regularity conditions for / - A~A(t), / + A+A(r). By definition we have 
for te(0,1] 

A~A(t) = A(t) - lim A(t - 8) 
v ' v ' <5-*0 + 

= P d r [ l % 0 ) ] U ( 0 , r ) - lim [' V[U(r,0)]U(0,r) 
Jo *-*0 + Jo 

= lim I f dr[U(r, 0)] U(0, r) = lim (U(t, 0) - U(t - 8, 0)) U(0, t) 
d-*0+ Jt_d

 v <5-->0 + 

= U(t, 0) U(0, t) - lim U(f - 3, 0) U(0, t) = / - lim U(t -3,t), 

where 1.4.13 was used. Hence 

(2,26) / - A~A(t) = lim U(t-8,t)= U(t-,t) 

for every t e (0,1]. Since U is assumed to be harmonic, we have U(t — 8, t) U(t, t — 8) 
= / for any sufficiently small 8 > 0. U(t, s) is of bounded variation in each variable, 
the limits lim U(t -8,t) = U(t~, t) and lim U(t, t-8) = U(t, t-) exist. Hence 

Ô-+0 + 

U(t-, t) U(t, t-) = lim U(t - 8, t) U(t, t-8) = l 
Ô-+0 + 

and the matrix U(t — ,t) is evidently regular since it has an inverse [U(t — , t ) ] _ 1 

= U(t,t-). This yields by (2,26) the regularity of / - A~A(t) for every te(0,1]. 
The regularity of / + A+A(t) for every re [0,1) can be proved analogously. 
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3. Generalized linear differential equations on the whole real axis 

In this section let us assume that A: R -> L(Rn) is an n x ^-matrix defined on the 
whole real axis R and is of locally bounded variation in R, i.e. varj A < oo for every 
compact interval [a, b\ <= R. We consider the generalized linear differential equation 

(3,1) dx = d[.4]x + dg 

where g: R -> Rn is of locally bounded variation in R. 
The basic existence and uniqueness result follows from 1.4. 

3.1. Theorem. Assume that A: R —> L(Rn) is of locally bounded variation in R and 
I — A~_4(f), / + A+A(t) are regular matrices for all teR. Then for any t0eR, 
x0eRn and g: R —> Rn of locally bounded variation in R there is a unique solution 
x: R -> Rn of the equation (3,1) with x(t0) = x0 and this solution is of locally bounded 
variation in R. 

Proof. This theorem follows immediately from 1.4 and 1.7 since evidently the as
sumptions of 1.4 are satisfied on every compact interval [a, b] cz R. 

In this way our preceding arguments on generalized linear differential equations 
are applicable to the case of equations on the whole real axis R. Especially the 
fundamental matrix U(t, s) determined uniquely by the equation 

U{t,s) = l+ ľd[A(r)]Цr,5) 

is defined for all t,seR, has the properties (i), (iii), (iv), (v), (vi) from 2.10 and is 
of locally bounded variation in R in each variable separately (see (ii) in 2.10). More
over, the twodimensional variation of U on every compact interval / = [a, b] x [c, d\ 
cz R2 is finite. 

Now we prove a result which is analogous to the Floquet theory for linear systems 
of ordinary differential equations. 

3.2. Theorem. Assume that A: R-+ L(Rn) is of locally bounded variation in R such 
that I — A~A(t), \ + A+A(t) are regular matrices for every teR. Moreover let 

A(t + co) - A(t) = C for every t e R 

where co > 0 and C e L(Rn) is a constant n x n-matrix. IfX: R -> L(Rn) is the solution 
of the matrix equation 

X(t) = l+ d[A(r)]X(r), teR 
Jo 

(i.e. X(t) = U(t, 0)) then there exists a regular n x n-matrix P: R -> L(R), which is 
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periodic with the period co (P(t + CO) = P(t)) and a constant n x n-matrix Q e L(Rn) 
such that 

X(t) = P(r)ef(? 

is satisfied for every teR. 

Proof. By definition we have 

X(t + co) = l+ d[A(r)] X(r) = X(co) + d[A(r)] X(r) 

= X(co) + d[A(r + cof] X(r + co) = X(ш) + d[A(r) + C] X(r + to) 

= X(co) + d[A(r)] X(r + co) 

for every teR. Using the variation of constants formula 2.14 in the matrix form 
we get 

X(r + cO) = X(t) X(co) for every teR. 

