John C. Georgiou; Jan Mařík On a class of orthogonal series

Anal. Math. 16 (1) (1990), 11-25

Persistent URL: http://dml.cz/dmlcz/502141

Terms of use:

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://dml.cz

On a class of orthogonal series

JOHN C. GEORGIOU and JAN MARIK

1. Notations

The letter R denotes the set of all (finite) real numbers. The word function means a mapping to R. The domain of definition of a function f is denoted by Dom f.

For each $A \subset R$ let int A, |A|, and c_A denote the interior, the closure, the outer Lebesgue measure and the characteristic function of A, respectively. The symbols f(a+) and f(a-) stand for $\lim_{x \neq a} f(x)$ and $\lim_{x \neq a} f(x)$. Further, we set $N_0 = \{0, 1, ...\}$, $N = \{1, 2, ...\}$. Instead of $\limsup_{x \neq a} a_n$ ($n \in N$, $n \to \infty$) we write simply $\limsup_{x \neq a} a_n$; similarly for $\lim_{x \neq a} a_n$ lim. The meaning of $a_n \to a$ is obvious.

The symbols [a, b], [a, b) etc. $(a, b \in R, a \le b)$ have the usual meaning (in particular, $[a, a] = \{a\}$); $\int_{a}^{b} f$ or $\int_{[a, b]} f$ denotes the Lebesgue integral of f over [a, b]. (In this connection f will be always Riemann integrable.) The words almost and measurable refer to the Lebesgue measure.

2. D-and IDF-series

2.1. For each $n \in N_0$ let D_n be a finite set $\{d_{n,0}, d_{n,1}, \dots, d_{n,r_n}\}$, where $0 = d_{n,0} < d_{n,1} < \dots < d_{n,r_n} = 1$. Set $D = \bigcup_{n=0}^{\infty} D_n$. Assume that $D_0 \subset D_1 \subset \dots$ and that D is dense in [0, 1] (so that $\max\{d_{n,j} - d_{n,j-1}; j = 1, \dots, r_n\} \rightarrow 0$). For each $n \in N_0$ let \mathcal{D}_n be the system of all intervals $[d_{n,j-1}, d_{n,j}]$ $(j = 1, \dots, r_n)$. Let \mathfrak{D} denote the sequence D_0, D_1, \dots .

Let $n \in N_0$. For $x \in (0, 1]$ define $\alpha_n(x)$ and $\beta_n(x)$ by $\alpha_n(x) < x \le \beta_n(x)$ and $[\alpha_n(x), \beta_n(x)] \in \mathcal{D}_n$; for $x \in [0, 1)$ define $\alpha_n^*(x)$ and $\beta_n^*(x)$ by $\alpha_n^*(x) \le x < \beta_n^*(x)$ and $[\alpha_n^*(x), \beta_n^*(x)] \in \mathcal{D}_n$. Further set $\alpha_n(0) = \beta_n(0) = 0$, $\alpha_n^*(1) = \beta_n^*(1) = 1$ $(n \in N_0)$.

For each $x \in [0, 1]$ and each $n \in N_0$ set $J_n(x) = [\alpha_n(x), \beta_n(x)], J_n^*(x) = [\alpha_n^*(x), \beta_n^*(x)]$ (thus $J_n(0) = \{0\}, J_n^*(1) = \{1\}$).

Received March 18, 1988.

Remark. If $x \in D_n$, then $\alpha_n^*(x) = \beta_n(x) = x$; if $x \in [0, 1] - D_n$, then $J_n(x) = -J_n^*(x)$.

2.2. For each $n \in N_0$ let V_n be the system of all functions f on [0, 1] with the following properties:

1) f is constant on int J for each $J \in \mathcal{D}_n$;

2) $f(x) = \frac{1}{2} (f(x+)+f(x-))$ for each $x \in (0, 1)$; 3) f(0) = f(0+), f(1) = f(1-).

Obviously $V_0 \subset V_1 \subset \ldots$. Set $V = \bigcup_{n=0}^{\infty} V_n$. Then V is a vector space and V_n is an r_n -dimensional subspace of V $(n \in N_0)$. It is easy to see that V becomes an inner product space, if we define the inner product of any elements f, g of V as $\int_{-1}^{1} fg$.

2.3. Let W be a system of functions on [0, 1] and let I be a function on W with the following properties:

4) If $f_1, f_2 \in W$, $a_1, a_2 \in R$, then $a_1 f_1 + a_2 f_2 \in W$ and $I(a_1 f_1 + a_2 f_2) = a_1 I(f_1) + a_2 I(f_2)$;

5)
$$V \subset W$$
 and $I(f) = \int_{0}^{1} f$ for each $f \in V$;

6) if $f \in V$ and $g \in W$, then $fg \in W$;

7) if f is a function on [0, 1] such that f(x)=0 for almost all $x \in [0, 1]$, then $f \in W$ and I(f)=0.

