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IV. 1 

IV. Linear boundary value problems 
for ordinary differential equations 

1. Preliminaries 

This chapter is concerned with boundary value problems for linear nonhomogeneous 
vector ordinary differential equations 

(1.1) x'-A(t)x = f(t) 

and the corresponding homogeneous equation 

(1.2) x -A(t)x = 0. 

The differential equations (1,1) and (1,2) are considered in the sense of Caratheodory. 
In the theory of ordinary differential equations the locution "boundary value 

problems" (BVP) refers to finding solutions to an ordinary differential equation 
which, in addition, satisfy some (additional) side conditions. In general, such con
ditions may require that the sought solution should belong to a prescribed set of 
functions. Very often this set is given as a set of solutions of a certain, generally 
nonlinear operator equation. In this chapter we restrict ourselves to the case of 
linear Stieltjes-integral side conditions of the form 

(1.3) Sx = M x(0) + N x(l) + d[K(t)] x(t) = r 

or 

(1.4) M x(0) + N x(l) + d[K(tj] x(t) = 0. 
Jo 

Throughout the chapter the following hypotheses are kept to. 

1.1. Assumptions. A: [0,1] -* L(Rn) and f: [0,1] -> Rn are L-integrable on [0,1] 
(feLn)\ M'and NeL(Rn,Rm), reRm9 m>\ and K: [0,1] -> L(Rn, Rm) is of 
bounded variation on [0,1]. 
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IV.l 

1.2. Definition. A function x: [0,1] -+ Rn is a solution to the equation (1,1) on 
[0,1] if it is absolutely continuous on [0,1] (x e ACJ and verifies x'(t) - A(t) x(t) 
= f(t) a.e. on [0,1]. 

1.3. Remark. Consequently x: [0,1] -• Rn is a solution to (1,1) on [0,1] if and 
only if for any t, t0 e [0,1] 

x(t) = x(t0) + A(s) x(s) ds + f(s) ds, 
Jto J'o 

i.e. (1,1) is a special case of the linear generalized differential equation 

(1.5) dx = d[B] x + dg (B(t) - \A(s) ds, g(t) = \f(s) ds). 
Jo Jo 

1.4. Definition. A function x: [0,1] -> Rn is a solution to the nonhomogeneous 
boundary value problem (BVP) (1,1), (1,3) (verifies the system (1,1), (1,3)) if it is a solution 
of (1,1) on [0,1] and satisfies (1,3). The problem of finding a solution x: [0,1] -> Rn 

of the homogeneous equation (1,2) on [0,1] which fulfils also (1,4) is called the 
homogeneous BVP (1,2), (1,4). 

1.5. Notation. Throughout the chapter U: [0,1] x [0,1] -• L(Rn) is the funda
mental matrix for the equation (1,5) defined by III.2.2 and X(t) = U(t, 0). 

Let us recall that det X(t) # 0 on [0,1], U(r, s) = X(t) X l(s) on [0,1] x [0,1], 

(1.6) X(t) X '(s) = / + A(T) X(T) X" *(s) dr for all t, s 6 [0,1] 

and 

(1.7) X(t) X~ !(s) = / + X(t) X '(z) A(T) di for all r, s e [0,1] . 

Both X(t) and X" 1(s) are absolutely continuous on [0,1]. The variation-of-constants 
formula reduces to 

(1.8) x(t) = U(t, t0) x(t0) + U(t, s) f(s) ds for all t, t0 e [0,1] . 
J to 

1.6. Remark. Since A(t) is supposed to be L-integrable on [0,1], for any xeACn 

the function x'(t) — A(t) x(t) is defined a.e. oi\ [0,1] and is L-integrable on [0,1]. 
Hence the operator 

(1.9) L. xeACn->Lx, (Lx)(t) = x'(t) - A(t)x(t) a.e. on [0,1] 

maps ACn into Ln. Obviously it is linear and 

v. = f|x'(ť) - A(0*(0I dt < [\x'(t)\ dt + ( [\A(t)\ dt) sup \x(t)\ 
Jo Jo \Jo / íe[0,l] 

|Lxв_ 
J o ' 

< U + 
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IV. 1 

for any x e AC„. Moreover, for a given x e C„ 

<(|/M| + |N| + variK) | |x | | c M x(0) + N x(l) + d[K(t)] x(t) 

and the operator 

(1,10) S: x є C „ - / И x ( 0 ) + Nx(l) + d[K(í)]x(í)єҚ, 

is linear and bounded. Consequently, under the assumptions 1.1 

<£: xeAC„ 
Lx 

Sx 
6 L\ x Rm 

is linear and bounded. The given BVP (1,1), (1,3) may be now rewritten as the linear 
operator equation 

1.7. Proposition. Given ceRn and feLn, the unique solution x to (1,1) on [0,1] 
such that x(0) = c can be expressed in the form 

*(') = (1*0 (') + 0Т)(0 оп[0,1], 

и. сеК„-Х(г)сеЛС„ 
where 

(Ml) 
and 

(1,12) V: f e L\ -> X(t) ( V \s) f(s) ds e ACn 

are linear and bounded operators. 

Proof. The linearity is obvious. Let ceRn and feLn. Then 

|Uc|Lr< 1 + |X'(t)|dt)|c| = x г | c | , к 1 < 0 0 

0 / 
and 

\yfÍAc = X'(t) X - ^ ^ d s j + ^t) dt 

f | ť = X 2| | f | |£ . l , X2 < CO. |x'(t)|dt (suplx-^D + i 
SG[0,1] 

1.8. Remark. By the Riesz Representation Theorem an arbitrary linear bounded 
mapping S: Cn -> Rm may be expressed in the form (1,10), where M = N = 0. 
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IV.l 

If K(t) is the sum of a series of the simple jump functions of bounded variation 
on [0,1] with the jumps AK,- at t = T}f e [0,1] (j = 1,2,...), then (1,3) reduces to the 
infinite point condition (cf. 1.4.23) 

oo oo 

A1 x(0) + X AK, X(T,) + N x(l) = r ( £ |AK,| < cx>). 
1=i J = I 

In particular, if K(t) is a finite-step function on [0,1] (K(t) = Kj for T ^ < t < Tj 
(j = l , 2 , . . . , p - 1), K(t) = Kp for Tp_! < t < 1 where 0 = T0 < T, < ... < TP = 1), 
then (1,3) reduces to the multipoint condition 

M x(0) + P ^ AK; X(T,.) + N x(l) = r (AK,- = Kj+, - K,-) 
1=i 

or even to the two-point boundary conditions (if AKj = 0, j = 1, 2,..., D — 1). 
The problem of determining a function x: [0,1] -> K„ absolutely continuous 

on each subinterval (T,-,TJ+1) (j = 0,1,...,p — 1, 0 = T0 < TX < ... < TP = 1) and 
such that x'(t) - /-(t)x(t) = f(t) a.e. on [0,1] and 

Mx(0) + Z[MJX(TJ + ) + N,.X(T,+ 1 - ) ] + Nx(l) = r 
1=o 

is called the interface problem and is to be dealt with separately. 