By (v) from 2.10 the matrix X(cO) = U(cO, 0) is regular. Using the standard argument 
we conclude that there is a constant real n x n-matrix Q e L(Rn) (Q is not unique) 
such that X(cO) = Q(OQ (see e.g. Coddington, Levinson [1], III.l.), i.e. 

X(t + cO) = X(t)ew(?. 

Let us define P(t) = X(t)e~tQ for every teR. We have 

P(t + 60) = X(t + w)e-{t+C0)Q = X^e^Q-^ e~tQ = X(r)e~^ = P(t) 

for all teR, i.e. P is periodic with the period co. The regularity of P(t) is obvious 
by the regularity of X(t) and e"t<?. Hence X(t) = P(t)etQ and the result is proved. 

Remark. This theorem is a basis for more detailed considerations concerning the 
linear system (3,1) with A: R -* L(Rn) satisfying the "periodicity" condition 
A(t + co) — A(t) = const. Some special results are contained in Hnilica [ l ] . 

4. Formally adjoint equation 

Let B: [0,1] -• L(Rn), var^B < oo and geBVn. Let us consider the generalized 
linear differential equation for a row w-vector valued function y* 

(4,1) dy* = -y* d[B] + dg* on [0,1] , 

which is equivalent to the integral equation 

y*(s) = y*(s0) - \Sy*(t) d[B(t)] + g*(s) - g*(s0), s, s0 e [0,1] . 
J SO 

125 



Ш.4 

Obviously, y*: [0,1] -> Rn is a solution to (4,1) on [a, b] c [0,1] if and only 
if y verifies the equation 

(4.2) Y(s) = Y(so) ~ fd[B*( t)J Y(t) + f(s) - g(s0) 

for every s, s0 6 [a, 6]. Thus taking into account that / - A~(- B*)(s) = [/ + A~B(s)]* 
on (0,1], / + A+(-B*Xs) = [/ - A+B(s)]* on [0,1) we may easily obtain the 
basic results for the equation (4,1) as consequences of the corresponding theorems 
from the foregoing sections. 

Given yj e R*, the equation (4,1) possesses a unique solution y* on [0,1] such 
that y*(l) = y*. or y*(0) = y*. if and only if 

(4.3) det [/ - A+B(s)] + 0 on [0,1) 

or 

(4.4) det [/ + A"B(s)] + 0 on (0,1] , 

respectively (cf. 1.4). 

If (4,3) holds, then by 2.2 there exists a unique n x n-matrix valued function W(f, s) 
defined for t, s e [0,1] such that s > t and fulfilling for all such t, s the relation 

W(t,s) = l - íd[B*(r)]VV(r,s). 

Furthermore, given t, s e [0, 1], var^ W(., s) + var,1 W(t, .) < oo, W(t + , s) 
= [/ - A+B(t)]* W(t,s) if t < s and W(t-,s) = [/ + A"B(t)]* W(t,s) if t < s 
(cf. 2.10). It follows that the function V(t, s) = W*(s, t) for t > s is a unique nx n-
matrix valued function which fulfils for t, s e [0,1], t > s the relation 

(4.5) V(t,s) = l+ |V(t,r)d[B(r)]. 

Moreover, given t, s e [0,1] 

var0 V(f, .) + vars
x V(., s) < oo 

and 

(4.6) V(U s+) = V(u s) [I - A-+ B(s)] if t > s, 

(4.7) V(t, s - ) = V(t, s) [/ + A~B(s)] if t > s. 

If y*. G R* is given, the unique solution y* of (4,1) on [0,1] with y*(l) = yj is given 
on [0,1] by 

(4.8) Y*(S) = yj V(l, s) + g*(s) - g*(l) + | V W - ^l1)) W ' s)l 

(cf. 2.8). 
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If (4,4) holds, then the fundamental matrix V(r, s) for (4,1) is defined and fulfils 
(4,5) for t < 5, (4,6) holds for t < s and (4,7) holds for t < s. Furthermore, var0 V(., 5) 
-F var.1 V(t, .) < 00 for all t,se[0, 1] and given y$eR*, the unique solution y* 
of (4,1) on [0,1] with y*(0) = y*. is given on [0,1] by 

(4.9) y*(s) = y* V(0,5) + g*(s) - g*(0) - £(g*(t) - g*(0)) d,[V(t, 5)] . 