2.4. Let $f, g \in V$. Then $fg \in W$ and $\int_{0}^{1} fg = I(fg)$.

Proof. There is an $h \in V$ such that f(x)g(x)=h(x) for almost all $x \in [0, 1]$. Now we apply 5), 7) and 4).

2.5. Let T be a finite-dimensional subspace of V. Let $f \in W$. Then there is a unique $g \in T$ such that $I(f\varphi) = I(g\varphi)$ for each $\varphi \in T$. If functions $\varphi_1, \ldots, \varphi_m$ form an orthonormal basis of T, then $g = \sum_{j=1}^m I(f\varphi_j)\varphi_j$.

Proof. Easy.

2.6. (i) The element g of 2.5 (the orthogonal projection of f to T) will be denoted by o.p.(f, T).

(ii) Let $T_0 = V_0$. For each $n \in N$ let T_n be the set of all elements f of V_n such that I(fg)=0 for each $g \in V_{n-1}$.

(iii) Any series $\sum_{n=0}^{\infty} f_r$ where $f_n \in T_n$, will be called a \mathfrak{D} -series.

(iv) Let $f \in W$. Then the series $\sum_{n=0}^{\infty} o.p.(f, T_n)$ will be called the $I\mathfrak{D}F$ -series of f (F suggests Fourier).

The proofs of the next three assertions are left to the reader.

2.7. Let $n \in N$, $f \in V_n$. Then the following three conditions are equivalent to each other:

(i)
$$\int_{0}^{x} f = 0$$
 for each $x \in D_{n-1}$;
(ii) $\int_{f} f = 0$ for each $J \in \mathcal{D}_{n-1}$;
(iii) $f \in T_{n}$.
Remark. If $J \in \mathcal{D}_{n} \cap \mathcal{D}_{n-1}$ and if $f \in T_{n}$, then $f = 0$ on int J .

2.8. Let $f \in W$, $g \in V$, $n \in N_0$. Then the following three conditions are equivalent to each other:

(i)
$$\int_{0}^{x} g = I(fc_{[0,x]})$$
 for each $x \in D_n$;
(ii) $g(x)|J| = I(fc_J)$ for each $J \in \mathcal{D}_n$ and each $x \in \text{int } J$;
(iii) $g = \text{o.p.}(f, V_n)$.
2.9. Let $f_k \in V$ $(k = 0, 1, ...), f \in W$. Then $\sum_{k=0}^{\infty} f_k$ is the *I*DF-series of f iff $\sum_{k=0}^{n} f_k = \text{o.p.}(f, V_n)$ for each $n \in N_0$.

3. Auxiliary theorems

3.1. Throughout the paper, $\sum_{n=0}^{\infty} f_n$ is a D-series. We set

$$s_n = \sum_{n=0}^n f_k, \quad F_n(x) = \int_0^x f_n \quad (n \in N_0, x \in [0, 1]).$$

The sum of the series $\sum_{n=0}^{\infty} F_n(x)$ will be denoted by F(x) at the points of its convergence.

We will often write α_n , β_n , α_n^* , β_n^* , J_n , J_n^* instead of $\alpha_n(x)$, ..., $J_n^*(x)$, respectively.

3.2. Let
$$n \in N_0$$
, $x \in D_n$. Then $F(x) = \int_0^x s_n$.

Proof. By 2.7 we have $F_k(x) = 0$ for k > n. Thus $F(x) = \sum_{k=0}^n F_k(x) = \int_0^x s_n$. 3.3. Let $n \in N_0$, $x \in (0, 1) - D_n$. Then $s_n(x) = (F(\beta_n) - F(\alpha_n))/(\beta_n - \alpha_n)$.

Proof. It follows from 3.2.

3.4. Let 0 < q < 1. Suppose that \mathfrak{D} has the following property: If $n \in N_0$, $J \in \mathcal{D}_n$, $K \in \mathcal{D}_{n+1}$, $K \subset J$, $K \neq J$, then $|K| \leq q |J|$. Let $x \in [0, 1]$ and let

$$\int_{J_n} f_n \to 0 \quad \left[\int_{J_n^*} f_n \to 0 \right].$$

Then

$$\int_{J_n} s_n \to 0 \quad \left[\int_{J_n^*} s_n \to 0 \right].$$

Proof. Let $\int_{J_n} f_n \to 0$. We will show that $\int_{J_n} s_n \to 0$. We may suppose that x > 0. Set

$$b_n = \sup \left\{ \left| \int_{J_k} f_k \right|; \ k \ge n \right\}, \quad B_n = b_0 q^n + \ldots + b_{n-1} q + b_n \quad (n \in N_0), \quad B = \limsup B_n.$$

Since $B_n \leq b_0/(1-q)$, we have $B < \infty$; since $B_{n+1} = qB_n + b_{n+1}$ and $b_n \rightarrow 0$, we have B = qB so that B = 0.

