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SUMMARY OF RESULTS AND

BIBLIOGRAPHICAL AND HISTORICAL COMMENTS

Since the turn of the century, . . .

mathematics is more like the Nile Delta,

its waters fanning out in all directions.∗

Aleksandrov’s course on point sets and real functions has several remarkable
features which we want to mention at the beginning. The course

– reflects the state-of-the-art in important parts of these fields of mathe-
matics in 1928

– is very modern in the sense that practically all results presented were
less than thirty years old, the majority were less than ten years old,
and some were not yet published

– centers around several excellent results established by P. S. Ale-
ksandrov himself as well as by his collaborators and colleagues such
as P. S. Urysohn and M. Ya. Suslin; in particular, we have in mind
the proof of the Continuum Hypothesis for Borel sets, the A-operation,
properties of analytic sets, topologically complete spaces and the role
of zero-dimensional spaces

– includes principal results and concepts that have become standard facts
presented today in basic university courses for mathematicians

– has a strong topological flavor even though it provides results in the
context of the real line, Euclidean spaces, and metric spaces, and the
notion of a topological space is not even mentioned; this reflects the fact
that Aleksandrov was one of the leading architects in the construction
of topology as a mathematical subject

– uses mathematical language which is fully set-theoretical and a style of
exposition of results and their proofs that is similar to the contemporary
way of presenting mathematics; perhaps the main difference is that
the use of transfinite numbers and transfinite induction is much more
frequent in comparison with the present state and the same applies to
the use of continued fractions

– shows only a few differences in notation from today: x ⊂ A, A + B,
AB, A − B, ΣAn, ΠAn were later replaced by x ∈ A, A ∪ B, A ∩ B,
A \B, ⋃An,

⋂
An, respectively, the empty set is, unlike our ∅, written

∗ H. Weyl: A half-century of mathematics, Amer. Math. Monthly 58 (1951), 523–553;
p. 523.
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as 0, limn=∞ unlike our limn→∞; also the distinction between f (=
a function) and f(x) (= the value of f at the point x) is not usually
respected.

In summary, the course was delivered by a distinguished expert whose impact
on contemporary mathematics is felt till today.

The aim of this chapter is to give an overview of the notions and results
presented in the course. We give the definitions, theorems as well as remarks,
and at several places add comments on the methods of proof. We tried to trace
the origin of the results in order to place the material in historical context.
Several quotations and bibliographical comments should illustrate the fact that
the first quarter of the 20th century was a fascinating period for the development
of descriptive set theory, real analysis and point-set topology.

⋆ ⋆ ⋆ ⋆ ⋆

1. Point sets∗∗

1.1 Metric space (pp. 51–52)

1.2 Zero-dimensional space (pp. 53–59)

1.3 Classes of sets (pp. 59–62)

1.4 Extension properties and absolute Gδ-sets (pp. 62–69)

2. Baire functions and Borel sets (pp. 70–78)

3. Analytic sets (pp. 78–90)

⋆ ⋆ ⋆ ⋆ ⋆

∗∗ The numbering as well as pagination refer to the text of the course (pp. 51–90).
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1. Point sets

1.1Metric spaces1 are defined in the usual way. Two definitions of a comple-
te metric space2 are given:

(i) the usual definition using Cauchy sequences (Fundamentalfolgen),

(ii) an alternative definition: a metric space R is said to be complete, if it is
impossible to add a point ξ to R and introduce a new metric on R∪{ξ}
that coincides with the old metric on R and for which ξ is not isolated.

It is proved that both definitions are equivalent. Using the notion of
equivalent Cauchy sequences (konfinale Fundamentalfolgen), it is proved that
an arbitrary metric space R admits a completion,3 that is, there exists
a complete space R′ such that R is a dense subspace of R′. Uniqueness is
only mentioned (Volständige Hülle – Hausdorff 4).

It is remarked that a metric space can be equipped with different metrics
such that the corresponding classes of convergent sequences coincide, that is,
topological properties are preserved (Raum eine “erlaubte Abänderung der
Metrik erleidet”).∗∗∗ However, such a change of metric need not preserve
completeness.5 Ametric space (R, ρ) is topologically complete, if a topologically
equivalent metric ρ′ on R can be introduced in such a way that (R, ρ′) is
complete. Example: the interval (0, 1) equipped with usual metric is not
complete, but it is homeomorphic to the complete space (−∞,∞).
The following statement is mentioned without proof (the names of Tychonov

and Niemycki are mentioned6): For a metric space R, the following conditions
are equivalent:

(i) R is complete with respect to any topologically equivalent metric;

1 The notion of a metric space appears in [Fr 1906] where the axioms of a metric (écart)
are introduced. In [H 1914], Hausdorff replaced the Fréchet terminology une class (E), later
une class (D) (distance), by the term metric space; see [H 1914], p. 211.

2 The idea of completeness and of completion goes back to the so-called Bolzano-Cauchy
convergence condition and to constructions of real numbers by means of equivalent Cauchy
sequences of rational numbers; see [Me 1869], [Me 1872], [D 1978], pp. 81–83, [Kl 1972],
pp. 982–987, 990–992, [St 2008], Chapter 16. M. Fréchet speaks of metric spaces which
admet une généralisation du théorème de Cauchy, see [Fr 1906], p. 23. The term complete
(vollständig) appears in [H 1914], p. 315. For more information on the development of the
notion of completeness, see [D 1984].