If both (4,3) and (4,4) hold, then there exists M < oo such that given t, s e [0, l ] 

|V(t,s)| + var0 V(t, .) + var0 V(.,s) + vt0iljx[(U,(V) < M < oo . 

Moreover, in this case, given t, s, r e [0,1], 

(4.10) V(t, r) V(r, s) = V(t, s) and V(t, t) = / 

(cf. 2.10). 

The equation (4,1) is said to be formally adjoint to (1,1) if 

(4.11) B(t+) - A(t+) = B(t-) - A(t-) = B(0) - A(0) on [0,1] . 

(According to the convention introduced in 1.3 we have 

B(O-) - A(O-) = B(0) - A(0) = B(l + ) - A(l + ) = B(l) - A(l).) 

The condition (4,11) ensures that 

(4.12) y*(t) d[B(t) - A(t)] x(t) = 0 for all x,yeBVn 

(cf. 1.4.23). (4,11) holds e.g. if B(t) = A(t) on [0,1] or 

(4.13) B(t) = A.(t) = A(t-) + A+A(t) ^n (0,1), 

B(0) = A,(0) = A(0), B(1) = A,(1) = A(1). 

Without any loss of generality we may assume that A(0) = B(0). 

4.1. Theorem. Let the n x n-matrix valued functions A, B be of bounded variation 
on [0,1] and such that (4,11) with 4(0) = B(0) holds. 

0) V 
(4.14) det (/ - A"A(t)) det (/ - A+B(t)) det (/ + A+A(t)) # 0 on [0,1] 

or 

(4.15) det (/ - A"A(t)) det (/ - A+B(t))det (/ + A"B(t)) * 0 on [0,1] , 
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then the fundamental matrices U(t, s) to (1,1) and V(t, s) to (4,1) fulfil the relation 

(4.16) V(t, s) = U(t, s) + V(t, s) [A(s) - B(s)] - [A(t) - B(f)] U(f, s) 

+ Vt(f, s) A+B(s) A+A(s)-A-B(t) A'A(t) U(t, s) 

+ £ V(f, T) [A+B(T) A+A(z) - A " B(T) A " A(T)] U(T, S) if t > s, 
s<z<t 

V(t, t) = U(t, t) = l. 

(ii) If 

(4.17) det (/ + A+A(t))det (/ + A~B(f)) det (/ - A+B(f)) # 0 on [0,1] 

or 

(4.18) det (/ + A+4(f)) det (/ + A " B(f)) det (/ - A " A(t)) + 0 on [0,1], 

then 

(4.19) V(f, s) = U(f, s) + V(t, s) [A(s) - B(s)] - [A(t) - B(f)] U(f, s) 

+ V(t, s) A"B(s) A~ A(s) - A+B(t)A+A(t) U(t, s) 

+ £ V(t, T) [A-B(T) A-4 (T) - A+B(T) A+A(T)] U(T, S) if t < s, 
t<z<s 

V(t, t) = U(t, f) = / . 

(In (4,14)-(4,19) A-A(O) = A-fl(O) = 0 and A+A(l) = A+B(l) = 0.) 

Proof. Let e.g. (4,14) hold. Then U(f,s) is defined for all f,se[0,1] and V(t,s) is 
defined for f > s. Let t,se [0,1], t > s be given and let us consider the expression 

W = £dt[V(f, T)] U(T, f) + |V(f, T) dt[U(T, f)] . 