Let $P = \{n \in N; J_n \neq J_{n-1}\}$. We may write $P = \{p_1, p_2, ...\}$, where $p_1 < p_2 < ...;$ further set $p_0 = 0$. Let $\varepsilon > 0$. Since B = 0, we can find an $m_0 \in N$ such that $B_m < \varepsilon$ for each $m \ge m_0$. Now let $n \in N$, $n \ge p_{m_0}$. There is an $m \ge m_0$ such that $p_m \le n < p_{m+1}$. Let $j \in N_0$, $j \le m$. Obviously $|J_{p_m}| \le q^{m-j} |J_{p_j}|$; since f_{p_j} is constant on int J_{p_i} and $p_j \ge j$, we have

$$\left|\int_{J_{p_m}} f_{p_j}\right| \leq q^{m-j} \left|\int_{J_{p_j}} f_{p_j}\right| \leq q^{m-j} b_j.$$

If $k \in N-P$ and $k \le n$, then $J_{k-1} = J_k \supset J_n = J_{p_m}$ whence $\int_{J_{p_m}} f_k = 0$. Thus $\left| \int_{J_n} s_n \right| \le \sum_{j=0}^m \left| \int_{J_{p_m}} f_{p_j} \right| \le \sum_{j=0}^m q^{m-j} b_j = B_m < \varepsilon.$

Similarly can be proved that

$$\int_{J_n^*} S_n \to 0 \quad \text{if} \quad \int_{J_n^*} f_n \to 0.$$

3.5. (i) Let $\mu > 0$. We say that \mathfrak{D} fulfills (condition) $Q(\mu)$ iff it has the following property: If $n \in N_0$, $J \in \mathcal{D}_n$, $K \in \mathcal{D}_{n+1}$, $K \subset J$, then $|K| \ge \mu |J|$. (In such a case, obviously, $\mu < 1$.) We say that \mathfrak{D} fulfills Q iff it fulfills $Q(\mu)$ for some $\mu > 0$.

(ii) For each $x \in (0, 1)$ and each $n \in N$ set

$$\delta_n(x) = |J_{n-1}|^{-1} \min \left\{ \left| \int_{\alpha_{n-1}}^{\alpha_n} f_n \right|, \left| \int_{\beta_n}^{\beta_{n-1}} f_n \right| \right\}.$$

Further, we define

$$\delta(x) = \sup \{\delta_n(x) \colon n \in N\}, \quad S(x) = \sup \{|s_n(x)| \colon n \in N_0\}$$

for each $x \in (0, 1)$.

3.6. Let \mathfrak{D} fulfill $Q(\mu)$. Let $x \in (0, 1) - D$, $n \in N_0$. Set $\varepsilon = \sup \{\delta_k(x) : k > n\}$, $\eta = \sup \{|f_k(x)| : k > n\}$ and suppose that $\max \{\varepsilon, \eta\} < \infty$. Further, set $\theta = = (\varepsilon + (1-\mu)\eta)/\mu^2$. Then $\sum_{k=0}^{\infty} |F_k(x)| < \infty$ (so that F(x) has a meaning) and there is a $p \ge n$ such that

(1)
$$|F(x)-F(\alpha_n)-(x-\alpha_n)s_p(x)| \leq (x-\alpha_n)\theta,$$

(2)
$$|F(\beta_n) - F(x) - (\beta_n - x)s_p(x)| \leq (\beta_n - x)\theta_n$$

If, moreover, $S(x) < \infty$ and if λ is a number such that $\lambda \ge (\delta(x) + 2S(x))/\mu^2$, then

(3)
$$|F(x)-F(\alpha_n)| \leq (x-\alpha_n)\lambda,$$

(4)
$$|F(\beta_n) - F(x)| \leq (\beta_n - x)\lambda.$$

Proof. Let p be the greatest integer for which $\alpha_p = \alpha_n$. Since $[\alpha_p, \alpha_{p+1}]$ contains some element of \mathcal{D}_{p+1} , we have

(5)
$$x - \alpha_p > \alpha_{p+1} - \alpha_p \ge \mu |J_p|.$$

Now choose a k > p. Let, e.g.,

$$\left|\int_{\alpha_{k-1}}^{\alpha_k} f_k\right| = \delta_k(x)|J_{k-1}|.$$

If $J_k \neq J_{k-1}$, then $\mu |J_{k-1}| \leq |J_{k-1} - J_k|$; therefore (even if $J_k = J_{k-1}$)

$$\Big|\int_{\alpha_{k-1}}^{\alpha_k} f_k\Big| \leq |J_{k-1} - J_k| \,\delta_k(x)/\mu.$$