1.9. Remark. If we put K0(t) = K(t + ) - K(l - ) for t e [0,1) and K0(l) = 0, then 
K - K0 is of bounded variation on [0,1], A+K0(t) = 0 on [0,1), K 0 ( l - ) = K0(l) 
= 0, K(t + ) - K o ( t + ) = K ( t - ) - K o ( t - ) = 0 on [0,1], K(l) - K0(l) = K(l), 
K(0) - Ko(0) = -A+K(0) - K( l - ) and hence for any xeCn (cf. 1.4.23 and 1.5.5) 

M x(0) + N x(l) + п d[K(t)] x{t) = M 0 x(0) + N 0 x(l) + d[K0(t)] x(() 
• J o 

(M0 = M- A+K(0) - K ( l - ) , N0 = N + K(l).) 
Thus, without any loss of generality we may add the following hypotheses to 1.1. 

1.10. Assumptions. K(t) is right-continuous on [0,1), left-continuous at 1 and 
K(1) = 0. 

1.11. Definition. The side condition (1,3) (Sx = r) is linearly dependent if there 
exists q e Rm, q =f= 0 such that q*(Sx) = 0 for all x e ACn. It is linearly independent 
if it is not linearly dependent. 

1.12. Proposition. Let M, N and K(t) fulfil the hypotheses 1.1 and 1.10. Then the 
side condition (1,3) is linearly dependent if and only if there is q e Rm, q 4= 0 such that 

q*M = q*N = q* K(t) = 0 on [0,1] . 
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IV.l 

Proof. Let q + 0 and let 

(1,13) q*[M x(0) + N x(l) + d[K(r)] x(t)] = 0 for each x e ACn. 
Jo 

Then for every x e AC„ with x(0) = x(l) = 0 we have 

1d[q*K(t)]x(0 = O. 
0 

By 1.5.17 this implies q* K(t) = 0 on [0,1] and hence (1,13) reduces to 

q*[Mc + Nd] = 0 for all c,deK„. 

Choosing c = 0 and </ e #„ arbitrary or d = 0 and ceR„ arbitrary, we obtain 
q*N = 0 or q*M = 0, respectively. 

1.13. Definition. The side condition (1,3) is said to be nonzero if the corresponding 
operator S given by (1,10) is nonzero. Given reRm, the side condition (1,3) is 
reasonable if q*r = 0 for any qeRm such that q*(Sx) = 0 for all xeACn. 

(Obviously, given ( )eLn x Rm, BVP (1,1), (1,3) may be solvable only if the side 

condition (1,3) is reasonable.) 

Given xeACn, let S,x (j = 1,2,..., m) denote the components of the vector 
SxeRm. Then Sy. xeACn -> SjxeR are linear bounded functional on ACn and 
the side condition (1,3) may be rewritten as the system of equations SjX = r} 

(j = 1,2,..., m), where r, are components of the vector r. The side condition (1,3) 
is linearly dependent if and only if the functionals SJEAC* (j = 1,2,..., m) are 
linearly dependent. Since the linear subspace of ACn spanned on {Sl9S2,...9Sm} 
is finite dimensional, the following assertion is obvious. 

1.14. Proposition. If the side condition (1,3) is nonzero and reasonable, then there 
exist a natural number /, matrices M0, N 0 e L(Rn, Rt), r 0 e Rt and a function 
K0: [0,1] -* L(Rn,Rl) of bounded variation on [0,1] such that the condition 

Sox = /Иox(0) + Nox(l) + 
П 

d[K0(t)] x(í) = 

is linearly independent, while Sx = r for x e ACn if and only if S0 x = r0. 
Henceforth let us assume that the side condition (1,3) is reasonable, linearly 

independent and fulfils the hypotheses 1.1 and 1.10. Let us denote by p the dimension 
of the linear subspace spanned on the rows of K(t). If 0 < p < m, then there exists 
a regular m x m-matrix Ix such that 

Z i K ( í ) s [4 ) ] °n [o,i]' 
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IV. 1 

where the rows of R: [0,1] -> L(Kn, Rp) are linearly independent on [0,1], Let us 
denote m0 = m - p and let the matrices M 0, N 0 e L(Rn, Rmo) and M, N e L(K„, Kp) 
be such that r . - Kl n 

„ r- , x-i /™ n , N n , 0 

If there were a*[M 0 ,N 0 ] = 0, then /^-[Al-N,!^*)] = 0 or according to 1.12 
/?*r, = 0 should hold for /J* = (a*,0)eR*. As 1, is regular, 0*1", = 0 implies 
P* = 0 and hence also a* = 0. This means that the m0 x 2/1-matrix [M0, N 0 ] has 
a full rank (rank [M0, N 0 ] = m0). If rank [M, N] = m0 + mu i.e. 

M0, N 0 

JA, N 

then there exists a regular p x p-matrix I2 such that 

Mo N 0 

rank m 0 + Wj (0 < mx < p), 

o, г2 

/И0, N 0 

Д Ñ 

where Ml9N: eL(Rn,Rm^) are such that 

"•i5> " < : » ! 

Denoting 

Л1,. N, 

0, 0 

m 0 + řПj. 

we obtain 

(1,16) 

41: 
[/И,N,K(í)] = 

- . 

M0, N0, 0 

M„ N1; K.(t) 

0, 0, K2(t)_ 

where Kx: [0,1] -> L(Rn, Rmt), K2: [0,1] -> L(Rn, Rm2) (m. + m2 = p) are given by 

[ад]s ҝ° ( t ) = І2Ќ(í) on[0'1]-
As I2 is regular, the rows of the p x n-matrix K°(t) are linearly independent on [0,1]. 
Finally, let us notice that the m x m-matrix 0 is regular. To summarize: 

1.15. Theorem. Any linearly independent and reasonable Stieltjes-integral side con
dition (1,3) fulfilling 1.1 and 1.10 is equivalent to the system 

(1,17) Mox(0) + N .x(l) = r 0 , 

Mt x(0) + Nx x(l) + J d[Kj(t)] x(t) = r. , 

£d[K2(t)]x(.) = r2, 

143 



IV.2 

where r0eRmo, rleRmi, r2eRm2 and the m0 x n-matrices iM0, N0, the mx x n-
matrices Mu Nu Kx(t) and the m2 x n-matrix K2(t) are such that (1,15) holds and the 
rows of the (m{ + m2) x n-matrix [K*(t), Kf(t)]* are linearly independent on [0,1]. 
There exists a regular m x m-matrix 0 such that (1,16) and Or = (r*,, r*, rf )* hoW. 

1.16. Definition. The system (1,17) associated to (1,3) by 1.15 is said to be the 
canonical form of (1,3). 

1.17. Remark. By 1.5A 6 the general form of the linear bounded operator S: ACn-+Rm 

is 

(1,18) S: xeAC„^A1x(0 )+ K(t)x'(t)dt, 

where M e L(Rn, Rm) and K: [0,1] --> L(Rn, Rm) is measurable and essentially 
bounded on [0, 1]. If K is of bounded variation on [0,1], then by integrating by 
parts we may easily reduce S to the form (1,10). 

Most of the results given in this chapter may be extended to BVP with the side 
operator S of the form (1,18). Some of them are formulated and proved in the fol
lowing chapter for more general BVP which include integro-differential equations, 
the rest is left to the reader. 

2. Duality theory 

Let us consider BVP (1,1), (1,3), i.e. the system 

(1,1) x - A(t) x = f(t), (1,3) M x(0) + N x(l) + d[K(f)] x(t) = r, 
Jo 

where A: [0,1] -> L(JR„), M and NeL(Rn,Rm) and K: [0,1] ^ L(R„ Rm) fulfil 
1.1 and 1.10. Moreover, we suppose that (1,3) is nonzero and reasonable (see 1.13). 