Inserting into W from (2,4) and (4,5) and making use of the subsitution theorem 
1.4.25 we easily obtain 

rt 

W= V(t,T)d[A(T)-B(T)]U(i,r) 
Js 

and according to (4,11) and 1.4.23 

W = V(t, s) [A+A(s) - A+B(s)] U(s, t) + [A'A(t) - A~B(t)] 

= - V(t, s) [A(s) - B(s)] U(s, t) + [A(t) - B(t)] 

because the components of A(t) — B(t) are evidently break functions on [0,1]. 
On the other hand, the integration-by-parts theorem 1.4.33 yields 

W= I - V(f,s)U(s,t) - A2
+V(f,s)A+U(s,f) + A2-V(f,f)Ar/U(f,f) 

+Z [A~ V(t, T) A;U(X, t) - A + V(t, T) A+U(T, f)] , 
s < t < ( 
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where A + Z(t, s) = Z(r + , s) - Z(t, s), A+Z(t, s) = Z(t, s + ) - Z(t, s), A ^ r , 5) = Z(t, s) 
- Z(t-,s) and A2 Z(t,s) = Z(t,s) - Z(r,s-) for Z = U and Z = V. Taking into 
account the relations (4,6), (4,7), (4,10) and 2.10 we obtain immediately (4,16). 

The remaining cases can be treated similarly. If (4,17) or (4,18) holds, then instead 
of the expression W we should handle the expression 

dt[V(s,т)]U(т,s) + V(s,т)dt[U(т,s)], 

4.2. Theorem (Lagrange identity). Let A: [0,1] -> L(Rn) and B: [0,1] -> L(Rn) be 
of bounded variation on [0,1] and let (4,11) hold. Then for any x e BVn left-continuous 
on (0,1] and right-continuous at 0 and any yeBVn right-continuous on [0,1) and 
left-continuous at 1 

(4.20) ( V ( t ) d \x(t) - f d[A(s)] x(s)l + f d \y*(s) - f V ( t ) d[B(f)]l x(s) 
Jo L Jo J Jo L Js 

= y*(l)x(l)-y*(0)x(0). 

Proof. Applying the substitution theorem 1.4.25 the left-hand side of (4,20) reduces to 

1y*(t)d[x(t)-]+ [1d[y*(t)]x(t)+ fV(t)d[B(0-A(t)]x(r). 
i Jo Jo 

The integration-by-parts formula 1.4.33 yields 

\*(t)d[x(t)] + fd[y*(t)]x(0 = y*(l)x(l) - y*(0)x(0) 
Jo Jo 

whence by (4,11) and (4,12) our assertion follows. 

4.3. Remark. The relations (4,16) and (4,19) are considerably simplified if 

(4.21) A+B(t) A+A(t) = A~B(t) A~A(t) on [0,1] . 

This together with (4,11) and A(0) = B(0) is true e.g. if 

(i) B = A and (A+A(t))2 = (A~A(t))2 on [0,1], or 
(ii) B = A+ (cf. (4,13)), (A+A(0))2 = (A"A(1))2 = 0 and A+A(t) A"A(t) 

= A~A(t) A+A(t) on (0,1). 

5. Two-point boundary value problem 

Let M and N be m x n-matrices and r e Rm. The problem of determining a solution 
x: [0,1] -*Rn to 

(5,1) dx = d[A] x + df 
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on [0,1], which fulfils in addition the relation 

(5.2) Mx(0) + Nx(l) = r , 

is called the two-point boundary value problem. 

5.1. Assumptions. Throughout the section, A, B are n x n-matrix valued functions 
of bounded variation on [0,1]. Moreover we suppose that (4,11) with A(0) = B(0), 
(4,21) and at least one of the conditions (4,14), (4,15), (4,17), (4,18) are satisfied. (In 
particular, the assumptions of4.1 are fulfilled.) M and N are m x n-matrices, feBVn 

and reRm, m > 1. 

Making use of the variation-of-constants formula (2,15) we may reduce the 
boundary value problem (5,1), (5,2) to a linear nonhomogeneous algebraic equation. 

5.2. Lemma. 7/(4,14) or (4,15) holds, then x: [0,1] -> Rn is a solution of the problem 
(5,1), (5,2) if and only if 

(5.3) x(t) = U(t, 0) c + f(t) - f(0) - \ds[U(t, sj] (f(s) - f(0)) on [0,1] , 
Jo 

where c e Rn is a solution to the algebraic equation 

[M + N V(l, 0)] c = r + N |v ( l , 0) f (0) - f (1) + \\[V{1, s)] f (s)l. 