Obviously

$$\left|\int_{\alpha_{k}}^{x} f_{k}\right| \leq |f_{k}(x)| |J_{k}|, \quad F_{k}(x) = \int_{\alpha_{k-1}}^{\alpha_{k}} f_{k} + \int_{\alpha_{k}}^{x} f_{k}$$

so that

(6)
$$|F_k(x)| \leq |J_{k-1} - J_k| \delta_k(x)/\mu + |f_k(x)| |J_k|$$

Let $P = \{k \in N; k > p, J_k \neq J_{k-1}\}$. We may write $P = \{p_1, p_2, ...\}$, where $p < p_1 < p_2 < ...$ If $k > p, k \notin P$, then $f_k(x) = 0$; thus

$$\sum_{k=p+1}^{\infty} |f_k(x)| |J_k| \leq \eta \sum_{r=1}^{\infty} |J_{p_r}|.$$

It is easy to see that

$$|J_{p_r}| \leq (1-\mu)|J_{p_{r-1}}| \leq \ldots \leq (1-\mu)^r |J_p|.$$

Now we get from (6) and (5)

(7)
$$\sum_{k=p+1}^{\infty} |F_k(x)| \leq |J_p| \varepsilon/\mu + \eta |J_p| (1-\mu)/\mu \leq (x-\alpha_p) \theta$$

Since, by 3.2,

$$\sum_{k=0}^{p} F_{k}(x) - F(\alpha_{p}) = \int_{\alpha_{p}}^{x} s_{p} = (x - \alpha_{p}) s_{p}(x),$$

we have

$$F(x)-F(\alpha_p)=(x-\alpha_p)s_p(x)+\sum_{k=p+1}^{\infty}F_k(x).$$

This together with (7) proves (1).

If, finally, S and λ are as above, then

$$\eta \leq 2S(x), \quad \theta + S(x) \leq (\delta(x) + S(x)(2 - 2\mu + \mu^2))/\mu^2 \leq \lambda$$

and, by (1),

$$|F(x)-F(\alpha_n)| \leq (x-\alpha_n)(\theta+S(x)).$$

This proves (3); (2) and (4) can be proved similarly.

3.7. Let \mathfrak{D} fulfill $Q(\mu)$. Let g be a function such that $\text{Dom } g \supset D$. Let $\varepsilon > 0$, $r \in N_0$, $J \in \mathcal{D}_r$. Let $A \subset (J-D) \cap \text{Dom } g$ and let

$$|g(x)-g(\alpha_k)| \leq (x-\alpha_k)\varepsilon, \quad |g(\beta_k)-g(x)| \leq (\beta_k-x)\varepsilon \quad (k=r,r+1,...)$$

for all $x \in A$.

Then

$$|g(y)-g(x)| \leq |y-x|\varepsilon/\mu$$
 for all $x, y \in A$.

Proof. Let $x, y \in A$, x < y. Let *n* be the smallest integer for which $(x, y) \cap D_n \neq \emptyset$. Obviously n > r.

1) Let $(x, y) \cap D_n$ contain only one point. Then $\alpha_n(y) = \beta_n(x)$ whence

$$|g(y)-g(x)| \leq |g(y)-g(\alpha_n(y))| + |g(\beta_n(x))-g(x)| \leq \varepsilon(y-x)$$

2) Let $(x, y) \cap D_n$ contain more points than one. Set $\alpha = \alpha_{n-1}(x)$, $\beta = \beta_{n-1}(x)$. Since $(x, y) \cap D_{n-1} = \emptyset$, we have $\alpha_{n-1}(y) = \alpha$ so that

$$|g(y)-g(x)| \leq |g(y)-g(\alpha)|+|g(x)-g(\alpha)| \leq (x+y-2\alpha)\varepsilon;$$

similarly

$$|g(y)-g(x)| \leq (2\beta-x-y)\varepsilon.$$

If $x+y \le \alpha+\beta$, then $x+y-2\alpha \le \beta-\alpha$; if $x+y>\alpha+\beta$, then $2\beta-x-y<\beta-\alpha$. Since (x, y) contains some element of \mathcal{D}_n , we have $\mu(\beta-\alpha) \le y-x$ whence

 $|g(y)-g(x)| \leq (\beta-\alpha)\varepsilon \leq (y-x)\varepsilon/\mu.$

3.8. For each m > 0 set

$$E_m = \{x \in (0, 1) - D; \max \{\delta(x), S(x)\} \le m\}.$$

3.9. Let m > 0. Then $\operatorname{cl} E_m - D = E_m$.

Proof. Obviously $E_m \subset \operatorname{cl} E_m - D$. Now let $x \in \operatorname{cl} E_m - D$ and let $n \in N_0$. There is a $y \in E_m \cap \operatorname{int} J_n(x)$. Thus $f_k(x) = f_k(y)$, $J_k(x) = J_k(y)$ for k = 0, ..., n so that $|s_n(x)| = |s_n(y)| \le m$ and, if n > 0, also $\delta_n(x) = \delta_n(y) \le m$. Therefore $x \in E_m$.

Remark. It follows from 3.6 and 3.9 that if \mathfrak{D} fulfills Q, F(x) exists for each $x \in \bigcup_{m>0} \operatorname{cl} E_m$.