Let feLn and reRm. By the variation-of-constants formula 1.7 a function 
x: [0,1] -• Rn is a solution to BVP (1,1), (1,3) if and only 

x = Uc + Vf 
and 

(2.1) (SU)c = r - ( S V ) f , 

where U: R„ -* AC„ and V: L„ -» ACn are the linear bounded operators respectively 
given by (1,11) and (1,12), 

SU = M X(0) + N X(l) + d[K(t)] X(t) 
and Jo 

(2.2) (SV) f = N X(l) f V *{t) f(t) dt + f ' d ^ O ] X(t) [x~ l{s) f(s) ds. 
Jo Jo Jo 
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IV.2 

This yields immediately the following necessary and sufficient condition for the 
existence of a solution to BVP (1,1), (1,3). 

2.1. Theorem. BVP (1,1), (1,3) has a solution if and only if 

(2.3) k*(SU) = 0 

implies 

(2.4) k*(SV)f = k*r. 

2.2. Remark. Applying the Dirichlet formula 1.4.32 to (2,2) we obtain for any feL\ 

(2.5) (SV)f = ^F(t)f(t)dt, 

where 

(2.6) F{t) = (N X(l) + Tdf^s)] X(s)) X" l(t) on [0,1] . 

Hence the condition (2,4) may be rewritten as 

Í A*F(t)f(f)dí = A*r. 

By (III. 4,8) the n-vector valued function y*(r) = k* F(t) is for any k* e R* a unique 
solution of the initial value problem 

(2.7) dy* = - y* d[B] - d(k*K) on [0,1] (B(t) = A(s) ds), y*(l) = k*N . 
Jo 

(In fact, if heBVn is right-continuous on [0,1) and left-continuous at 1, then in
tegrating by parts (cf. 1.4.33) we reduce the variation-of-constants formula for the 
initial value problem 

dy* = - y * d[B] - dh* , y*(l) = y* 
to the form 

(2,7a) y*(t) = (y* X(l) + £d[h*(s)] X(s)) X~ *(t) on [0,1] .) 

Furthermore, if X*(SU) = 0, then 

y*(0) = A* (N X(l) + J d[K(t)] X(t) j = -A*M . 

On the other hand, it follows from the variation-of-constants formula that if 
y*: [0,1] -+ J?* and A* e R*, solve (2,7) on [0,1] and 

(2.8) y*(0) + k*M = 0, y*(l) -X*N = 0, 
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then 

(2.9) y*(t) = k* F(t) on [0,1] and k*(SU) = -y*(0) + y*(0) = 0 . 

This completes the proof of the following theorem. 

2.3. Theorem. BVP (1,1), (1,3) has a solution if and only if 

(2.10) [\*(t)f(t)dt = k*r 

for any solution (y*, k*) of the system (2,7), (2,8). 

2.4. Definition. The system (2,7), (2,8) of equations for y*: [0,1] -> R* and k* e R* 
is called the adjoint boundary value problem to BVP (1,1), (1,3) (or (1,2), (1,4)). 

The following assertion provides the necessary and sufficient condition for the 
existence of a solution to the nonhomogeneous BVP corresponding to BVP (2,7), 
(2,8). 

2.5. Theorem. Let p,qeRn and let geBVn be right-continuous on [0,1) and left-
continuous at 1. Then the system 

(2.11) dy* = y* d [ - B ] - d(k*K) + dg* on [0,1] , 

(2.12) y*(0) + k*M = p* , y*(l) - k*N = q* 

has a solution if and only if 

Í d[g*(t)]x(t) = q*x(l)-p*x(0) 

for any solution x of the homogeneous BVP (1,2), (1,4). 

Proof. Inserting (2,7a), where h*(t) = k* K(t) - g*(t) into (2,12) we easily obtain 
that y*: [0,1] - R* and k*eRZ verify (2,11), (2,12) if and only if 

(2,13) y*(t) = k* F(t) + q* X(l) X \t) - Pd[g*(s)] X(s) X l(t) on [0, [] 

(F(t) given by (2,6)) and 

k*(SU) = p* X(0) - q* X(l) + £d[g*(t)] X(t). 

Since all the solutions of BVP (1,2), (1,4) are of the form X(t) c where (SI/) c = Q 
the theorem follows immediately. 

2.6. Remark. Let us notice that under our assumptions all the solutions y *: [0,1] ̂  ^ 
of (2,11) on [0,1] are of bounded variation on [0,1], right-continuous on TQ A 
and left-continuous at 1. 

146 



IV.2 

2.7. Theorem. The homogeneous problems (1,2), (1,4) and (2,7), (2,8) possess exactly 
k = H — rank (SU) and fc* = m — rank (SU) linearly independent solutions, re
spectively. 

Proof. The homogeneous algebraic equation 

(2,14) (SU)c = 0 

has exactly fc = n — rank (SU) linearly independent solutions. Let C0 be an arbitrary 
n x fc-matrix whose columns form a basis in the space of all solutions to (2,14). 
((SU)C0 = 0 and rank(C0) = fc.) This obviously implies that the columns of the 
n x k-matrix valued function 

X0(t) = X(t)C0 on [0,1] 

form a basis in the space of all solutions of BVP (1,2), (1,4). 

The latter assertion follows from the fact that y*: [0,1] -> JR* and A*eR* 
verify the system (2,7), (2,8) if and only if y*(t) = A* F(t) on [0,1] and (2,3) holds 
(cf. 2.3 and its proof). In fact, since (2,3) has exactly fc* = m — rank (SU) linearly 
independent solutions, BVP (2,7), (2,8) has also exactly fc* linearly independent 
solutions on [0,1]. In particular, given an arbitrary A0sL(Rn, Rk*) whose rows 
form a basis in the space of all solutions to (2,3), the rows of (A0 F(t), A0) form a basis 
in the space of all solutions to BVP (2,7), (2,8). 

2.8. Remark. From the proof of 2.7 it follows that all the solutions to BVP (1,2), 
(1,4) or BVP (2,7), (2,8) are of the form 

x(t) = X0(t)d, dsRk or (y*(t),A*) = 5*(/l0F(t),/l0), 5*eK*, 

respectively. Furthermore, by the definition of X0(t), A0, F(t) 

rank (X0(t)) = fc and rank (A0 F(r), A0) = fc* on [0,1] . 

2.9. Remark. The number fc* — fc = m — n is called the index of BVP (1,2), (1,4). 

2.10. Remark. If we added one zero row to the matrices M, N, K(t) in (1,4), 
we should obtain the equivalent problem. Let us assume that it has exactly fc 
linearly independent solutions. Then by 2.8 its adjoint should have exactly both 
fc + m — n and k + (m + I) — n linearly independent solutions. This seems to be 
confusing. But we must take into account that while in the former case the adjoint 
problem has solutions (y*, A*) with A* e R*, in the latter case the adjoint has solutions 
(y*- A-*), where fi* is an (m + l)-vector, with an arbitrary last component. Nevertheless 
it can be seen that it is reasonable to remove from (1,4) all the linearly dependent 
rows and to consider the given BVP with linearly independent side conditions. 
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ÏV.2 

2.11. Remark. Given xeAC„, y*eL^ and A*eK*, we have by 1.4.33 

(2.15) ү*(t) [x'(í) - A(í) x(t)] dt - A* \M x(0) + N x(l) 

y*(t) + y*(s) Ąs) ds + X*(K(t) - N) 

+ y*(s)A(s)ds- A*(/И + N - K(0)) 

d[K(t)]x(t) 

x'(í) dt 

<(0). 

