
Foundations of the Theory of Groupoids and Groups

4. Special decompositions

In: Otakar Borůvka (author): Foundations of the Theory of Groupoids and Groups. (English). Berlin:
VEB Deutscher Verlag der Wissenschaften, 1974. pp. 34--41.

Persistent URL: http://dml.cz/dmlcz/401543

Terms of use:
© VEB Deutscher Verlag der Wissenschaften, Berlin

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/401543
http://project.dml.cz


34 I. Sets 

Hence, by the relation c), there holds: 

(F, ( J , B)) = ((Y, J ) , B) = (Y,B) = Y. 

We see tha t Y is a refinement of the decomposition (A9 B). 
Every common refinement of the decompositions A and B is, therefore, a refine

ment of their common refinement (A, B). Thus (A, B) is the greatest common re
finement of A and JB. 

3.6. Relations between the least common covering and the greatest common refinement 
of two decompositions 

Let A and B s tand for arbitrary decompositions on the set G, 
I t is easy to show tha t between the least common covering [A, B] and the greatest 

common refinement (A, B) of A, B there hold the following equalities; 

[ J , (A, B)] = I , ( J , [ J , B]) = A. 

In fact, these equalities express the relations A ^ (A, B) and [A 9 B] ^ AT 
(3,4; 3.5). 

&7. Exercises 

1. Deduce, for arbitrary decompositions A, B of the set 6r, on the ground of a € A, 5 € B, 
s(a c B) = s(5 c i ) = w, the relationM € [A, 2?]. 

2. For jury decompositions A, B, X on $, where X J*> A, there holds a) [K, B] ^ [A , B], 
(X, B)^(A9B)i b) (X, [A , BJ) ^ [ 2 , (X, JB)]. 

3. Find an example to show that, under the assumptions of the previous exercise, the equality 
in formula b) need not be valid. 

4. Two decompositions in 0 always have the least common covering but need not have 
the greatest common refinement. For the least common coverings of the decompositions 
A, B9 0 in O there hold the formulae 3.4 a) b) c). 

4. Special decompositions 

I n this chapter we shall deal with particular kinds of relations between decomposi
tions in or on the set G. 
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4.1. Semi-coupled (loosely coupled) and coupled decompositions 

Let A and C be decompositions in G. 
The decompositions A, G are called semi-coupled or loosely coupled if every element 

a 6 A is incident with, at most, one element of G and every element c £ G with, 
at most, one element of A and if, moreover, at least for one pair of the elements 
a £ A,c 6 C the incidence really occurs. If A and C are semi-coupled, then the 
decomposition A (G) is called semi-coupled or loosely coupled with the decomposi
tion G (A). 

The decompositions A, G are coupled if every element a 6 A is incident with 
exactly one element of C and every element c £ O with exactly one element of A. 
If 4 and C are coupled, then the decomposition A (C) is said to be coupled with 
the decomposition G (A). 

We observe that two coupled decompositions in G are always semi-coupled. 
Example of coupled decompositions: If there holds, for the subset X cz G and 

the decomposition Y in G, the relation X n sY =f= 0, then the decompositions 
X c Y and Y n X are coupled. 

Let us now proceed to describe the properties of semi-coupled and coupled de
compositions. 

First, note that if the decompositions A and C are semi-coupled, then sA n sC 
4= 0. Indeed, in that case incidence occurs at least for one pair of the elements 
a € A, c € C and we have SAL n sC ID a n c 4= 0. To simplify the notation, we put 
si = A,sC = C, so that A n O 4= 0. 

TAe decompositions A, C are semi-coupled if and only if the intersections A n C, 
C n A are equal: A n C = C n A. 

Proof, a) Suppose A and G are semi-coupled. Then, with regard to A n G 4= 0, 
we have: .4 n O 4 = 0 4 = C n 4 . Let a' € -4 n G be an arbitrary element; evident
ly a! = a n C, a standing for a convenient element of A. Since a! aG,a is inci
dent with at least one and therefore, by the above assumption, exactly one element 
c 6 C; a is obviously the only element of A which is incident with c. We see that: 
a ' = a n c = c n i 6 0 n i , Thus we have i n C c C n i . Naturally, there 
simultaneously holds the relation ID and, consequently, the equality of both 
decompositions. 

b) Suppose A n O = C n i . Let a £ A be an arbitrary element. The element a 
is either not incident with any element of C or is incident with at least one. If it is 
incident with the elements Ci,c2€C, then we have: a n (ct u c2) cz a n C £ A n G 
== C n A and, consequently, there exists an element c £ C for which there holds 
a n (cx u c2) =- i n c. Since any two different elements of a decomposition are dis
joint, there follows cx = c2 == c. We see that every element of A is incident with at 
most one element of G and, obviously, there also holds that every element of G is 
incident with at most one element of A. From A n G 4= 0 it is clear that at least 

3* 



36 I. Sets 

for one pair of the elements a € A, c € C the incidence really occurs and the proof 
is accomplished. 