3.10. Let \mathfrak{D} fulfill $Q(\mu)$. Let $m > \max\{|f_0(x)|: x \in [0, 1]\}$ and let $x, y \in \operatorname{cl} E_m$. Then

(8)
$$|F(y)-F(x)| \leq |y-x| 3m/\mu^3$$
.

Proof. Define $\lambda = 3m/\mu^2$. Notice that the relations (3), (4) in 3.6 hold for each $x \in E_m$ and each $n \in N_0$.

(i) Let $x, y \in E_m$, x < y. Let p be the smallest integer for which $(x, y) \cap D_p \neq \emptyset$.

1) Suppose that p=0. Set $\beta = \beta_0(x)$, $\alpha = \alpha_0(y)$. Then $x < \beta \le \alpha < y$. By 3.6 we have

$$|F(\beta)-F(x)| \leq (\beta-x)\lambda, |F(y)-F(\alpha)| \leq (y-\alpha)\lambda;$$

obviously

$$|F(\alpha)-F(\beta)| = \left|\int_{\alpha}^{\beta} f_0\right| \leq (\beta-\alpha)m \leq (\beta-\alpha)\lambda.$$

Therefore $|F(y) - F(x)| \leq (y - x)\lambda$.

2) Suppose that p>0. Then we apply 3.7 with g=F, ε=λ, r=p-1, etc.
(ii) Let x, y∈cl E_m. If y∉D, then, by 3.9, y∈E_m and we define y_n=y for each n∈N. If y∈D, we fix a p such that y∈D_p and proceed as follows: For each nn</sub>∈E_m. For each n≥p there is a y_n∈E_m such

2 Analysis Mathematica

that either $y = \alpha_n(y_n)$ or $y = \beta_n(y_n)$; by 3.6,

 $|F(y_n) - F(y)| \le |y_n - y| \lambda.$

Thus, in any case, $y_n \rightarrow y$ and $F(y_n) \rightarrow F(y)$. We find similarly points $x_n \in E_m$ such that $x_n \rightarrow x$ and $F(x_n) \rightarrow F(x)$. By (i) we have

$$|F(y_n) - F(x_n)| \leq |y_n - x_n| \lambda/\mu \quad (n \in N);$$

this implies (8).

4. D-integral

4.1. (i) Let g be a function such that Dom $g \supset D$ and let $x \in [0, 1]$. We say that g is SD-continuous at x iff $g(\beta_n^*) - g(\alpha_n) \rightarrow 0$ ($\beta_n^* = \beta_n^*(x)$ etc.). We set

$$S\mathfrak{D}\bar{g}(x) = \limsup \left(g(\beta_n^*) - g(\alpha_n) \right) / (\beta_n^* - \alpha_n), \quad S\mathfrak{D}\underline{g}(x) = \liminf \ldots;$$

SDg'(x) means $SD\bar{g}(x)$ provided that $SD\bar{g}(x) = SDg(x) \in R$.

(ii) Let $x \in [0, 1]$ and let g be a function such that $\text{Dom } g \supset D \cup \{x\}$. We say that g is \mathfrak{D} -continuous at x iff $\lim g(\alpha_n) = g(x) = \lim g(\beta_n^*)$.

(iii) Let $x \in (0, 1)$ and let g be a function such that $\text{Dom } g \supset D \cup \{x\}$. By $\mathfrak{D}g'(x)$ we mean the common value of

$$\lim (g(\beta_n^*) - g(x))/(\beta_n^* - x) \text{ and } \lim (g(x) - g(\alpha_n))/(x - \alpha_n)$$

provided that these limits are finite and equal.

4.2. Let ψ , Ψ be functions; set $Z = \text{Dom } \Psi$. We say that Ψ is an indefinite **D**-integral of ψ iff the following conditions are fulfilled:

1) Dom $\psi = [0, 1]$.

2) $D \subset Z \subset [0, 1]$ and [0, 1] - Z is countable.

3) Ψ is D-continuous at each point of Z and SD-continuous at each point of [0, 1].

4) There is a countable system \mathfrak{A} of closed sets such that $Z = \bigcup \mathfrak{A}$ and that Ψ is absolutely continuous on A for each $A \in \mathfrak{A}$.

5) $SD\Psi'(x) = \psi(x)$ for almost all $x \in [0, 1]$.

4.3. Let Ψ be an indefinite \mathfrak{D} -integral of a function ψ such that $\psi(x)=0$ for almost all $x \in [0, 1]$. Then Ψ is constant.