7/(4,17) or (4,18) holds, then x: [0,1] ->• R„ is a solution to (5,1), (5,2) if and only if 

x{t) = U{t, 1) c + f{t) - f(l) + J \ [ ^ s)] (f(s) " f(l)) on [0,1] , 

where 

[M V(0,1) + N] c = r + M j - f ( 0 ) + V(0,1) f(l) - PdS[V(0, s) f{s 

Proof. Let (4,14) or (4,15) hold. Then by 2,15 x: [0,1] ->• Rn is a solution of the 
given problem if and only if it is given by (5,3), where c e R„ fulfils the equation 

[M + N U(l, 0)] c = r + N j u ( l , 0) f(0) - f(l) + \ ds[U{l, s)] f{s] 
I Jo 

By (4,16) and (4,21) 

(5.4) V(l, s) = U(l, s) + V(l, s) (A(s) - B{s)) + V(l, s) A+B(s) A+A{s) 

and thus 
V(l,s + ) - U(l,s+) = V(l,s-) - U(l,s^) 
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for any se[0,1] . (In particular V(1,0)= U(1,0), V(l, 1) = U(l, 1).) This implies 
by 1.4.23 

\[U{1, s)~] v(s) = \\[}f{l, s)] v(s) for any v e BVn 
Jo Jo 

wherefrom our assertion follows. 
The cases (4,17) and (4,18) could be treated analogously. (V(0, s) = U(0, s) 

+ V(0,s) (A(s) - B(s)) + V(0,s) A"B(s) A~A(s) on [0,1].) 

5.3. Remark. Consequently, in the cases (4,14) or (4,15) the problem (5,1), (5,2) 
has a solution if and only if 

(5.5) A*[A1 + NV(1,0)] = 0 

implies 

(5.6) k*N V(l, 1) f(1) - k*N V(l, 0) f(0) - I'ds[A*N V(l, s)] f(s) = k*r. 
Jo 

Let us denote yf(s) = k*N V(l,s) for se[0,1] and keRm. Then (5,6) becomes 

y*(i) f(i) - y*(o) f(o) - £<-[>!(*)] f(s) = x*r. 

By (4,8) for any A* e R% and s, s0 e [0,1] 

У*(s) = У*(so) + y*(t)d[ß(t)]. 

Moreover, if A*GK* verifies (5,5), then y*(0) = X*N V(1,0) = -A*M and y*(l) 
= A*N. Analogously, if (4,17) or (4,18) holds, the problem (5,1), (5,2) possesses 
a solution if and only if k*[M V(0,1) + N] = 0 implies 

/!(!) f(l) - y*(0) f(0) - £d[y*(S)] f(s) = A*r, 

where y*(s) = -A*M V(0,s) on [0,1]. 

5.4. Lemma. Let g e BVn and p,qe Rn. If (4,14) or (4,15) holds, then y*. [0,1] -• JR* 

is a solution to the generalized differential equation 

(5.7) dy* = - y * d[B] + dg* on [0,1] 

and together with k* e K* verifies the relations 

(5.8) y*(0) + k*M = p* , y*(l) - k*N = q* 

if and on/y if 

(5.9) y*(s) = (A*N + q*) V(l, s) + g*(s) - g*(l) + ^(g*(t) - g*(l)) d,[V(t, s)] 
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on [0,1] and 
k*[M + N U(l, 0)] 

= p* - q* U(l, 0) - g*(0) - g*(l) U(l, 0) + g*(f)d([U(t,0)] 

(By (4,16) V(f,0) - U(t,0) = (A{t) - B(t)) U(t,0) + A^B(t) A~A(t) U(t,0).) 
7/(4,17) Or (4,18) holds, then y*: [0, 1] -• K* and A* e P* veri/> the system (5,7), 

(5,8) if and only if 

(5,10) Y*(s) = (p* - k*M) V(0, s) + g*(s) - g*(0) - \\g*(t) - g*(0)) dt[V(t, s)] 
Jo 

on [0,1] 
and k*[M U(0,1) + N] 

= p* U(0,1) - q* + g*(l) - g*(0) U(0,1) g*(í)d([U(t,l)]. 