3 The result that every metric space admits a completion (Vervollständigung), that is,
every metric space can be imbedded into a complete metric space as a dense subspace, is
presented in [H 1914], pp. 315–316.
4 In [H 1927], p. 107, it is shown that a completion is uniquely determined up to a metric

isomorphism.
∗∗∗ We use the terminology: topologically equivalent metrics.
5 For a discussion on completeness we refer to H. Herrlich, M. Hušek, G. Preuß:

Vervollständigung und totale Beschränktheit, [H 2002], pp. 767–772.
6 See [NT 1928]; also [H 1930] and a commentary on this paper by H. Herrlich, M. Hušek,

G. Preuß in [H 2008], pp. 466–467.
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(ii) R is compact, that is, every sequence of points in R possesses an
accumulation point.

1.2 Zero-dimensional space7

A metric space M is said to be zero-dimensional, if, for every ε > 0, there
exist sets M1,M2, . . . with union M such that

(a) D(Mk) < ε (here D(A) denotes the diameter of A),

(b) each Mk is relatively open in M ,

(c) Mi ∩Mj = ∅ whenever i �= j.8

A neighborhood of a point p ∈ M (with respect to M) is an open set in M
containing the point p.

It is noted that the sets Mk from the above definition are closed in M and
that a subset of a zero-dimensional set is obviously zero-dimensional.

A local base (Umgebungsbasis) in a space M is a system of open sets in M
such that, for every p ∈ M and every ε > 0, there exists a set A in the system
with D(A) < ε and p ∈ A.

The following theorem is proved: In every zero-dimensional set, there exists
at most countable local base U1, U2, . . . with the following properties:

(a) For i �= j, Ui ⊂ Uj or Ui ⊃ Uj or Ui ∩ Uj = ∅,

7 The exposition follows closely [AU 1928]. The text from a footnote on p. 89:

Die Resultate der vorliegenden Arbeit stammen im wesentlichen vom Frühjahr 1924. Der
vorliegende Text ist aber erst im April 1926 vom Unterzeichneten entgültig redigiert worden.
Paul Alexandroff.

The following interesting remark from [Pu 1998] is quoted in Komentar zu [H 1937] by
H. Herrlich, M. Hušek, G. Preuß; see [H 2008], p. 550:

P. Alexandroff and P. Urysohn [AU 1928] used continued fractions in 1928 to charac-
terize the irrational numbers as a topologically complete, separable, 0-dimensional, metric
space that contains no nonempty compact open set. In 1937 this result was rediscovered by
Hausdorff [H 1937] using Baire’s result of the homeomorphism between the irrationals and
NN (which Hausdorff referred to as “der Bairesche Nullraum”). It is interesting to note that
it was not unusual for Alexandroff and Hausdorff to independently prove the same result.
For example they both verified the truth of the Continuum Hypothesis for the class of Borel
sets on the real line ([A 1916] and [H 1916]), and they both proved that every non empty
compact metrizable space is the continuous image of the Cantor set ([A 1926] and Theo-
rem V in section 35, p. 197 in [H 1927] as well as the announcement in [A 1925]).

For further comments on zero-dimensional spaces we refer to Komentar zu [H 1937] quoted
above as well as to [Ku 1933], §20, §21.
The importance of the Baire space N := NN is illustrated by the following Aleksandrov-

Urysohn’s theorem (see [Ke 1995], p. 37): The Baire space N is the unigue, up to
homeomorphism, nonempty Polish zero-dimensional space for which all compact sets have
empty interior. (Recall that a separable completely metrisable space is called Polish.)

8 See [AU 1928], p. 90.
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(b) every increasing sequence

Ui1 ⊂ Ui2 ⊂ . . .

reduces to a finite sequence.9

Further, the following assertions are proved:

(a) The set of irrational numbers is zero-dimensional and topologically
complete.

(b) Every zero-dimensional space is homeomorphic to a subset of the
irrational numbers.10

(c) A zero-dimensional space M is not compact if and only if there is
a partition of M into infinitely many nonempty disjoint open subsets.11

(d) A subset of irrational numbers is compact if and only if it is bounded,
closed, and nowhere dense.

To prove (a), a metric ρ on the set of irrational numbers is introduced as
follows. Irrational numbers are written as continued fractions. If

ξ := m1 +
1 |
|m2
+
1 |
|m3
+ . . . , η := n1 +

1 |
|n2
+
1 |
|n3
+ . . . ,

then ρ(ξ, ξ) := 0 and, for ξ �= η, ρ(ξ, η) := 1
2k , where k is the smallest index i

with mi �= ni.

The following notions are introduced: A space M is said to be locally
compact at a point (kompakt in einem Punkte),12 if there exists a neighborhood
of this point having a compact closure. A space M is called locally compact
(in kleinem kompakt), if it is locally compact at every point.

A characterization of locally compact sets of irrational numbers is proved:
A locally compact subset of irrational numbers is a difference of two nowhere
dense closed subsets of the real line.

In view of the fact that local compactness is invariant with respect to
homeomorphisms, the following statement holds: Every zero-dimensional lo-
cally compact space is homeomorphic to a nowhere dense closed set of irrational
numbers.

The next result proved reads as follows: Every complete homogeneous zero-
dimensional space which is not locally compact is homeomorphic with the set

9 See [AU 1928], Satz I, p. 90.
10 See [A 1928], Satz II, p. 36. The fact that the Baire space is homeomorphic to the

space of irrational numbers was proved in [Ba 1909], p. 103.
11 See [AU 1928], Satz II, p. 92.
12 See [A 1924a], p. 294.
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of irrational numbers.13 Here a space is called homogeneous, if, for every pair
of points, there are homeomorphic neighborhoods.