Proof. Let M be the set of all points $x \in [0, 1]$ such that $\lim \Psi(\alpha_n(x))$ exists. For each $x \in M$ denote this limit by $\Phi(x)$. It follows from 4.2, 3) that Φ is an extension of Ψ . Let Z, \mathfrak{A} be as in 4.2. Let G be the set of all points $x \in (0, 1)$ with the following property: There is an open interval $J \subset M$ such that $x \in J$ and that Φ is constant on J. Then G is open and Φ is constant on each component of G. Set H=(0, 1)-G. Suppose that h is an isolated point of H. Then there are numbers v, w, λ, μ such that v < h < w, $\Phi = \lambda$ on (v, h) and $\Phi = \mu$ on (h, w). Obviously $h \in M$, $\Phi(h) = \lambda$. Since (see 4.2, 3)) Φ is SD-continuous at h, we have $\mu = \lambda$, $\Phi = \lambda$ on (v, w), $h \in G$, which is a contradiction. We see that H has no isolated point.

Suppose that $H \neq \emptyset$. Set C = [0, 1] - Z. Obviously,

$$H = (C \cap H) \cup \bigcup_{A \in \mathfrak{A}} (A \cap H).$$

The set C is countable and H is a G_{δ} -set. Since H has no isolated point, there is, by Baire's theorem, an open interval $J \subset (0, 1)$ and an $A \in \mathfrak{A}$ such that

(9)
$$\emptyset \neq J \cap H \subset A.$$

Let U=(v, w) be a component of $J-H=J\cap G$. Then Φ is constant on U. If, e.g., $v\in J$, then $v\in H$, $v\in A\subset Z$ so that Φ is \mathfrak{D} -continuous at v. Thus Φ is constant on $J\cap cl U$. This together with the absolute continuity of Φ on $J\cap H$ implies easily that Φ is absolutely continuous on J. Therefore $\Phi'(x)=S\mathfrak{D}\Phi'(x)=\psi(x)=0$ for almost all $x\in J$. We see that Φ is constant on J. It follows that $J\subset G$ which contradicts (9). Thus $H=\emptyset$, G=(0, 1) so that Φ is constant on (0, 1). Since Φ is \mathfrak{D} -continuous at 0 and 1, Φ is constant on [0, 1] and Ψ is constant on Z.

4.4. Let Ψ be an indefinite \mathfrak{D} -integral of ψ and let $\gamma \in \mathbb{R}$. Then $\gamma \Psi$ is an indefinite \mathfrak{D} -integral of $\gamma \psi$.

Proof. Easy.

4.5. Let Ψ_j be an indefinite \mathfrak{D} -integral of ψ_j (j=1, 2). For any $x \in \text{Dom } \Psi_1 \cap \mathbb{D}$ on Ψ_2 set $\Psi(x) = \Psi_1(x) + \Psi_2(x)$. Then Ψ is an indefinite \mathfrak{D} -integral of $\psi_1 + \psi_2$.

Proof. Let Z_j , \mathfrak{A}_j correspond to ψ_j , Ψ_j in the sense of 4.2. It is easy to see that $S\mathfrak{D}\Psi'(x) = \psi(x)$ for almost all $x \in [0, 1]$ and that the set $Z = Z_1 \cap Z_2$ and the system \mathfrak{A} of all sets $A_1 \cap A_2$ $(A_j \in \mathfrak{A}_j)$ satisfy the requirements of 4.2 with respect to $\psi_1 + \psi_2$ and Ψ .

4.6. Let Ψ_1, Ψ_2 be indefinite \mathfrak{D} -integrals of the same function. Then $\Psi_1(1) - \Psi_1(0) = \Psi_2(1) - \Psi_2(0)$.

Proof. It follows easily from 4.3-4.5.

4.7. A function which has an indefinite \mathfrak{D} -integral will be called \mathfrak{D} -integrable. Let ψ be such a function and let Ψ be its indefinite \mathfrak{D} -integral. According to 4.6, the number $\Psi(1) - \Psi(0)$ does not depend on the choice of Ψ ; we call it the \mathfrak{D} -integral of ψ and denote it by $\mathfrak{D} \int \psi$.

2*

4.8. Let $A \subseteq B \subseteq [0, 1]$. Let g be a function on B, $b \in B$. Let A be closed and let g be absolutely continuous on A. Set $g_1(x) = g(x)$ for $x \in B \cap [0, b]$, $g_1(x) = g(b)$ for $x \in B \cap (b, 1]$. Then g_1 is absolutely continuous on A.

Proof. Let $\varepsilon > 0$. Let us choose a $\delta > 0$ corresponding to ε and the absolute continuity of g on A. If $b \in A$, set $\delta_1 = \delta$; if $b \notin A$, choose an $\eta > 0$ such that $(b-\eta, b+\eta) \cap A = \emptyset$ and set $\delta_1 = \min \{\delta, \eta\}$. Now it is not difficult to prove that δ_1 fulfills the requirements corresponding to ε and the absolute continuity of g_1 on A.