In particular, applying again 1.4.33 to the right-hand side of (2,15), we obtain that 

(2,16) y*(í) [x'(t) - A(t) x(í)] dí - A* AI x(0) + N x(l) + d[K(t)] x(t) 
o L Jo 

= i d -y*(í) + y*(l) - i y*(s)A(s)ds - A* K(t) x(t) 

- [y*(o) + **M] *(o) + [y*!1) - ** N ] M1) for a11 x e ^c«> y e BV„, A* e R* . 

The formulas (2,15) and (2,16) will be called the Green formulas. 
The adjoint BVP (2,7), (2,8) is a system of equations for an n-vector valued function 

y*(t) of bounded variation on [0,1] and an m-vector parameter. Our wish is now 
to disclose the relationship between y* and A* if (y*, A*) solves BVP (2,7), (2,8). 
To this end it appears to be convenient to consider BVP (1,1), (1,3) with the side 
condition in its canonical form (see 1.16) 

(2,17) = r, /Иox(0) + N o x(l) 

M, x(0) + N t x(l) + I d[Kx(í)] x(t) = Г l , 

1 d[K2(t)]x(t) = r 2 . 

In this case the adjoint BVP (2,7), (2,8) reduces to the system of equations for 

YeBVn, x*eR*,0, x*eRZt and x*eR* v m 2 

(2.18) dy* = y* d [ - B ] - dlxfKj + x*K2) on [0,1] , 

(2.19) y*(0) + x%M0 + x*M1=0, y*(l) - x*N0 - x*N, = 0 . 

2.12. Remark. Let 0 be a regular m x m-matrix such that 

M0, N0, 0 

[M,N,K(t)] = on [0,1]. Mi, N., K,(t) 

-0, 0, K2(t)J 

Given A* e R*, let x* e R*o, x*eR*t and x* e R*2 be such that A* = (x*, x*, x*) 0. 
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Then 
A*M = x*,A10 + x*M,, X*N = x*N0 + x*Nx 

and 
A* K(t) = x* K,(t) + x* K2(r) on [0,1] . 

It follows that y*: [0,1] -> K* and A*GJR* satisfy (2,7), (2,8) if and only if 
(y*, x£, x*, x*), where x* G R*O, xj G R*. and x* G _R*2 are such that A* 
= (x*, x*, x*) <9, satisfy (2,18), (2,19). 

2.13. Notation. In the following C and D denote the / x n-matrices such that 
C* = [/V1*,M*] and D* = [N*,N*] (/ = m0 + mj, Mc and Nc being arbitrary 
(2n- /) x n-matrices complementary to [C,D] (cf. 111.5.11). Let P,Qe L(R2n_t,Rn) 
and Pc, Qc G L(JR„ Rn) be associated to C, D, Mc, Nc by III.5.12. 

Furthermore, let Pg, Q0 G L(Rmo, Rn) and PJ, Qc
x eL(Rmi, Rn) be such that Pc 

= [Pc, PJ] and Qc = [Qc
0, Q

CJ. (By 1.16 rank [C, D] = /.) 
Let us recall that according to III.5.12 

(2,20) 

and 

(2,21) 

M0, N0 

Mu Nx 

Mc, Nc _QS, Qì, QJ 

Ln, 0, m0» 

0, lm,0 

Ю, 0, I -l-l 

[ ^ PÍ, P~\ 
LQCO, QCU Q Í 

M0, N0 

M,, N, 
Mc, Nc [ 0, J ' 

Analogously as in III.5.17 it is easy to show on the basis of (2,20) that (2,19) holds 
if and only if 

(2.22) y*(0)P +y*( l )Q = 0 , 

y*(0)Pg + y*(l)Qc
o = xS5 

y*(0)Pf+ y*(l)Qc
x = x * . 

This implies that BVP (2,18), (2,19) is equivalent to the problem of determining 
y*: [0,1] -> R* and x* G JR*2 such that y* is a solution to 

(2.23) dy* = y* d [ - B ] - d[(y*(0) Pf + y*(l) Qc) K, + x*K2] on [0,1] 

and 

(2.24) y*(0)P + y*(l)Q = 0. 

In particular, if (y*, x*) is a solution to (2,23), (2,24) and x% e JR*0 and x* G Rmx 

are given by (2,22), then (y*, x*, x*, x*) is a solution to (2,18), (2,19). On the other 
hand, if (y*, xg, x*, x*) is a solution to (2,18), (2,19), then (y*, x*) solves (2,23), (2,24) 
and x£ G Rmo and x* G _R*t are given by (2,22). 
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2.14. Corollary. BVP (1,1), (2,17) has a solution if and only if 

Y*(t) f(t)dt = (y*(0)Pg + y*(l)Q 0 )r 0 + (y*(0)Pf + y*(l)Q1)r. + x*r2 

for any solution (y*, x*) of BVP (2,23), (2,24). 

Proof follows immediately from 2.3 and (2,22). 

Г 

2.15. Remark. It is easy to see that BVP (2,23), (2,24) also possesses exactly fc* 
= m — rank (SU) linearly independent solutions. 

2.16. Remark. The m2 x m2-matrix 

^K2(t)K*2(t)dt 

is regular. In fact, if there were d*T = 0 for some d* eR*2, then we should have 
also d*Td = 0, i.e. 

0 = [1h*(í)h(t)dř = t Í W ) ) 2 d ř ' 
Jo 1=i Jo 

where h*(t) = (ht(t)9 h2(t\ ..., hn(t)) = d* K2(t) is of bounded variation on [0,1]. 
This may happen if and only if h*(t) = d* K2(t) = 0 a.e. on [0,1]. Since by the 
assumption K2 is right-continuous on [0,1) and left-continuous at 1, we have even 
d* K2(t) = 0 on [0,1] and in virtue of the linear independence on [0,1] of the rows 
in K2(r), it is d* = 0. 

Let us put 

L2(t) = - K*(s) T1 ds on [0,1] . 

For K2(l) = 0 and L2(0) = 0, the integration-by-parts formula 1.4.33 yields 

(2,25) p P M ' ) ] M') = (£*2(t) **(t) dt) T > = TT-i = lm . 

This enables us to express also the parameter x* in (2,23), (2,24) in terms of y*. Let 
(y*, x*) verify (2,23) on [0,1], then by (2,25) 

*iY = £ d [y*W - J V ( - ) M?) ds - (y*(0) P{ + y*(l) Q\) K. (t)] L2(t) 

= fd[.**K2(t)]L2(r)--x*. 
Jo 
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The operator y e#V„-»#2y e_R*2 is linear and bounded. In fact, given yeBVn, 

M -* [var0 y* + ( sup |y*(r)|)] ( \)A(S)\ ds + (|PJ| + \Q\\) var£ K) ( sup |L2(f)|) 
te[0,l] \Jo / fe[0,l] 

1 + |.4(S)|d. + (|i*| + |Qe
1|)var1JK1 

SUP IMOI Il y* I L ' 
ls[0,l] 

The adjoint BVP (2,23), (2,24) to BVP (1,1), (2,17) may be thus written in the form 

dy* = y* d [ - B ] - d[(* lX) K, - (<f>2y) K2] on [0,1] , 

y*(0)P + y*(l)Q = 0, 

where <P;: BVn -> R* (j = l,2) are known linear bounded operators 
(4>iy-=y*(0)PJ +y*(l)Q t

1). 