1.3 Classes of sets

Firstly, the notion of relatively open sets and relatively closed sets is recalled.
It is also mentioned that, for a continuous function f , the set {a ≤ f ≤ b} is
closed and the set {a < f < b} is open.
Given a system of sets M, the systems Mσ and Mδ are defined in a usual

way:14 M ∈ Mσ, if there are M1,M2, . . . from M such that M =
⋃∞

n=1Mn;
M ∈ Mδ, if there are M1,M2, . . . from M such that M =

⋂∞
n=1Mn.

Starting with F (= the system of closed sets) and G (= the system of open
sets), one defines, declaring F and G as 0-th clases, two classifications:

F, Fσ, Fσδ, Fσδσ, Fσδσδ, . . . ,

G, Gδ, Gδσ, Gδσδ, Gδσδσ, . . . ;
this procedure is extended to the transfinite: given an infinite countable ordinal
(eine Zahl 2. Zahlenklasse) α of the form α = β+n (where β is a limit ordinal
and n is finite), α is called even or odd, if n is even or odd, respectively. For
α even (resp. odd), Fα stands for the class of sets obtained by countable
intersection (resp. union) from sets of classes Fβ with β < α. Similarly for
Gα with intersection and union interchanged. It is proved that Fα ⊂ Gα+1,
Gα ⊂ Fα+1 and that every closed set is a Gδ-set (that is, it belongs to Gδ) and
every open set is an Fσ-set (that is, belongs to Fσ).15

It is emphasized that a particularly important role is played by Fσ-sets and
Gδ-sets. As a first illustration it is shown that, for an arbitrary function, the
set of all continuity points is a Gδ-set.16 The significance of Fσ-sets and
Gδ-sets in measure theory is explained (every measurable set can be squeezed
between anFσ-set and a Gδ-set of the same measure). It is noted that this lies
behind continuity properties of measurable functions.17

1.4 Extension properties and absolute Gδ sets

The following results are proved: If f is continuous on a setM in a Euclidean
space, then f can be continuously extended to a Gδ-set containing M . If,
moreover, f is a homeomorphism, then f can be extended to a homeo-
morphism between two Gδ-sets containing the domain of f and the range of
f, respectively.18

13 See [AU 1928], Satz IV, p. 95.
14 See [H 1914], p. 304.
15 See [H 1914], p. 306. The notation G, F , Gδ , Fσ was introduced by Hausdorff and

recalls the terms Gebiet (an open set) and fermé (closed). The indices δ and σ are used on
p. 23 and recall Durchschnitt (an intersection) and Summe (union), respectively.
16 The result on continuity points goes back to W. H. Young [Y 1903b]; see [H 1927],

p. 251.
17 This refers to [Le 1902] and to Luzin’s theorem; cf. [Le 1903] and [Lu 1912]. Interesting

comments and further references are given on pp. 426–427 in [Bg 2007a].
18 This result was proved by M. Lavrentieff in [La 1924]; see also [H 1927], p. 216.
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Then the following question is advanced: Why are Gδ-sets so important?
The genuine reason lies in the following result (A) by Aleksandrov: Gδ-sets
are nothing else than topologically complete spaces.19

One can ask: Which topological properties may be used for a characteriza-
tion of the topological completeness?20

A base of a metric space is a system of open sets such that all open sets can
be expressed as a union of sets from the system. A base is said to be complete if,
for every decreasing sequence of sets of the base, there exists a point belonging
to the closure of each set in the sequence.

As an example, a complete base for the space of irrational numbers is
constructed (using a continued fractions expansion).

It is mentioned that a space is topologically complete if and only if every
base contains a complete base,21 which occurs exactly for Gδ-sets. However,
the proof of the statement (A) is proved directly without recourse to properties
of a base.22

Theorem. Let M be a subset of metric space R. Suppose that M can be
endowed by a complete topologically equivalent metric. Then M is a Gδ-set
in R.23

The converse, namely that aGδ-set can be transformed into a complete space
by means of a topologically equivalent metric, is obviously false. In fact, every
metric space is a Gδ-set in itself, but it need not be topologically complete.

19 Let us quote from p. 448 in Commentary on [H 1924] by H. Herrlich, M. Hušek,
G. Preuß; see [H 2008]: Topologists realized the importance of competely metrizable spaces
(mainly around 1920) and tried to find purely topological characterizations (first in realm
of metrizable spaces). In [Fr 1921], M. Fréchet asked whether there exists a metric space
not admitting a complete topologically equivalent metric. He did not realize that the answer
follows from his own result published in [Fr 1910], p. 8, namely that each non-empty complete
dense-in-itself metric space must be uncountable, so that the metric space of rational
numbers does not admit a complete metric. In fact, for rational numbers an even older
result from [YY 1906] could be used.
20 A topological description of complete spaces is given in [A 1924b]. See also [W 1930].
21 The paper [A 1924b] is considered as the beginning of the study of completeness in

topological context. Aleksandrov’s proof of the characterization of complete metrizability
in terms of a complete base uses separability. This assumption was removed by Hausdorff
(1926, unpublished) and by Vedenissov [W 1930]; see Commentary on [H 1924] by H. Herrlich,
M. Hušek, G. Preuß in [H 2008], p. 450. Why Hausdorff has never published his result is
explained there (a quotation from a letter by Hausdorff to Aleksandrov and Urysohn).
22 To prove the completeness, Aleksandrov indicates in [A 1924b] a construction of