4.9. Let Ψ be an indefinite \mathfrak{D} -integral of ψ and let $b \in \text{Dom } \Psi$. Then

$$\mathfrak{D}\int\psi c_{[0,b]}=\Psi(b)-\Psi(0).$$

Proof. Let $\Psi_1(x) = \Psi(x)$ for $x \in [0, b] \cap \text{Dom } \Psi$, $\Psi_1(x) = \Psi(b)$ for $x \in (b, 1] \cap \cap \text{Dom } \Psi$. It is easy to prove (see 4.8) that Ψ_1 is an indefinite \mathfrak{D} -integral of $\psi_{c_{[0,b]}}$. Obviously, $\Psi_1(1) - \Psi_1(0) = \Psi(b) - \Psi(0)$.

4.10. Let ψ be a function on [0, 1] whose Denjoy—Perron integral exists; let us denote it by *P*. Then $\mathfrak{D} \int \psi = P$.

Proof. Let Ψ be an indefinite (Denjoy—Perron) integral of ψ . Then Ψ is continuous on [0, 1], $\Psi'(x) = \psi(x)$ for almost all $x \in [0, 1]$ and there is a countable covering \mathfrak{A} of [0, 1] such that Ψ is absolutely continuous on A for each $A \in \mathfrak{A}$. Since Ψ is continuous, we may suppose that each element of \mathfrak{A} is closed. Therefore Ψ is an indefinite \mathfrak{D} -integral of ψ so that $\mathfrak{D} \int \psi = \Psi(1) - \Psi(0) = P$.

5. Recovery of terms of a D-series from its sum

5.1. Let \mathfrak{D} fulfill Q. (See Section 3.5.) Let g be a function on D. Set

 $A = \{x \in [0, 1]: \text{ either } S\mathfrak{D}\bar{g}(x) < \infty \text{ or } S\mathfrak{D}g(x) > -\infty\}.$

Then $S\mathfrak{D}g'(x)$ exists for almost all $x \in A$.

This is Theorem 6 of Chapter 4 in [2]. The proof uses methods developed in [3, pp. 134-138].

5.2. Let W be the system of all \mathfrak{D} -integrable functions. For each $f \in W$ set $I(f) = \mathfrak{D} \int f$. Then W and I fulfill the assumptions of 2.3.

Proof. It follows from 4.2-4.10.

5.3. Let I, W be as in 5.2. Then, instead of $I \mathfrak{D} F$ -series, we will say simply $\mathfrak{D} F$ -series.

5.4. Theorem. Let \mathfrak{D} fulfill condition Q. Let $\sum_{n=0}^{\infty} f_n$ be a \mathfrak{D} -series such that

$$\max\left\{\left|\int\limits_{J_n(x)} f_n\right|, \left|\int\limits_{J_n^*(x)} f_n\right|\right\} \to 0$$

for each $x \in [0, 1]$. Let the set $\{x \in (0, 1): \max \{S(x), \delta(x)\} = \infty\}$ be countable. Then there is a \mathfrak{D} -integrable function f such that $f(x) = \sum_{n=0}^{\infty} f_n(x)$ for almost all $x \in [0, 1]$; $\sum_{n=0}^{\infty} f_n$ is its $\mathfrak{D}F$ -series.

Proof. Let F have the usual meaning. Set $f(x) = S\mathfrak{D}F'(x)$ for each x for which $S\mathfrak{D}F'(x)$ exists, and f(x)=0 for any other $x \in [0, 1]$. For each $x \in (0, 1) - D$ we have, by 3.3,

$$SD\overline{F}(x) = \limsup s_n(x), \quad SD\underline{F}(x) = \liminf s_n(x).$$

It follows easily from our assumptions and from 5.1 that

$$f(x) = S\mathfrak{D}F'(x) = \lim s_n(x) = \sum_{k=0}^{\infty} f_k(x) \text{ for almost all } x \in [0, 1].$$

Let E_m be as in 3.8; set $Z=D\cup \bigcup_{m=1}^{\infty} E_m$. It is easy to see that [0, 1]-Z is countable. Suppose that \mathfrak{D} fulfills $Q(\mu)$. By 3.6 (with $\lambda=3m/\mu^2$) F is \mathfrak{D} -continuous at each point of E_m for each $m \in N$. For every $x \in [0, 1]$ we have, by 3.2 and 3.4 (with $q=1-\mu$),

$$F(\beta_n) - F(\alpha_n) = \int_{J_n} S_n \to 0$$

and, similarly, $F(\beta_n^*) - F(\alpha_n^*) \rightarrow 0$. This shows that F is \mathfrak{D} -continuous at each point of D (thus at each point of Z) and S \mathfrak{D} -continuous at each point of [0, 1].

It follows from 3.9 that $Z=D\cup \bigcup_{m=1}^{\infty} \operatorname{cl} E_m$. Since $E_1 \subset E_2 \subset \ldots$, we infer from 3.10 that F is absolutely continuous on cl E_m for each $m \in N$. This shows that the restriction of F to Z is an indefinite \mathfrak{D} -integral of f. By 3.2 and 4.9 we have

$$\int_{0}^{x} s_n = F(x) = F(x) - F(0) = \mathfrak{D} \int fc_{[0,x]} \quad \text{for each} \quad x \in D_n \quad (n \in N_0).$$

Now we apply 2.8 (with $g=s_n$) and 2.9.