3. Generalized Green's functions 

Let us continue the investigation of BVP (1,1), (1,3). In addition to 1.1 we assume 
throughout the paragraph that 1.10 holds (K is right-continuous on [0,1) and 
left-continuous at 1 and K(l) = 0). 

Let _Sf denote the linear bounded operator 

/ x T x'(t)-A(t)x(t) 1 , 

(cf. 1.6). It may be shown from 2.3 that its range R(&) is closed in Ln x JRW and 
consequently R(&) equipped with the norm of Ln x Rm becomes a Banach space. 
We shall show this fact directly, without making use of Theorem 2.3. The symbols 
U, y are again defined by (1,11) and (1,12). 

3.1. Theorem. The range R(&) of the operator (3,1) is closed in Ln x Rm. 

Proof. A couple f j e Ln x Rm belongs to R(&) if and only if (2,1) has a solutior; 

CGJR„, i.e. if and only if r — (Sy)feR(SU). R(SU) being finite dimensional, it is 
closed. Since 

W:(f)eL],xRm^r-(SV)feRm 

is a continuous operator, the set W_ ^(SU)) = R(^) of all ( ) e L\ x iRm such 

that W r J GJR( SU) is also closed. 
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The concept of the generalized inverse matrix introduced in the Section 1.2 and 
in particular theorems 1.2.6 and 1.2.7 enables us to give the necessary and sufficient 
condition for the existence of a solution to BVP (1,1), (1,3) in the following form. 

3.2. Theorem. BVP (1,1), (1,3) possesses a solution if and only if 

[lm-(SU)(SU)*][r-(SV)f] = 0, 

where (SU)* is the generalized inverse matrix to (SU). If this condition is satisfied, 
then any solution x of BVP (1,1), (1,3) is of the form 

(3,2) x(t) = X(t)[ln-(SU)*(SU)]d 

+ X(t) (SU)* [r - (SV) f] + (Vf) (t) on [0,1] , 

where de Rn may be arbitrary. 

Proof follows by 1.2.6 and 1.2.7 from the equivalence between BVP (1,1), (1,3) 

and the equation (2,1) ((SU) c = r - (SV) f). 

3.3. Remark. By 2.3 the homogeneous BVP (1,2), (1,4) has only the trivial solution 
if and only if rank (SU) = n. Consequently, BVP (1,1), (1,3) is uniquely solvable 

for any T ) e R(&) if and only if rank (SU) = n. 

On the other hand, BVP (1,1), (1,3) has a solution for any feLl
n and reRm if 

and only if (SU)c = q is solvable for any qeRm. ((2,1) has to be solvable for any 
reRm and f(t) = 0 on [0,1].) This holds if and only if (2,3) has only the trivial 
solution, i.e. if and only if rank (SU) = m. 

In particular, BVP (1,1), (1,3) has a unique solution for any feL\ and rejRm 

if and only if m = n and det (SU) 4= 0. 

3.4. Theorem. Let BVP (1,1), (1,3) have a solution. Then all its solutions are of the form 

(3.3) x(t) = x0(t) + H0(t) r + I G0(u s) f(s) ds on [0,1] , 
Jo 

where x0(t) = X(t) [I - (SU)* (SU)~\ d (deRn) is an arbitrary solution to the homo
geneous BVP (1,2), (1,4), 

(3.4) H0(t) = X(t)(SU)* for re [0,1], 

G0(t, s) = X(t) A(t, s) X *(s) - X(t) (SU)* F(s) far t, 5 e [0,1] , 

A(t, s) = 0 for t < s, A(t, s) = /„ fort>s 
and 

(3.5) F(S) = [ N X ( 1 ) + P d W T f l X ^ l x - ^ ) for se[0,l]. 
- Js J 
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Proof follows immediately from 3.2 and (2,5), (2,6). 

3.5. Remark. Let us notice that the representations (3,2) or (3,3) of the solutions 
to BVP (1,1), (1,3) are true even if the generalized inverse matrix (SU)* to (SU) 
is replaced by an arbitrary n x m-matrix B such that (SU) B(SU) = (SU) (see 1.2.11). 

3.6. Lemma. The n x m-matrix valued function H(t) = H0(t) and the n x n-matrix 
valued function G(f, s) = G0(t, s) defined by (3,4) possess the following properties 

(i) H(t) is absolutely continuous on [0, l ] , 
(ii) G(t,s) is measurable in (t,s) on [0,1] x [0,1], var0 G(.,s)< oo for a.e. 

se [0,1] and G(t, .) is for any te[0,1] measurable and essentially bounded 
on [0,1], 

(iii) y(s) = |G(0, s)\ + var0 G(.,s) is measurable and essentially bounded on [0,1], 
(iv) G(t, s) = Ga(t, s) - Gb(t, s) on [0,1] x [0,1], where for any s e [0,1] Ga(.,s) 

is absolutely continuous on [0,1] and Gb(.,s) is a simple jump function with 
the jump ln at t = s. 

Proof. The assertions (i) and (ii) are obvious. Furthermore, F is of bounded varia
tion on [0,1] and for any s e [0,1] 

y(s) < \X->(s)\ + |(SU)*| \F(s)\ + (var>X)(|X-*(s)| + |(SO)*| |F(s)|) 

< (1 + var0 X) sup flX"1^)! + |(SU)*| \F(s)\) = x < oo . 
se[0,l] 

The last assertion is proved by putting Ga(t, s) = G0(t, s) if t > s, Ga(t9 s) = G0(r, s) 
+ /„ if t < s and Gh(u s) = 0 if t > s, Gb(t, s) = /„ if t < s. 

3.7. Remark. Let us notice that actually we have proved that y(s) is bounded on [0,1] 
and hence also G0(t, s) is bounded on [0,1] x [0,1] (|G0(t, s)\ < y(s) < x < oo 
on [0,1] x [0,1]). Moreover, by (3,4) varJ G0(t, .) + var0 G0(., s) < oo for all 
t,se [0,1]. 

3.8. Lemma. Let H: [0, 1] -• L(Rm, Rn) and G: [0, 1] x [0, 1] -• L(Rn) fulfil 

(i)-(iii) from 3.6. Then for any couple ( J e Ln x Rm the n-vector valued function 

Г 1 

h(í) = H ( í ) r + G(ř,s)f(s)ds 
Jo 

is of bounded variation on [0,1] and the linear operator 

|6D„xR„->heBK, 

is bounded. 

, n m 
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Proof. Given feLl

m reRm and a subdivision {0 = t0 < tx < ... < tp = 1} of [0,1], 

E 
1=1 

I G{tj, s) f{s) ds - \lG{tj„., s) f(s) ds + f G(0, s) f(s) ds 
Jo Jo Uo 

Hence also 

and 

wiiere 

var^ 

o vZ|G(0^) - <-(-,-i.-)| + |G(0,s)|J|ř(s)| ds 

f ? ( - ) | f ( - ) | d s á ( s u p | y ( s ) | ) | | f l t l ^ x | | f l t l . 
Jo se[0,ll 

|1G(.,s)f(s)ds>)+ pG(0,s)f(s)ds 
o / Uo 

i - * 

-í 4||f L + И) = C 
вv Ll*R 

c = x + |H(0)| + | (ř)| dř < oo . 