a complete base which makes it possible to find a complete metric. To that end, his argument
includes the following important result: Every open cover of a separable metric space admits
an open refinement that is locally finite. In other words, Aleksandrov showed, in modern
terminology, paracompactness of separable metric spaces. This result was rediscovered by
J. Dieudonné in 1944 and A. H. Stone removed the hypothesis of separability in 1948. It
seems that Aleksandrov never published a detailed proof developing the idea from [A 1924b].
23 This result is contained in [A 1924b]. The proof presented in the lecture was suggested

by Urysohn and is contained in a letter (dated by May 21, 1924) of Aleksandrov and Urysohn
to Hausdorff; for details, see Commentary on [H 1924] by H. Herrlich, M. Hušek, G. Preuß
[H 2008], pp. 449–450.
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The correct statement reads as follows: Let M be a Gδ-set in a complete
space. Then there exists a topologically equivalent metric makingM a complete
space.

We give some comments on the method of the proof presented in the lecture
course.24 Let (R, ρ) be a complete metric space and M be a Gδ-set in R. For
a closed subset F of R, denote G := R \ F and, for x, y ∈ G, define

ρF (x, y) :=
ρ(x, y)

ρ(x, y) + ρ(x, F ) + ρ(y, F )
,

where ρ(p, F ) is the distance of the point p from the set F . Then ρF is
a topologically equivalent metric on (G, ρ). Now, M is a Gδ-set, that is, there
are open sets Gn in R such that M =

⋂∞
1 Gn. Denote Fn := R \Gn and, for

x, y ∈ M , define

ρ∗(x, y) :=
∞∑

n=1

1
2n

ρFn
(x, y).

It is proved that ρ∗ is a topologically equivalent metric on (M,ρ). Defining,
for x, y ∈ M ,

ρ′(x, y) := ρ(x, y) + ρ∗(x, y),

̺′ is obviously a topologically equivalent metric on (M,ρ). It is not difficult to
see that ρ′ is a complete metric on M .

Consequently, a Gδ-set M in a complete space is topologically complete,
whence M is a Gδ-set in every (in particular in every complete) space in which
M is imbeded. Thus sets which are Gδ in a complete space (and thus in every
complete space) are called absolute Gδ-sets.

The notion of an absolute Gδ-set is topologically invariant. More precisely:
Let M be a Gδ-set in a complete space, let M∗ be contained in a metric space
R∗ and let M∗ be a homeomorphic image of M . Then M∗ is a Gδ-set in R∗.

2. Baire functions and Borel sets

Real functions on [0, 1] are considered. A function system is called a Baire
system, if

(a) together with f1, f2, also f1 ± f2, f1 · f2, f1/f2 belong to the system
(provided the ratio is well defined);

(b) together with f1, f2, . . . also limn→∞ fn belongs to the system (point-
wise convergence).

An intersection of an arbitrary family of Baire systems is a Baire system and
the family of all functions on [0, 1] is a Baire system. Hence, for every family Σ

24 The proof used by Aleksandrov in his lecture copies that of Hausdorff from [H 1924].
The Hausdorff proof does not require separability assumption.
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of functions, there exists the smallest Baire system containing Σ (namely the
intersection of all Baire systems containing Σ).

A system of subsets of the real line or of [0, 1] is said to be a Borel system,
if it contains

⋂∞
n=1Mn and

⋃∞
n=1Mn, whenever M1,M2, . . . are sets of the

system.

An intersection of an arbitrary family of Borel systems is a Borel system;
all sets form a Borel system. Hence, for every family Σ of sets, there exists
the smallest Borel system containing Σ (namely the intersection of all Borel
systems containing Σ).

The smallest Baire system containing continuous functions is obtained as
follows:25 We call all continuous functions on [0, 1] functions of the 0-th class.
If α is a countable ordinal and if all classes < α have already been defined,
then the α-th class is the family of all functions which can be represented as
pointwise limits of sequences of functions belonging to classes < α. It is proved
that the sum, difference, product, absolute value, maximum and minimum of
functions of the α-th class is a function of the same class. It is mentioned that
a corresponding result for the ratio causes a difficulty and will be postponed.∗∗∗∗

It is explained that the family of all functions belonging to some α-th class
for countable ordinals α is the smallest Baire system containing the continuous
functions.

The classes defined above are briefly called Baire classes and the functions
are called Baire functions or analytically representable functions. Especially,
the functions of the α-th class are called the Baire functions of the α-th class.

Analogously, starting with open and closed sets as sets of the 0-th class, we
define the set of α-th class for every countable ordinal (the so called Borel sets
of the α-th class). We arrive at the system of Borel sets as the smallest Borel
system containing open and closed sets.

There is a close relation between Baire functions and Borel sets. Firstly,
the following result is proved: If M is a Borel set, then there exists a Baire
function f such that M = {f > 0}. In the course of the proof it is established

25 The hierarchy of Baire functions was introduced in [Ba 1899] and extensively studied
in [Le 1905]; see also [Po 1916], [D 1981]. In Topologie by Aleksandrov and Hopf [AH 1935],
p. 20, the significance of Lebesgue’s work is expressed as follows: Die deskriptive Mengenlehre
wurde (anschließend Arbeiten über unstetige Funktionen) von Lebesgue begründet. Ihre
weitere Entwicklung beginnt elf Jahre später mit dem Mächtigheitsatz für die Borelschen
Mengen .. . [this refers to [A 1916]]. Borel sets appear implicitly (as measurable sets)
in connection with the introduction of the Borel measure; see [Bo 1898], pp. 46–47 and
[Bo 1905a], p. 17. In [Le 1905], Lebesgue speaks of B-measurable sets (ensembles mesurables
B) as sets that can be obtained from intervals from R by means of repeated application of
countable unions and differences. The terminology used nowadays goes back to [H 1914],
p. 305.