The decompositions A, C are semi-coupled if and only if the closures (HAL = ) C : 4 , 
(HO = ) A c O are coupled. 

Proof, a) Suppose A, C are semi-coupled. Then, on taking account of A n O 4= 0, 
we first have: H_4 4= 0 4= HO. Let us now consider an element a 6 HA. I t is inci
dent with at least one and, by the above assumption, exactly one element c 6 C. 
The element e evidently belongs to the closure HO, hence c € HO, and is the only 
element of HO which is incident with a. I t follows that every element of HA is 
incident with exactly one element of HO. Since, analogously, every element of 
HO is incident with exactly one element of HA, the closures HA and HO are 
coupled. 

b) Suppose the closures HA, HO are coupled. Then an arbitrary element a £A 
is either not incident with any element of O or is incident with at least one element 
of O. In the latter case, a belongs to the closure HA and, by the above assump
tion, it is incident with exactly one element c € HO. Except the elements of HO, 
no element of O is incident with a. Consequently, every element of A is incident 
with at most one element of O. For similar reasons, every element of O is incident 
with at most one element of A. Therefore the decompositions A, C are semi-coup
led and the proof is complete. 

The decompositions A, C are coupled if and only if there simultaneously holds 

AnC = GnA, (1) 

A = s(CnA), C = s ( 4 n C ) , (2) 

Proof, a) Suppose A, G are coupled. Then every element of A and O is incident 
with at most and, at the same time, at least one element of O and A, respectively. 
Consequently, on taking account of the above result, there holds (1) and, simul
taneously, by 2.6.6, the first (second) equality (2). 

b) Suppose the equalities (1), (2) are true. By means of the same theorems as 
in a), we can verify that A, C are coupled. 

If A, G are coupled, then every element of A or O is incident with at least and? 
simultaneously, at most one element of O or A, respectively. Consequently, there 
holds: A =C e l , O = Z c O (2.6.6). 

Let us now assume that A = O n A,C = A CO. Then, of course, our assump
tion: A n O 4= 0 is satisfield as well. 

Suppose B is an arbitrary common covering of the decompositions\_A jn C,C n A 
of the set A n O. By means of Eye define, first, the decomposition A (C) on A (G) 
as follows: Each element of A (G) consists of all the elements a € A(c €_O) that are 
incident with the same element of B. Furthermore, by means of A (U)we define 
the decomposition A (C) mG:A (6) is the covering of A (C) enforced by A (U). 
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Accordinglv, there holds IJ & € A (U c € 6) if and only if \J (a n C) € -B (u (o n 4 ) 
e 5). * 

Thus we have, by means of the decomposition I?, constructed certain coverings 
A and O of A and O, respectively. The coverings A, C are said to be enforced by the 
common covering B of the decompositions A n C,C n A. Note that the construc
tion is based upon the relations A = C c A, C = A c C. 

Obviously: sA = si (= A), sG = sG (= C). 

Now we shall prove that the decompositions A, G are coupled and intersect each 
other in the decomposition B so that A n C = B. 

Proof. The equality Al = C c A yields^ = C c J! and, similarly, G = A c 6. 
To prove the theorem, it is sufficient to verify that 

AnC = C nA = B. 

Indeed, if these equalities are satisfied, then, by the above result, the decompo
sitions A, G are coupled and, on taking account of 2.3, we have: AnC 
= (A n C) n (6 n A) = B n B = B. 

To every element a' £ A n C there exist elements d = \J a, d £ A, a £ A such 
that d' = a n C = (U «) n C = U (& n C) 6 B, whence A n Ccz B. Conversely, 
every element b £ B has the form: b = \J (a n C) where d£A,d=-{jd^A and 
there holds b = U (& n C) = (\J a) n C = a n C € A n C, whence B cz A n C. 
So we have A n G = B and, for analogous reasons, even G n A = B. 

4.2. Adjoint decompositions 

Suppose A, C are decompositions and B, D subsets of G. Let B 6 A, D 6 C and 
B n D 4= 0. We shall again make use of the notation: A = sA, C = sG. 