(V(r, 1) - U(t, 1) = (A{t) - B{t)) U(t, 1) + V{U 1) A + B{t) A+A{t) by (4,19).) 

Proof. In virtue of our assumption (4,21) the fundamental matrices U(t,s) and 
V(r, 5) fulfil the relation (5,4). Inserting (4,8) or (4,9) into (5,8) we complete the proof. 

5.5. Theorem. Under the assumptions 5.1 the given problem (5,1), (5,2) possesses 
a solution if and only if 

(5.11) y*(l) f(1) - y*(0) f(0) - | d[y*(t)] f(t) = A*r 
Jo 

for any solution (y*, A*) of the homogeneous system 

(5.12) dy* = -y*d[B] on [0,1], 

(5.13) y*(0) + A*M = 0, y*(l) - X*N = 0. 

Proof follows immediately from 5.2 (cf. also 5.3). 

5.6. Theorem. Let A, B, M, N fulfil 5.1. Then given geBVn and p,qeRn the system 
(5,7), (5,8) possesses a solution if and only if 

g*(l)x( l ) -g*(0)x(0)- g*(s) d[x(s)] = q* x(l) - p* x(0) 

for any solution x of the homogeneous equation 

(5.14) dx = d[A] x on [0,1] 

which fulfils also 

(5.15) #Mx(0) + Nx(l) = 0. 
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Proof. If (4,14) or (4,15) holds, then by 5.4 the system (5,7), (5,8) possesses a solution 
if and only if 

(5.16) [M + NU(l,0)]c = 0 

implies 

q* xc(l) - p* xe(0) = g*(l) xc(l) - g*(0) xc(0) - Jo g*(s) d[xc(s)] , 

where xc(t) = U(t,0)c for te [0,1] and ce Rn. By 5.2 x: [0,1] -> Rn is a solution 
to (5,14), (5,15) if and only if x(r) = U(r,0)c on [0,1] where ceRn verifies (5,16). 
Now, our assertion follows readily. 

5.7. Definition. The system (5,12), (5,13) of equations for y*. [0,1] -> R* and 
A* e R* is called the adjoint boundary value problem to the problem (5,1), (5,2) (or 
(5,14), (5,15)). 

5.8. Definition. The homogeneous problem (5,14), (5,15) (or (5,12), (5,13)) has exactly k 
linearly independent solutions if it has at least k linearly independent solutions on 
[0,1], while any set of its solutions which contains at least k -f- 1 elements is linearly 
dependent on [0,1]. 

Another interesting question is the index of the boundary value problem, i.e. the 
relationship between the number of linearly independent solutions to the homo
geneous problem (5,14), (5,15) and its adjoint. 

5.9. Remark. Without any loss of generality we may assume rank [M, N] = m. 
In fact, if rank [iM, N] = mx < m, then there exists a regular m x rz-matrix 0 such 
that 

where Ml9 N1 e L(Rn9 Rmi) are such that rank [Ml9 Nx] = mv Let r e Rm, 

Or = I l J, r1 e Rmi and r2 e Rm-mi. Then either r2 + 0 and the equation for 

(5.17) [M,N]d = r 

possesses no solution or r2 = 0 and (5,17) is equivalent to [Mx,Nx]d = rv 

5.10. Theorem. Let A, B, M9 N fulfil 5.1 and rank [M9 N] = m. Then both the homo
geneous problem (5,14), (5,15) and its adjoint (5,12), (5,13) possesses at most a finite 
number of linearly independent solutions on [0,1]. Let (5,14), (5,15) possess exactly k 
linearly independent solutions on [0,1] and let (5,12), (5,13) possess exactly k* linearly 
independent solutions on [0,1]. Then k* — k = m — n. 
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Proof. Let us assume e.g. (4,14). By 5.2 the system (5,14), (5,15) possesses exactly 
k = n — rank [M + N U(1,0)] linearly independent solutions on [0,1]. (If Cje Rn 

are linearly independent solutions to (5,16), then since U(0,0) = /, the functions 
xj(t) = U(t, 0)cj are linearly independent solutions on [0,1] of the system (5,14), 
(5,15).) 