∗∗∗∗ In fact, in the notes, this is proved later on for 1
f
, if f is strictly positive. However,

for a non-vanishing function f , f = lim fn, one can write 1f = lim
fn

f2n+
1
n

and the result

follows immediately.
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that, for a Borel set M , the function equal 1 on M and 0 elsewhere is a Baire
function. Next, the following result is proved: If f is a Baire function, a and
b are real numbers, then the sets

{a ≤ f ≤ b} and {a < f < b}

are Borel sets. Hence, every set defined by an analytic condition is a Borel set
and the converse holds are well: Let f be a function. If {a ≤ f ≤ b} is a Borel
set for every a and b, then f is analytically representable. This illustrates how
closely Borel sets and Baire functions are related.26

The next result shows that the classes of Baire functions and Borel sets are
rich: For every infinite countable ordinal α, there exists a Baire function which
belongs to the α-th class but does not belong to any lower class, and a Borel
set which belongs to the α-th class but not to any lower class.27

Firstly, it is explained that it is sufficient to establish the result for Borel sets
only. Next, the main ingredient is the following auxiliary result (attributed to
Sierpiński28): For every infinite countable ordinal α, there exists a set-valued
mapping Φα, defined on sequences of sets, such that, wheneverM1,M2, . . . runs
through all sequences of sets of a systemM, then Φα(M1,M2, . . . ) runs exactly
through all sets of most α-th class over M.

26 A parallel study of Baire functions and Borel sets is due to Lebesgue [Le 1905]; see
also [H 1914], p. 391, [H 1927], pp. 232–243. Those are functions and sets which can be
obtained by an analytic construction, that is, can be represented analytically (represéntable
analytiquement). Let us note that the beginning of the 20th century was marked by a crisis
in the foundations of mathematics (the legitimity of Zermelo’s well-ordering principle and the
axiom of choice) and discussions on which definitions of mathematical objects are acceptable
was quite controversial; see, for instance, [BBHL 1905], [Bo 1905b], [Md 1976], [Md 1991]
(and also the commentary in Deskriptive Mengenlehre in Hausdorffs Grundzügen der Men-
genlehre by V. Kanovei and P. Koepke, [H 2002], pp. 773–787). For instance, Lebesgue’s
point of view was that, say, sets and functions have to be properly defined (définies) or at
least described (décrites). (The last word was the motivation for the terminology descriptive
set theory.)

A certain tension among mathematicians concerning well defined objects and differences
of notions as défini, décrit and choisir, nommer is explained in [Us 1985], pp. 85–91; cf. also
the Preface to [Lu 1930] written by Lebesgue.

In fact, already the title of [So 1917] illustrates the fact that the authors of that period
were attentive to the use of set-theoretic tools; cf. [Us 1985], pp. 85–91. We quote from
Suslin’s paper, p. 90: . . . nous avons trouvé, sans utiliser l’axiome de M. Zermelo et les
nombres transfinis, un ensemble (A) tel que son complémentaire rélativement à l’intervalle
(0, 1) n’est pas un ensemble (A).

Also Luzin writes in [Lu 1917], p. 93: Si l’on introduit les nombres transfinis en infinité
(énumérable), on peut supprimer [footnote: Cette remarque est due à M. Souslin.] de
l’énoncé du théorème I (et I’) [see our footnote 45] les mots à un ensemble énumérable
de points près. On démontre le corollaire sans employer l’axiome de M. Zermelo, mais il
faut employer, pour former effectivement la série de polynômes du corollaire, les nombres
transfinis en infinité énumerable (c’est-à-dire ceux qui sont inférieurs à l’un d’eux).
27 See [Le 1905], pp. 208–211.
28 See [Si 1920] and a detailed discussion on pp. 570–574 in [H 2008].
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3. Analytic sets29

Suslin sets or A-sets over a set system M are defined as follows: One takes
from M a countable system of set and label the sets in the following way:

(∗) M1,M2, . . . ;M1,1,M1,2,M2,1, . . . ;M1,1,1,M1,1,2, . . . ,Mi1,i2,...,ik

(k, i1, i2, . . . , ik mutually independent natural numbers). From this countable
system one selects the so-called chain

Mi1 ;Mi1,i2 ;Mi1,i2,i3 ; . . .

(i1 fixed through the whole sequence; the same for i2 beginning the second
member, etc.).

The intersection of all sets of this chain is called the kernel of the chain.
Also, the unions of the kernels of such chains which can be formed from the
system (∗) are called Suslin sets over M and any set of this form is a result of

29 We choose the following interesting quotation on the birth of analytic sets from
[Ku 1980], pp. 68–69:

Here I would like to emphasize the collaboration of Sierpiński, Lusin and Suslin. Suslin
was at that time a most gifted student of Lusin at Moscow University. On Lusin’s recommen-
dation Suslin was studying Lebesgue’s celebrated article, “Sur les fonctions représentables
analytiquement”, published in the Journal de Mathématique, 1905.

That article contained a false statement namely that the projection (and therefore any
continuous image) of a Borel set is a Borel set. As Professor Sierpiński told me, he was
a witness of a conversation between Suslin and Lusin, in which Suslin communicated his
discovery of that error.