By the above assumptions there holds B£DcA,D£BcG and, on taking 
account of B cz A, D cz C, we have 

0 =$=B nDcz(B nC), (D nA). 

Consequently (2.6.5), 

DcAnC, BcC nA 

are decompositions in G. 
If there holds: 

s(Dc I nC)=s(BcC n A), 

then the decompositions A, C are said to be adjoint with regard to the sets B, D; 
we also say that A (G) is adjoint to C (A) with regard to B, D. 
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On taking account of the equalities 

D c A n C = (D n A) c (I n C), 

BcG nA = (B nC)c(CnA), 

the formula (1) may be replaced by: 

s((D n A) c (A n O)) = s((B n C) c (C n .4)). (1') 

For example, the decompositions 4,(7 are adjoint with regard to B, D if A is the 
greatest or the least decomposition of A. 

Let us now assume that A, C are adjoint with regard to B, D. Then: 

At = C c I, A2 = DcA, 

Ct = AcC, G2 = BcC 

are decompositions in G. Denote: At = sAt, A2 = s.<42, Ox = s(71? C2 = $O2. 
Then we have: 

A ID AXZD A2CD {B}, A CD AtZD A2ZD B, 

CCDCtCDC2CD {D}, C CD Ct CD G2 CD D. 

We shall show that there exist coupled coverings A, C of the decompositions At,Ct 

such that A2e A, C2e G. These coverings are determined by the construction de
scribed in part a) of the following proof. The sets A2, C2 are incident. 

Proof, a) Every element of A t (Ct) lies in A (C) and is incident with C (A) and, 
therefore, with some element of C (A) incident with A (C); this element of C (A) 
is, of course, contained in Ct (At). Hence: 

It = Gtc At, Ct = Atc Ct. 

I t is also easy to realize that Ax n Ct = A n C. We observe that At n Ct Ct, n A t 

are decompositions on A n C. Let U be their least common covering so that U = 
= [At n Ct,Ct n A t]. Now the decompositions^!, G are defined as the coverings of 
At,Ct, enforced by U. So we have A n G = U and every element of A (6) is the 
sum of all the elements of At (Ct) which are incident with one element of U. 

b) There holds A2 e A and C2 € C. In fact, as B e A, D e C, we have 

C nBeCnl, AnDeAnC 

and, since A, C are adjoint with regard to B, D, there holds (V). So we have, by 
3.7.1, He U where u is the set (V). The individual elements of A and C, respec
tively, are the sums of all the elements of At and Ct, incident with one element of U. 
To prove the relations A2e A and C2 6 C, we only need to show that A2 and C2 

are the sums of all the elements of A t and Gt, respectively, incident with u. 
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We see, first, that there holds: 

u = S(D c A n C) = s(A2 n C) = A2 n C. 

An arbitrary element of At lies in A and is incident with the set C; it simultane
ously lies in A 2 if and only if it is incident with the set D and, consequently, with 
the set A2 n C = u. Hence, it is exactly the elements of A t which lie in A 2 that are 
incident with u; their sum is, as we see, A2. Similarly, from 

u = s(BcC nA) = s(C2 n A) = C2 n A 

there follows that the sum of the elements of Ct which are incident with € is C2. 

c) From 0 =j= B n D a A2 n C2 we have A2 n C2 =f= 0. 

The notion of adjoint decompositions may be extended to adjoint chains of 
decompositions. 

Suppose (0 4=) B c= A a G, (0 #= ) D c= C c (? and let 

( [ * ] = = ) ^ . . . ^ £ . , 

be chains of decompositions in Cr from 4̂ to J? and from 0 to D. 
The chains [K], [L] are called adjoint if: 1) their ends coincide, i.e., A = C, 

B = D; 2) every two membersKy, L$ are adjoint with regard to the sets sKY+1, 
sLd+1; y and d run over 1, ..., <x and 1, ..., /?, respectively, and sKa+1 = B, 
sLp+1 = D. 

4.3. Modular decompositions 

In this chapter we shall deal with special decompositions lying on G. 
Suppose X, A, B are decompositions on G and let X 2g A. 
The reader has certainly noticed (see 3.7.2, 3) that the decomposition (X, [A, B]) 

is a covering of the decomposition \A, (X, B)] but that these two decompositions 
need not be equal. 