On the other hand, the equation (5,5) has exactly m — rank [M + NU(l,0)j = /i 
linearly independent solutions. Let A denote an arbitrary h x n-matrix whose rows 
^*, X_,..., A* are linearly independent solutions of (5,5). Let us assume that the 
functions y*(s) = A*N V(l,s) are linearly dependent on [0,1], i.e. there is xeRh9 

<x 4= 0 such that <x*/lN V(l, s) = 0on [0,1]. In particular, 0 = <x*/iN V(l, 1) = <x*/lN 
and 0 = <x*/iN V(1,0) = -a* / lM Since (5,17), a*A = 0 and by the definition 
of A it is a = 0. This being a contradiction, fc* = m — rank [/W + N U(1,0)] and 
k* — k = m — n. 

5.11. Definition. Given m x n-matrices M, N with rank [M, N] = m, any 
(2n — m) x n-matrices Mc, Nc such that 

(5.18) detl"*1' N l * 0 V ' IMC, Nc] 

are called the complementary matrices to [M, N]. 

5.12. Proposition. Let M, N e L(Rn, Rm), rank [M, N] = m and let Mc, Nc 

e L(Rn,R2n_m) be arbitrary matrices complementary to [M, N]. TTien there exist 
uniquely determined matrices P,QeL(R2n_m,Rn) and P0, Qc e L(Km, £„) such that 

(5.19) d e t [ Q ' , Q ] + ° 
and" ytx, - y*x0 = (y*/* + yfQc)(A1x0 + Nx.) + (y^P + yfQ)(Mcx0 + Ncx,) 
jbra//x0,x„y0,yie/?„. 

Proof. Let P,QeL(R2„_m , jg and /* Qc e L(Rm, .R„) be such that 

~M, N~\-1[-Pc, -P~\ 

_MC, N'} l Q<, Q J -
(5,20) 

Then 

(5,21) -FM- PMC - l„, -PcN-PNc = 0, 

QcM + QMc = 0, QcN + QNc = ln 

and 

(5,22) i>. p i r^. N i= r - ,«'° i 
IQC, QJlMc, Ncj I 0, / J ' 
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Thus, given x0, xx, y0, yx e R„ 

^ - y o % = ( y S , y T ) [ - ; : ; j ( : j 

"(yo'yi)LQc,Qj[/vic,NcJUj 
= (ytP0 + y*Qc) {Mx0 + N X l ) + (y*P + Y*Q) (Mcx0 + ISTx.). 

5.13. Remark. It follows from (5,20) that according to 5.12 the matrices P, Q 
£ URm-m, K) a n d Pc, Qc e L{Rm, Rn) associated to M, N, /Mc, Nc fulfil besides (5,21), 
(5,22) also 

[ 
-M, N~ 

_-Mc, Nc 

i.e. 

(5.23) -Mr +NQc ==,m 

(5.24) -MCP° + NcQc^0, 

The following assertion is evident. 

'P*, P 

LQC, Q 
= / 2 и ' 

MP + NQ = 0 , 

MCP + NCQ = /2п_ 

5.14. Proposition. Let M,Ne L(R„, Rm), rank [M, N] = w and fet P, QeL(R2„__, /?_) 
««d Pc, Qc e L(R„„ R„) be s„cn that (5,19) and (5,23) teW. Then P„ Qj e L(K2„_m, R„) 
and P[, Qc 6 L(Rm, Rn) fulfil also (5,19) and (5,23) i/and on/); i/tner. exist a regular 
matrix EeL(J?2„_J and FeL(Rm,R2n_J such that 

(5.25) Pi = PE, QX = QE 

and 

(5.26) PJ = | * + PF, QC^Q+QF. 

5.15. Definition. Let M,NeL(Rn,Rm) and let P,QeL(R2n_m,Rn) and P,QC 

e L(Km, Rn) be such that (5,19) and (5,23) hold. Then the matrices P, Q are called 
adjoint matrices associated to [M, N] and the matrices Pc, Qc are called com-
plementary adjoint matrices associated to [iM, N]. 