Lusin thought it unbelievable that the great Lebesgue could commit a mistake. This was
all the more surprising because Lebesgue deduced his result from a trivially false statement,
viz. that the projection of an intersection of two (plane) sets is the intersection of projections
of those sets (Lebesgue was very possibly misled by the fact that in the case of union such
a commutativity does indeed hold). A counterexample to this hypothesis would be a system
of two parallel segments situated one above the other.

The discovery of Borel sets whose continuous image is not a Borel set was a matter
of fundamental importance for the development of descriptive set theory. As it turned out
shortly after Suslin’s discovery, the family of continuous images of Borel sets, also called
the family of analytic sets (“Suslin sets” is the term now in use) [in the footnote: As Suslin
has proved, analytic sets can also be defined as sets which can be obtained by starting with
closed sets by means of the so-called operation (A) (thus named in honour of his colleague
P. S. Alexandrov).] has many important properties, such as measurability in Lebesgue’s
sense of the term, Baire’s property, and inclusion of a Cantor set (in the case of not being
countable). A personal testimony of Sierpiński on a conversation between Suslin and Luzin
is contained in Sec. 28 of [Si 1964].

The Preface to Lusin’s Leçons sur les ensembles analytiques et leurs applications
([Lu 1930]) was written by Lebesgue, from which we quote: . . . une Préface m’a semblé
être le seul endroit où je pourrais avouer très haut ce que M. Lusin a soigneusement caché:
l’origine de tous les problèmes dont il va s’agir ici est une grossière erreur de mon Mémoire
sur les fonctions représentables analytiquement. Fructueuse erreur, que je fus bien inspiré
de la commettre!
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the so-called A-operation.30 A description of all A-sets is given in a similar way
as above for the system of Borel sets of α-th class. It is derived that there are

30 The idea of the A-operation goes back to the works of Aleksandrov [A 1916] and Haus-
dorff [H 1916] in 1916. They proved the Continuum Hypothesis for uncountable Borel sets
using a special representation of Borel sets. The A-operation was explicitly introduced in
[So 1917] by Suslin under the supervision of Luzin. (As far as the relation of Luzin and
Suslin is concerned, see interesting comments in [ZD 2007], pp. 13–17.) The main Suslin
contributions are the following: every Borel set on the real line is an A-set (the terminology
used later on is analytic set or Suslin set); Borel sets are precisely A-sets whose complement
is an A-set as well; there are non-Borel A-sets; projections of A-sets are A-sets. There is an
extensive literature on the history of the discovery of A-sets, see [T 1993], [Lo 2001], [BK
2005], [ZD 2007], pp. 13–17, 37, 119–120. The book [ZD 2007] reveals also a complicated
personal relationship of Luzin and Aleksandrov. It may be suitable to add two more quota-
tions concerning the origin of the A-operation in connection with the discovery of analytic
sets. In [A 1978], p. 39, in a commentary to the Russian translation of [A 1916], Aleksandrov
explains that his scheme (e) used in the paper is nothing else than the A-system. (To what
extent such a statement is justified is a subtle question discussed in depth in [BK 2005],
[Lo 2001] and [T 1993] where related references are to be found.) He also provides the fol-
lowing information: The original text of this work was written by me in Russian during the
summer 1915. The translation of the work to French was done by N. N. Lusin who intro-
duced some changes in terminology .. . and edited the whole work again making no changes
in its mathematical contents. Aleksandrov gave a talk on his result at a student seminar on
October 13, 1915; see [I 1996], p. 6.

On p. 173 of [A 1978], one also finds the following commentary by Kolmogorov: Somewhat
aside there is the student work No 1 of the present publication [it is meant [A 1916]] written
and published in 1916 dealing with a solution of the question of cardinality of B-sets posed
to the author by his teacher N. N. Lusin. But the most unexpected turned out to be the
existence of a very simple construction providing an arbitrary B-set of as high transfinite
class as wanted – the famous A-operation. Soon afterwards M. Suslin discovered that this
operation applied to open or closed sets (in the case of sets on the real line – to intervals)
leads to a wider class of sets, namely to the class of A-sets – one of the central objects of
study in descriptive set theory in the forthcoming years.

The following text is taken from [Bg 2007a], p. 420: W. Sierpiński who was not only an
eye-witness of the first steps of this theory but also one of its active creators, wrote: “Some
authors call analytic sets Souslin; it would be more correct to call them Souslin-Lusin sets”.

The definiton usually adopted in contemporary mathematics reads as follows (see
[Ke 1995], p. 85): Let X be a Polish space. A set A ⊂ X is called analytic if there is
a Polish space Y and continuous function f : Y → X with f(Y ) = A. (The class of analytic
sets is denoted by 1

1(X). Let us remark that, for A �= ∅, one can take Y = N (:= NN).)
It should be mentioned that analytic sets are considered also in a more general topological
context, see, for instance, [AS 1980], Part I: K-analytic sets by C. A. Rogers and J. E. Jayne
or [Ch 1969].

In order to show (in a modernized notation) a connection with the approach chosen in
Aleksandrov’s course, recall the following definitions: N<N is the set of all finite sequences of
natural numbers. If x ∈ N , x = (x0, x1, . . . ) and n ∈ N, let x|n := (x0, . . . , xn−1). Definition
([Ke 1995], p. 198): Let (Ps)s∈N<N be a Souslin scheme on a set X, i.e., a family of subsets
of X indexed by N<N. The Souslin operation A applied to such a scheme produces the set

AsPs :=
x∈N n

Px|n.