If they are equal, i.e., if there holds 

[A, (X, B)] = (X, [I, B]), 

then the decomposition B is called modular with regard to X, A (in this order). 
If, e.g., X = A or X =Gtmx , then B is modular with regard to X, A. 

Let now X, Y and A, B stand for decompositions on G such that X ^ A, Y ^ B 
and suppose B and A are modular with regard to X, A and Y, B, respectively. 

Then there holds: 

(Å=)[A,(X,B)} = {X,[A,B]), 
ф=)[B,(Y,A)] = {Y,[B,A]), 
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where the decompositions on either side of the first as well as the second for
mula are denoted A and 6, respectively. 

We see, first, that there holds 

X^A^A, Y ^$>B, 

so that the decompositions A, J& interpolate the decompositions X, A or Y, B, re
spectively, in the sense of the above formulae. 

Next, there holds: 

[A,B] = [A,B], [X,ii] = [X,B], [Y,A] = [Y,A], (1) 

(A, £) -= (X, 6) = (Y, A) = ((X, Y), [I, B]). (2) 

These relations can easily be deduced from the properties of the least common 
covering and the greatest common refinement of two decompositions. For example, 
the first equality (1) by means of (X, B)^B£ [B, (Y, A)], (Y, A) ^ A =g [ A,B] 
as follows: 

[A,B]=[[Z,(X,Ej], [B,(Y,A]\ 

= [A, [(I, B), [B, (Y, A)]]} = [A, [B, (Y, A)]] 

= [[A, B], (?,!)] = [A, B]. 

The other equalities may be deduced analogously. 

The mentioned properties of modular decompositions can be specified as "global", 
since they concern decompositions as a whole without regard to the individual 
elements of which they consist. Besides these "global" properties, the modular 
decompositions also have the following "local" property, important to our pur
poses: 

For any two incident elements x £ X, y £ T the closures (x n y) c A, (x n y) c J& 
are coupled. 

Proof. Suppose x € X, y £Y are arbitrary incident elements. Consider an 
element d 6 (% n y) c A and show that it is incident with exactly one element b 
6 (x n y) c B. In fact, since the element a 6 A is incident with the set x n y and, 
according to the assumption, there holds X ^ A, we have: d a x, y n d 4= 0. 
Hence, in particular, y n a is an element of the decomposition (Y, A). As (X, j&) 
= (Y, A), there exists an element h € -6 such that x n h = y n d. We see that b 
is incident with d so that b n d 4= 0. As b is also incident with x n y, we have 
b € (x n y) c 6. Consequently, the element d is incident at least with the element 
b of the closure (x ny) c J§. But in the latter there are no further elements inci
dent with d because every element incident with a forms a part of y, cuts the set 
y n d = x n b and therefore coincides with b. For analogous reasons, every element 
of (x ny) c jb is incident with exactly one element of (x n y) c A and the proof is 
accomplished. 



5. Complementary (commuting) decompositions 41 

4.4. Exereises 

1. Two finite coupled decompositions have the same number of elements. 

2. On taking account of the last theorem of 4.3, show that there holds: 

((x n y) c A) n s((x n y) c JB) -= ((x n y) c B) n s((x n y) c A) 

= (xny) n [I, B], 

5. Complementary (commuting) decompositions 

Fur ther particular situations generated by decompositions on the set G arise from 
the so-called complementary or commuting decompositions. As the lat ter play an 
important par t in the following deliberations, we shall discuss them in a special 
chapter. 

5.1. The notion of complementary (commuting) decompositions 

Let A, B, C s tand for arbitrary decompositions on G. 
By the definition of the least common covering [A, B], every element u £ [A, B] 

is the sum of certain elements a £ A and, at the same time, the sum of certain 
elements b £ B. The decomposition A is called complementary to or commuting with 
the decomposition B if every element a £ A is incident with each element b £ B 
t ha t lies in the same element u £ [A, B] as a. 

If. for example, A is a covering of B, then A is complementary to B. The new 
notion generalizes the'concept of a covering. 

There holds: 

a) A is complementary to A. 
b) If A is complementary to B, then B is complementary to A. 

Indeed, a) is obviously t rue. To prove b), let us accept the assumption but reject 
the assertion. Then there exists an element b 6 B, lying in a certain element u € 
[B, A], which is not incident with every element of A t ha t lies in u. Consequently, 
6 is not incident with an element a € A lying in u. Hence, a is not incident with all 
the elements of B lying in u, which contradicts our assumption tha t A is comple
mentary to B and the proof is accomplished. 


		webmaster@dml.cz
	2012-09-06T02:48:39+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