3.9. Remark. Let the operator -SP® be defined by 

(3,6) <eą єЦ,xRm-*H0{t)r + G0(t,s)f(s)dsGAC„, 

where the matrix valued functions G0(t, s) and H0(t) are given by (3,4) (R(&e) <= v4C„ 
due to 3.4). According to (3,2) and (3,4) 

U(SUf (r - SVf) + Vf = U(SU)* r + Vf - U(SU)* (SV) f 

for any fel}n and reRm. Consequently 5£® is linear and bounded (cf. also 3.6 
and 3.8). Moreover, for any fel}n and reRm such that BVP (1,1), (1,3) has a solution 

' J and hence <£<£®<ex = S£x for any xeAC„ 

i.e. Sese®$e = <£ (<e® is a generalized inverse operator to <SP). 

((JW.SP)) &<£®(f
r 

In particular, if m = n and rank (SU) = n, then by 3.3 -SP® becomes a bounded 
inverse operator to <£P. In this case the functions G0(t, s), H0(t) are called the Green 
couple of BVP (1,1), (1,3) (or (1,2), (1,4)), while the function G0(t, s) is the Green 
function of BVP (1,1), (1,3). 

3.10. Definition. A couple G(t, 8), H(t) of matrix valued functions fulfilling (i)-(iii) 
of 3.6 is called the generalized Green couple if for all feL\, reRm such that BVP 
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(1,1), (1,3) has a solution, the function 

x(t) = H(t)r + 

is also a Solution to BVP (1,1), (1,3). 

G(í, s) f (s) ds 

3.11. Remark. By 3.4 and 3.6 the couple G0(t, s), H0(t) given by (3,4) is a generalized 
Green couple of BVP (1,1), (1,3). 

3.12. Theorem. A linear bounded operator &+: R(&) - ACn fulfils Se<e+Se = Se 
if and only if there exists a generalized Green couple G(t, s), H(t) such that Sf+ is 
given by 

(3.7) &+: (f J e R(Se) -» H(t) r + J G(t, 5) f(s) ds e ACn. 

Proof. Let Sf£e+Se = <£ and let £e® be given by (3,6). According to 3.9 

<e(<e+ - <e®)y J = 0, i.e. (£e+ - &®)(f)eN(£>) for each feLn and reRm . 

In particular, £e+ = ^ e on R(Se) if N(^) = {0}. If fc = dim JV(JSf) = n - rank (SU) 
> 0, let X0(t) be defined as in the proof of 2.7. Then rank (X0(t)) = k on [0,1] 

(cf. 2.8) and given ( ) e K(-Sf), there exists d e Rk such that 

(3.8) (<e+ - se®) ( f ) (t) = X0(t) d on [0,1] . 

By 1.2.6,1.2.7 and 1.2.15 this is possible if and only if 

dSXS(t)(*+-&*)(£)(t) on [0,1]. 

By the definition X0(t) = X(t) C0 on [0,1], where C0 6 L(/?t, Rn) has a full rank 
(rank(C0) = fc). According to 2.16 X$(t) = C$ X_1(t). It follows immediately that 
the mapping / A ,.s 

*: {^r)eR(<t>)^d = X*(t)(<?+ -£e»)\{r)(t)eRk 

is a linear bounded vector valued functional on R(Se). Let *P be its arbitrary ex
tension on the whole space Ll

n x JRW. (V is defined and bounded on L\ x Rw and 
!P = $ on R(&)) Then there exist a function 0X. [0,1] -> L(Rn,Rk) essentially 
bounded and measurable on [0,1] and 02 e L(Rm9 Rk) such that 

^Г 
0.(s) f(s) ds + 02r for all ('] eLl„x Rm. 
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Together with (3,6) and (3,8) this yields (3,7), where 

(3,9) G(t, s) = G0(t, s) + X0(f) O^s) for all t e [0,1] and a.e. s e [0,1] , 

H(t) = Ho(t) + Xo(t)02 on [0,1] 

obviously fulfil the conditions (i) —(iii) of 3.6. 
The proof will be completed by taking into account the obvious fact that if 

G(t, s), H(t) is a generalized Green couple, then the operator (3,7) fulfils S£S£+S£ = S£. 

3.13. Proposition. A couple (z*, A*) e L„°° x R* fulfils 

(3,10) z*(t) f(t) dt = k*r for all ( \<=R(g>) 

if and only if there exists y*: [0,1] -*• R* such that y*(t) = z*(t) a.e. on [0,1] and 
(y*, k*) is a solution ofBVP (2,7), (2,8). 

Proof. Let z* e I " and k*eR*. Then by the Green formula (2,15), (3,10) holds 
if and only if for any x e ACn 

(3,11) J z*(t) + z*(s) A(s) ds + X*(K(t) - N) x'(t) dt 

+ z*(s) A(s) ds - X*(M + N - K(0)) x(0) = 0. 

In particular, if x(t) = x(0) on [0,1], (3,11) means that 

I *(s)A(s)ds - X*(M + N- K(0)) c = 0 

for each c e Rn, i.e. 

(3.12) z*(s) A(s) ds = k*(M + N- K(0)). 

Consequently (3,11) holds for each x e ACn if and only if 

z*(t) + z*(s)A(s)ds + k*(K(t) - N) v(t)dt = 0 for any veL„ 

or z*(t) = u*(t) a.e. on [0,1], where 

(3.13) u*(t) = - I z*(s) A(s) ds - k*(K(t) - N) on [0,1] . 

Let us put y*(t) = u*(t) on (0,1), y*(0) = u*(0+) and y*(l) = u*(l-) . Then owing 
to (3,13) and (3,12) 

y*(l) = k*N and y*(0) = -k*M 
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and (z*, X*) fulfils (3,10) if and only if z*(f) = y*(r) a.e. on [0,1]. The proof will be 
completed by taking into account that 

f> y*(s)A(s)ds = 
Jt 

and hence 

z*(s) A(s) ds for any t є [0,1] 

y*(í) = y*(l) + y*(s) Ąs) ds + X* Щ on [0,1] . 

The latter implication follows from 2.3. 

The set of all generalized Green couples is characterized in the following theorem. 
If k = n — rank (SU) > 0, then C 0 is an arbitrary n x /c-matrix whose columns 

form a basis in the space of all solutions to (SU) c — 0 and X0(t) = X(t) C0 on [0,1]. 
If k* = m — rank (SU) > 0, then A0 is an arbitrary k* x n-matrix whose rows 

form a basis in the space of all solutions to X*(SU) = 0 and Y0(t) = A0 F(t) on 
[0,1], where F(t) is given by (3,5). 