The basic representation of analytic sets in a Polish space X reads as follows ([Ke 1995],
p. 199): For any A ⊂ X, A is analytic if and only if A = AsFs with Fs closed.
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Borel sets not belonging to the α-th class and also sets which are not A-sets.31
It is noted that the complement of Borel set is a Borel set. A further result:
Every Borel set is an A-set.32 To prove this, two statements are shown:
(a) The union operation and the intersection operation for countably many
sets are special cases of the A-operation.33

(b) The A-operation applied to A-sets gives again an A-set.34

Theorem.35 Every uncountable A-set contains a perfect subset (hence has
the power of continuum).

31 The result on Baire classes goes back to [Le 1905]. The existence of analytic non-Borel
sets is due to Suslin [So 1917], Théorème II. The Proceedings [Pi 1994] contains Guidelines
1900–1950 where, year by year, the most influential publications for the development of
mathematics are included. For the year 1917, among 10 articles, Suslin’s note [So 1917] is
listed.
32 See [So 1917], Théorème I. Mikhail Yakovlevich Suslin (1894–1919) (sometimes his

name is transliterated Souslin) was born in Krasavka (now the region of Saratov), he studied
mathematics at Moscow University. For a detailed biography of Suslin see [I 1996]. It can be
mentioned that in 1916, as a student of Luzin, he found an error in Lebesgue’s article [Le 1905]
in which Lebesgue “proved” that, for any Borel set in R2, the projection on the real axis was
also a Borel set. He reported on his discovery at a student seminar on November 28, 1916; see
[I 1996], p. 7. In 1917, Suslin graduated and immediately started lecturing. He died of spotted
fever in 1919 during the Russian Civil War. He made a major contribution to descriptive set
theory. Because of his early death he was able to publish only one paper [So 1917] during his
life, but his other results appeared in [H 1927] and [Lu 1930]. His name is associated with
the so-called Suslin hypothesis concerning the problem of the existence of a Suslin line, that
is of a totally ordered set enjoying several natural conditions satisfied for the real line but not
isomorphic to R. It has been shown to be independent of ZFC; see [ST 1971] and [UK 1988].
He formulated his problem shortly before his death (see M. Souslin: Problème 3, Fundamenta
Mathematicae 1(1920), p. 223). An account on Suslin’s mathematical achievements can be
found in [UK 1988], where a detailed analysis of set theoretic aspects of the Suslin problem
is also discussed.
33 See [So 1917], Lemme 2, Lemme 3.
34 See [LS 1918], the footnote on p. 48.
35 Luzin, in [Lu 1917], p. 94, attributes the result to Suslin. For which (uncountable) sets

of real numbers can one prove the Continuum Hypothesis, that is, which sets have cardinality
2ℵ0? The first result, for closed sets, goes back to G. Cantor [C 1884]. A detailed discus-
sion can be found in [Sc 1913], pp. 269–299. For Gδ-sets, the result is due to W. H. Young
[Y 1903a]; see also [YY 1906], p. 64. In [H 1914], pp. 465–466, Hausdorff established this fact
for Gδσδ-sets. In 1916, independently, Aleksandrov in [A 1916] and Hausdorff in [H 1916]
showed that every uncountable Borel set has cardinality 2ℵ0 . Aleksandrov’s proof based on
a special process (a germ of the A-operation) of constructing arbitrary Borel sets, which was
an essential ingredient for the result of Suslin that the same cardinality result holds for ana-
lytic sets. The role of the A-operation in creation of the theory of analytic sets is discussed in
detail in [T 1993], [Lo 2001], [BK 2005], [ZD 2007], pp. 13–17, 37, 119–120. A deep analysis
of the common part as well as of the differences in arguments by Aleksandrov and Hausdorff
is given in Commentary on [H 1916] by V. Kanovei and P. Koepke in [H 2008], pp. 439–442.

Concerning the development of descriptive set theory, we quote from the review MR561709
by P. G. Hinman of the book [Mo 1980]: Descriptive set theory was founded around the turn
of the century and enjoyed a very active life into the 1930’s as a mixture of point-set to-
pology, real analysis, and sets theory. Then for over thirty years there were only sporadic
results because, as we know now, the most interesting remaining problems have turned out
to be unsolvable on the basis of commonly accepted mathematical principles as formulated
in any standard axiomatic set theory.
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It is proved that every A-set is a continuous image of the set of irrational
numbers. The converse holds as well but this will come later on.36

It is explained that every Borel set is an A-set37 such that the complement
is also an A-set. Next, a converse is established: If bothM and the complement
of M are A-sets, then M is a Borel set.38 To show this, the following notion
is introduced: It is said that two sets A, A′ can be separated by Borel sets, if
there are two Borel sets B, B′, such that

B ⊃ A, B′ ⊃ A′, B ∩B′ = ∅.

Then it is shown: If A, A′ are two A-sets in a complete space such that
A ∩ A′ = 0, then A, A′ can be separated by Borel sets.39 This already implies
the above characterization of Borel sets within A-sets.
It is recalled that a function f is analytically representable, if and only if, for

every a, {f > a}, {f ≤ a}, {f < a}, {f ≥ a} are Borel sets. Hence, in view of
the result on the complement of A-sets, we have: f is analytically representable
if and only if, for every a, the four sets

{f > a}, {f ≤ a}, {f < a}, {f ≥ a}

are A-sets.
The next result reads as follows: A continuous image of an A-set is an

A-set.40 So the previous result can be modified by saying “the four sets . . . are
continuous images of the set of irrational numbers”.