5.16. Remark. If M, N e L(Rm, Rn), rank [M, N] = m and if ^ Q e L ^ ^ , ! * , , ) 
are arbitrary adjoint matrices associated to M, N, then 

(5,27) rank И- 2n — m 

and the rows of the m x 2n-matrix [ — M9 N] form a basis in the space of all solutions 
d* e K*„ to the equation 

(5,28) ^ [ Q ] ^ -
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5.17. Remark. Let M,NeL(R„Rm) and rank [M,N] = m. Let P,Q and P\QC 

be respectively adjoint and complementary adjoint matrices to \M, N]. If 
y*: [0,1] -+ R* and k* e R* fulfil (5,13), then 

(5.29) y*(0)P + y*(l)Q = 0 

and 

(5.30) y*(0) Pc + y*(l) Qc = k* . 

On the other hand, if y*: [0, 1] -> R* fulfils (5,29), then there exists k* e R% such 
that (5,13) and consequently also (5,30) hold (jf. 5.16). 

5.18. Corollary. Let the assumptions 5,1 be fulfilled. Then the boundary value problem 
(5,1), (5,2) has a solution if and only if 

(5.31) y*(l) f(l) - y*(0) f(0) - | d[y*(s)] f(S) = [y*(0) P + y*(l) Q«] r 
Jo 

for arty solution y*: [0,1] -• R* of the system (5,12), (5,29) where P,Q and PC,QC 

are respectively adjoint and complementary adjoint matrices associated to [iW, N]. 

Proof follows immediately from 5.5 and 5.17. 

5.19. Remark. If PUQ{ and P1?Qi are also adjoint and complementary adjoint 
matrices associated to [M, N], then by 5.14 there exist a regular matrix E e L(R2n-m) 
and FeL(Rm, R2n-m) such that for all y*., y*eK* we have y*,Pj + y*Qi 
= [ytP + y?Q] E and y*Pc + y*Qc

x = y*Pc + y*Qc + [y*P + y*Q] F. Thus 
y*^ + Y*Q = ° a n d y*pc + Y*QC = *<* if and only if also y%Px + y*Q{ = 0 and 
Yo î + y*Qi = -̂ *- This means that neither the boundary condition (5,29) nor 
the condition (5,31) depend on the choice of the adjoint and complementary adjoint 
matrices associated to [M, N]. 

5.20. Remark. The matrix valued functions A: [0,1] -> L(Rn) and B: [0,1] -* L(R„) 
of bounded variation on [0,1] fulfil 5.1 e.g. if 

(i) A is left-continuous on (0,1] and right-continuous at 0, det [/ + A+A(t)] + 0 
on [0,1] and B = A^ (cf. (4,13)), or 

(ii) (A+A(0))2 = (A"A(1))2 = 0, (A+A(t))2 = (A"A(t))2 on (0,1), det [/ - (A+A(f)]2 

+ 0 on [0,1] and B = A, or 
(iii) A+A(t) = A~A(t) on [0,1], (A+A(t))2 = 0 on [0,1] and B = A. 

(In the case (iii) 

[/ + A+A(t)] [/ - A-A(t)] = / - (A+A(t))2 = / . ) 

We shall see later that the problems of the type (5,1), (5,2) cover also problems with 
a more general side condition (cf. V.7.19). 
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Notes 

The theory of generalized differential equations was initiated by J. Kurzweil [ l] , [2], [4]. It is based 
on the generalization of the concept of the Perron integral; special results needed in the linear case arc 
given in IA Differential equations with discontinuous solutions are considered e.g. in Stallard [2], 
Ligeza [2]. 

The paper by Hildebrandt [2] is devoted to linear differentio-Stieltjes integral equations. These 
equations are essentially generalized linear differential equations in our setting where the Young integral 
is used for the definition of a solution. Some results for the equations of this type can be found in 
Atkinson [1], Honig [1], Schwabik [ l] , [4], Schwabik, Tvrdy [ l] , Mac Nerney [1], Wall [1]. 

Boundary value problems for generalized differential equations were for the first time mentioned in 
Atkinson [1] (Chapter XI). They appeared also in Halanay, Moro [1] as adjoints to boundary value 
problems with Stieltjes integral side conditions. A systematic study of such problems was initiated in 
Vejvoda, Tvrdy [1] and Tvrdy [ l] , [2]. Further related references are Krall [6], [8], Ligeza [ l] and 
Zimmerberg [1], [2]. 
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