3.14. Theorem. A couple G: [0,1] x [0,1] -+ L(Rn), H: [0,1] -> L(Rm,Rn) is a 
generalized Green couple to BVP (1,1), (1,3) if and only if there exist a function 
01: [0,1] -• L(Rn, Rk) essentially bounded and measurable on [0,1], a function 
I: [0,1] -• L(Rk*,Rn) of bounded variation on [0,1] and 02eL(Rm,Rk) such that 

(3,14) G(t, s) = G0(t, s) + X0(t) 0,(s) + I(t) Y0(s) 

for all t e [0,1] and a.e. s e [0,1] , 

H(t) = H0(t) + X0(t) 02 - I(t) A0 on [0,1] , 

where G0(t,s) and H0(t) are given by (3,4), the terms X0(t) &i(s) and Xo(t)02 

vanish if k = 0 and the terms I(t) Y0(s) and I(t) A0 vanish if k* = 0. 

Proof. Let us assume that k > 0 and k* > 0. 
(a) Let G(t,s), H(t) be a generalized Green couple of BVP (1,1), (1,3). Then by 

3.12 and its proof there exist 0X: [0,1] -> L(Rn, Rk) essentially bounded on [0,1] 

and 02 e L(Rm, Rk) such that for all ( ) e R(£?) 

H(t)r+ G(t,s)f(s)ds 

= [H0(t) + X0(t) 02] r + J [G0(t, s) + X0(t) 0x(s)] f(s) ds on [0,1] . 

By 3.13 and 2.8 this holds if and only if there exists I: [0,1] -> L(Rk*,Rn) such 
that (3,14) holds. According to 2.8 and 1.2.15 [Y0(s),A0] [Y0(s),A0]* = /k* for 
any S E [ 0 , 1]. The functions P(t,s) = G(t,s) - G0(t,s) - Xo(t)0l(s) and Q(t) 
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= -H(t) -F H0(t) + X0(t) 02 as functions of t for a.e. se [0,1] are of bounded 
variation on [0,1]. Therefore the function I(t) = [P(t,s), Q(s)] [Y0(s),A0~\* for 
all re [0,1] and a.e. se [0,1] (cf. 1.2.6 and 1.2.7) has also a bounded variation 
on [0,1]. 

(b) Let 0 ! . [0, l]-+L(R„,Rk) be essentially bounded on [0,1], 02eL(Rm,Rk) 
and let I: [0,1] -> L(Kk*, R„) be of bounded variation on [0,1]. Then the functions 
G(t,s), H(t) given by (3,14) are sure to fulfil (i) —(iii) from 3.6 and since by 2.3 

Y0(t) f(t) dt = A0r for all (f J e R(&), 

it is easy to verify that G(t, s), H(t) is a generalized Green couple. 
The modification of the proof if k = 0 and/or k* = 0 is obvious. 

3.15. Theorem. Let G0(t, s) and H0(t) be given by (3,4). Then G(t,s) = G0(t,s) and 
H(t) = H0(t) fulfil for any se(0, l) the relations 

*t 

(3.15) G ( t , s ) - G ( 0 , s ) - A(T)G(T,s)dT = z.(f,s) for all re [0,1], 
Jo 

(3.16) M G(0, s) + N G(l, s) + |'d[K(T)] G(T, s) = [/ - (SU) (SU)*] F(s) 

and 

(3.17) H(t) - H(0) - J A(T) H(T) dT = 0 on [0,1] , 

(3,18) УИH(0) + NH(1) + d[K(т)]H(т) = (SU)(SU)*. 

Proof follows easily by inserting (3,4) into (3,15)-(3,18) and making use of (1,6) 
and 

J'd[K(T)] X(T) A(T, S) X~ \s) = [ ' d ^ t ) ] X(T) X- J(s) + A+K(s) 

(cf. also III.2.13). 

3.16. Remark. Let us notice that F(l) = F( l- ) = N and by (1,7) and the Dirichlet 
formula 1.4.32 

(3,19) F(a) A(a) dcт = ł=(s) - Ғ(l) + K(s) on [0,1] . 
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3.17. Theorem. The functions G(f, s) = G0(t, s), H(t) = H0(t) given by (3,4) fulfil 
for any te(0,1) the relations 

(3,20) G( í , s ) -G ( í , l ) G(t, a) A(a) da - H(t) K(s) = A(t, s) 

for any s e [0,1] , 

(3,21) G(t,0) - H(t)M = X(t)[I - (SU)* (SU)] , G(t, 1) + H(t)N = 0. 

Proof. Given re(0,1) and se[0,1] , 

G0(t ,s)= - H 0 ( l ) N X ( l ) X - ' ( S ) 

- H0(t) £d[K(T)] X(T) X- l(s) - j \ [ - l ( < . *)] X W * Ms) • 

Our assertion follows readily taking into account the variation-of-constants formula 
for the initial value problem dy* = — y* d[B] — dh*, y*(l) = y* (cf. also the proof 
of 2.3). 

On the other hand, we have 

3.18. Theorem. Let G: [0,1] x [0,1] -• L(R„) and H: [0,1] -> L(Rm,R„) fulfil for 
any se(0, 1) the relations (3,15)-(3,18) and let y(s) = |G(0,s)| + var0 G(.,s) < y0 

< oo on [0,1], G being measurable [0,1] x [0,1]. Then G(t, s), H(t) is a generalized 
Green couple for BVP (1,1), (1,3). 

Proof. Let I ' \eR(£e) and 

x(t) = H(t) r + G(t, s) f(s) ds on [0,1] . 

£ ( j j A W <=(*> s) f(s)| ds) dT < £|A(T)I (j/o|f(s)l ds) dT 

<(\ |A(T)|dTjy0|jf||L,< oo, 

the Tonelli-Hobson theorem 1.4.36 yields 

['A(T) ( T G(T, S) f(s) ds) dT = Y |'A(T) G(T, S) dTj f (s) d s 

for any re [0,1]. Consequently in virtue of (3,15) and (3,17) 

J(r ,s) f (s)ds^ f( t )dT. 
o Jo 

<(t) - x(0) A(т) x(т) dт = 
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Finally, taking into account that ( )GR(^) if and only if (cf. 3.1) 

[I-(SIІ)(SÜ)*] Ғ(s)f(s)ds = 0 

and applying 1.4.38 it is not difficult to check that x(t) verifies also the side condition 
(1,3). 

3.19. Remark. By the variation-of-constants formula III.2.13 for generalized dif
ferential equations G: [0,1] x [0,1] -> L(Rn) fulfils (3,15) and (3,16) for all se(0,1) 
if and only if there exists C: [0,1] -» L(Rn) such that 

G(t,s) = X(t)A(t,s)X~1(s) +X(t)C(s) for all t e [ 0 , l ] and se(0,1) 

a n d (SU) C(s) = -(SU) (SU)* F(s) on (0,1). 

Hence according to 1.2.6 G(t, s) fulfils (3,15) and (3,16) if and only if 

(3.22) G(t, s) = G0(t, s) + X0(f) D(s), 

where X0(t) has the same meaning as in 3.14 and vanishes if k = n — rank (SU) = 0 
and D(s) is an arbitrary k x n-matrix valued function defined on (0,1). 

Analogously H: [0,1] -> L(Rm,Rn) fulfils (3,17), (3,18) if and only if 

(3.23) H(t) = H0(t) + X0(t) r on [0,1], 

where T e L(Rm, Rk) may be arbitrary. 
Since rank (X0(t)) = k on [0,1] (cf. 2.8), we have by 1.2.6. 