It is summarized that A-sets are invariant with respect to countable union
and intersection operations, the A-operation and to continuous images. In
particular, the A-sets are topologically invariant.
As we know, the topological invariance holds for Gδ-sets and is trivial for

Fσ-sets. More generally: A homeomorphic image of a Borel set41 is again
a Borel set of the same class.42

For further development of the analytic sets theory we refer to [Lu 1930], [Lu 1958],
[Ch 1969], [AS 1980], [Ka 1985], [Us 1985], [Ke 1995], [LL 1996], [Fm 2003], Chapter 42,
[Bg 2007b], [Mo 2009].
36 See [H 1927], p. 211; for a discussion, see also the comment [105] on p. 386 in [H 2008].

Cf. [Ke 1995], pp. 85, 109, and footnote 40.
37 See the footnote 32.
38 See [So 1917], Théorème III.
39 See [Lu 1927], Sec. 42, [Lu 1930], p. 156. In [AS 1995], on p. 6, it is mentioned: . . . the

first separation theorem (essentially due to Souslin (1917)) . . .
40 See [H 1927], p. 209 and references to §37 on p. 281; for a discussion, see also the

comment [103] on p. 385 in [H 2008].
41 The reference is as in 40; in the comment [103] on p. 385 in [H 2008], a relation to

the results of Suslin, Luzin and Sierpiński is given; cf. also the comment [106] on p. 386 in
[H 2008].
42 See [Si 1920] and [H 1927], p. 214; see also the comment [109] on p. 387 in [H 2008].
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The concluding part of the text is sketchy and the following information is
provided without proofs.

(a) (Uncountable) Borel sets are exactly one-to-one continuous images of
the set of irrational numbers.43

(b) The range of any analytically representable function is an A-set.44

(c) Every A-set is the range of an everywhere defined Baire 1 function
which is discontinuous at rational points only.45

Urysohn constructed a non-Borel A-set as

– a set of boundary values of a power series46

– a set of points in which a closed set is accessible from outside47

– the range of the limit of a convergent series of polynomials.48

Very little is known about complements of A-sets. Every A-set as well as
every complement of an A-set is a union of at most ℵ1 disjoint Borel sets (hence
of cardinality ℵ1 or ℵ or at most countable).49

One can define (a reference to Aleksandrov’s Fundamente V50) the comple-
ments of A-sets as follows: Let Fi1i2...ik be closed sets; the A-sets are defined
using unions of chains where the Baire neighborhoods corresponding to indices
i1, i1i2, i1i2i3, . . . contain a unique point. Similarly one can express comple-
ments of A-sets considering those chains of neighborhoods [i11], [i21, i22], [i31, i32, i33]
for which their union covers the whole Baire space.

43 Cf. [H 1927], p. 211; for a discussion, see also comment [105] on p. 386 [H 2008].
Concerning the statement, the situation is as follows: A set in R (or in a Polish space) is
Borel precisely when it is the image of a closed subset F ⊂ N under a continuous injective
mapping; see [Bg 2007b], p. 31 and [Ke 1995], p. 83. When one can take F = N is cleared
up by the following result from [Si 1927] (see also [Si 1976], vol. II, pp. 715–718): Pour qu’un
ensemble linéaire soit une image continue et biunivoque de l’ensemble de tous les nombres
irrationnels, il faut et il suffit qu’il soit un ensemble mesurable B condensé (c’est-à-dire dont
chaque point est un point de condensation).

44 See [Lu 1917], Théorème III.
45 See [Lu 1917], Théorème I. For a more precise result, see [Lu 1927], pp. 12–15, and

[Si 1927b], [Si 1927c]; see also [Si 1976], pp. 648–650, 643–647.
46 See [U 1926], [U 1951], vol. II., pp. 819–822. The result was established in 1924.

Boundary values are understood as the cluster set of the corresponding holomorphic function.
47 See [U 1928], [U 1951], vol. II, pp. 807–818. The result was established for Rn with

n ≥ 3 in 1923 and presented at the Moscow Mathematical Society at the session of October
21, 1923. For the plane case, the problem is stated to be open for closed sets. However,
a construction of a Gδ-set is given (see p. 817). For a construction of a closed plane set, see
[Ni 1928]. A related result to that of [U 1926] can be found in [Lu 1928]; see also [Lu 1958],
pp. 462–463.
48 See [Lu 1917], Corollaire on p. 93; we were not able to trace the result back to Urysohn.
49 See [LS 1918], Sec. 3 and [LS 1923], Sec. 4. The basic facts on co-analytic sets can be

found in [Ke 1995], pp. 242–312.
50 See [A 1924c].
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Sierpiński defined (a reference to Poln. Akad. Okt. 192751) a prototype of
a complement of an A-set as follows: With every natural number

p = 2m−1(2n1 + 2n1+n2 + · · ·+ 2n1+···+nk − 1
)

with ni > 0 one associates the Baire neighborhood [n1, n2, . . . , nk]. One
considers all irrational numbers x := 1 + 1 |

|p1 +
1 |
|p2 and x is a point of the

set provided those Baire neighborhoods corresponding to p1, p2, . . . cover the
whole Baire-space.

⋆ ⋆ ⋆ ⋆ ⋆

REFERENCES

[A 1916] Alexandroff P., Sur la puissance des ensembles mesurables B, C. R. Acad. Sci.
Paris 162 (1916), 323–325 (The arctile is reproduced in the book in the part
Illustrations.).
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