(3.24) D(s)^XS(t)(G(t,s)-G0(t,s)) for all se(0,l) and re [0,1], 

r = X$(t) (H(t) - H0(t)) for all t e [ 0 , l ] . 

Now, let G(t, s), H(t) satisfy also (3,20), (3,21) for any t e (0,1). Then var1 G(t, .) < oo 
for any t e [0,1]. Moreover, by (3,23) and (3,24) 

(3.25) D(0+) = X*(t) (G(t,0+) - Go(t,0+)) = X*(t) (H(t) - H0(t))M = TM » 

and 

(3.26) D ( l - ) = - v N . 

Putting D(0) = D(0+), D(l) = D( l - ) , D will be of bounded variation on [0,1]. 
By (3,20) 

D(s) - D(l) - D(T) A(T) dT - rK(s) = 0 on [0,1] . 

This together with (3,25), (3,26) may hold if and only if there is WeL(Rk„ Rk) such 
that D(s) = WY0(s) on [0,1] and T = WA0 (cf. 2.8). To summarize: 

G: [0,1] x [0,1] ^ L(Rn) and H: [0,1] ^ L(Rm, Rn) 
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satisfy (3,15) —(3,18) for any se(0,1) and (3,20), (3,21) for any re(0,1) if and only if 

G(r, s) = G0(r, s) + X0(r) WY0(s) on [0,1] x [0,1] , 

H(r) = H0(r) - X0(r) WA0 on [0,1] , 

where W e L(Rk*, Rk) may be arbitrary. 

3.20. Remark. By the definition (3,4) of G0(r,s) and H0(r) and 3.17 

(3.27) G0(t, 0 + ) - H o ( r ) M = X(r)[/-(SU)*(SU)] if r > 0 , 

Go(0,0+) - H0(0)M = -(SU)* (SU), 

G0(t, l-) + H0(t)N =0 if t < 1, 

G 0 ( l , l - ) + H 0 (l)N = / . 

In particular, for any geBV„ right-continuous on [0,1) and left-continuous at 1 

(3.28) I"' d[g*(T)] (GO(T,0 + ) - H0(T)M) = fd[g*(T)] X(T) [/ - (SU)* (SU)] 
Jo Jo 

and 
(3.29) j o d[g*(r)] (G 0(T, 1 - ) + H 0 (T) N)=0 

We shall conclude this section by proving that the couple G0(t, 5), H0(t) has 
also the meaning of a generalized Green couple for the adjoint nonhomogeneous 
BVP (2,11), (2,12). 

3.21. Theorem. Let geBVn be right-continuous on [0,1) and left-continuous at 1 
and let p,qe Rn. Then, if BVP (2,11), (2,12) has a solution, the couple (y*, X*) given by 

(3.30) y*(s) = q* G0(l, s) - p* Go(0, s) - [^[g*^)] G 0(T, S) on (0,1), 

y*(0) = y*(0+), y*(l) = y * ( l - ) , 

A* = - q * H o ( l ) + p*Ho(0) + 

is also its Solution. 

d[**м]ад 

Proof, (a) By (3,4) G0(l,s) = X(l)(X_1(s) - (SU)* F(s)) on [0,1] and owing to 
(1,7) and (3,19) pi 

G0(\,a)A(a)da 

= X(\)X-\s) - X(1)(SU)* F(s) - I + X(1)(SU)* F(l) - X(1)(SU)* K(s) 

or 

(3,31) G0(l, s) = G0(l, 1) + ľ G 0 ( l , a) A(a) àa + H0(l) K(s) on [0,1] . 
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Let us notice that G0(l, 1- ) = G0(l, 1) = I - X(1)(SU)+ F(l) and G0(1,0+) 
= Go(l,0) = X(l)-X(l)(SU)*F(0), F(1) = N, F(0) = (SU) - M. Furthermore, 

Go(0,0) = / - (SU)* F(0) = / - (SU)* (SU) + (SU)* M, 

Go(0,s)=-(SU)*F(s) 

if s > 0. In particular, Go(0,1-) = Go(0,1) = -(SU)* F(l) = -(SU)* N. Hence, 
making use of (3,19) 

(3,32) J G O ( 0 , a) A(a) da = Go(0, s) - G0(0,1) - H0(0) K(s) on [0,1] . 

Now, if y*: [0,1] -+ R* and k*<=R% are given by (3,30), then by (3,15), (3,20), 
(3,31), (3,32) and 1.4.32 

y*(s) - y*(l) - y*(a) A(a)da + k* K(s) 

= - £d[g*(T)] (G0(T, S) - G0(T, 1) - £ G 0 ( T , a) A(a) da - H0(x) K(s)^j 

= «*(s)-f*(l) on [0,1]. 

(Here we have also made use of the assumption g*(l—) = g*(l), g*(0 + ) = g*(0) 
and of the fact that G0(0, s+) = Go(0, s) if s > 0 and G0(l, s - ) = G0(l, s) if s < 1.) 

(b) By (3,21), (3,27) and (3,29) 

y*(l) - k*N = q*[G0(l, 1 - ) + H0(l) N] - f>*[Go(0,1 - ) + Ho(0) N] 

- £ d [ f *(T)1 (Go(T' - - ) + HO(T) N) = q*. 

(c) Finally, by (3,21), (3,27) and (3,28) 

y*(0) + k*M = q*[Go(l,0+) - H0(1)M] - />*[G0(0,0+) - Ho(0)M] 

1d[g*(z)-](Go(x,0+)-Ho(r)M) 

P* + 

-Г 
Jo 

q* X(l) - „* - £d[g*(т)] X(т)J [/ - (SO)* (SU)] . Since x0(t) = X(t)[l - (SU)* (SU)] is a solution to the homogeneous BVP (1,2), 
(1,4), the last expression reduces to p* (cf. 2.5). 

Notes 
Canonical form of Stieltjes integral conditions (IV.3.15) is due to Zimmerberg [2]. Section IV.2 is 

based on Vejvoda, Tvrdy [1] and Tvrdy, Vejvoda [1]. In IV.2.16 the idea of Pagni [1] is utilized. For 
writing IV.3, the paper Brown [1] was stimulating. 
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Bryan [1], Cole [2], Halanay, Moro [ l ] , Krall [ l ] - [ 4 ] and Tucker [ l ] are related references to IV.2, 
while Reid [2], [3], Chitwood [1], z^ubov [1], [2] and Bradley [ l] concern IV.3. For a historical survey 
of the subject and a more complete bibliography the reader is referred e.g. to Whyburn [2], Conti [2], 
Reid [ l ] and Krall [9]. More detail concerning some special questions (as e.g. two-point problems, 
second order and n-th order equations, selfadjointness, expansion theorems) as well as examples may be 
found in the monographs Coddington, Levinson [1], Reid [1], Najmark [ l] and Cole [1]. 

The interface problems were treated in Conti [3], Krall [2], [3], ParhimoviC [3], Stallard [1] and 
Zettl [1]. Boundary problems in the Lp-setting were dealt with in Krall [1] —[8], Brown [ l] , [3], Brown, 
Krall [1], [3]. Expansion theorems for problems with a multipoint or Stieltjes integral side conditions 
are to be found in Krall [5], Brown, Green, Krall [ l ] and Coddington, Dijksma [1]. For applications 
to controllability, minimization problems and splines see Brown [2], Brown, Krall [2], Halanay [1] 
and Marchio [ l ] . 
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