Remark 1. Let us keep the assumptions and the notations of 5.4. Then (see 2.8 (ii))

$$\begin{aligned} f_0(x) &= |J_0(x)|^{-1} \mathfrak{D} \int fc_{J_0(x)} & \text{for each } x \in (0, 1) - D_0, \\ f_n(x) &= |J_n(x)|^{-1} \mathfrak{D} \int fc_{J_n(x)} - |J_{n-1}(x)|^{-1} \mathfrak{D} \int fc_{J_{n-1}(x)} \\ & \text{for each } x \in (0, 1) - D_n \quad (n \in N). \end{aligned}$$

Remark 2. If $D_n \cap \text{int } J$ has at most one element for each $J \in \mathcal{D}_{n-1}$ and each $n \in N$, then, obviously, $\delta(x) = 0$ for each $x \in (0, 1)$ (which enables us to simplify the assumptions of 5.4).

5.5. In sections 5.5 and 5.6 we suppose that D_n has n+2 points; we write $D_n = \{0, 1, c_1, ..., c_n\}$ $(n \in N_0)$. Set $\varphi_0(x) = 1$ $(x \in [0, 1])$. For each $n \in N$ let φ_n be a function in T_n such that

$$\varphi_n(x) = \left(\frac{|J_n^*(c_n)|}{|J_n(c_n)| |J_{n-1}(c_n)|}\right)^{1/2} \text{ for } x \in \operatorname{int} J_n(c_n),$$

$$\varphi_n(x) = -\left(\frac{|J_n(c_n)|}{|J_n^*(c_n)| |J_{n-1}(c_n)|}\right)^{1/2} \text{ for } x \in \operatorname{int} J_n^*(c_n).$$

It is easy to see that the function φ_n forms an orthonormal basis for T_n $(n \in N_0)$. Thus, a series $\sum_{n=0}^{\infty} f_n$ is a D-series iff there are numbers a_n such that $f_n = a_n \varphi_n$; such a series is the DF-series of a function f iff $a_n = \mathfrak{D} \int f \varphi_n$ $(n \in N_0)$.

5.6. Theorem. Let \mathfrak{D} fulfill condition Q. For each $x \in [0, 1]$ define $M(x) = \{n \in N: \varphi_n(x) \neq 0\}$. Let a_0, a_1, \dots be numbers such that

(10)
$$a_n/\varphi_n(x) \to 0 \quad (n \in M(x), n \to \infty) \quad for \ each \quad x \in [0, 1]$$

and that the set

$$\left\{x\in[0,\,1]\colon \limsup \left|\sum_{k=0}^n a_k\varphi_k(x)\right|=\infty\right\}$$

is countable. Then there is a D-integrable function f such that $f(x) = \sum_{k=0}^{\infty} a_k \varphi_k(x)$ for almost all $x \in [0, 1]$; we have $a_k = D \int f \varphi_k$ $(k \in N_0)$.

Proof. Let $x \in [0, 1]$, $n \in M(x)$, $x \neq c_n$. Obviously $x \in [\alpha_n(c_n), \beta_n^*(c_n)]$. Suppose first that $\alpha_n(c_n) \leq x < c_n$. Then $0 < \varphi_n(x) \leq \varphi_n(y)$ for each $y \in \text{int } J_n^*(x)$ so that

$$\varphi_n(x) \int_{J_n^*(x)} \varphi_n < \int_0^1 \varphi_n^2 = 1.$$

If $x = \alpha_n(c_n)$, then $\int_{J_n(x)} \varphi_n = 0$; if $\alpha_n(c_n) < x < c_n$, then $J_n(x) = J_n^*(x)$. Thus

(11)
$$\max\left\{\left|\int_{J_n(\mathbf{x})} \varphi_n\right|, \left|\int_{J_n^*(\mathbf{x})} \varphi_n\right|\right\} < 1/|\varphi_n(\mathbf{x})|$$

In a similar way we can prove (11) for $c_n < x \le \beta_n^*(c_n)$. If $n \in M(x)$, $x \ne c_n$, then

$$\int_{J_n(x)} \varphi_n = \int_{J_n^*(x)} \varphi_n = 0.$$

Orthogonal series

This shows that

(12)
$$\max\left\{\left|\int_{J_n(x)} a_n \varphi_n\right|, \left|\int_{J_n^*(x)} a_n \varphi_n\right|\right\} \to 0.$$

Obviously $\delta(x)=0$ for each $x \in (0, 1)$. Now we apply 5.4.

Remark. It is not difficult to prove that (under the assumptions of 5.6) conditions (10) and (12) are equivalent for each $x \in [0, 1]$.

6. Additional remarks

6.1. Let ψ , Ψ be functions. We say that Ψ is an indefinite \mathfrak{D}_{as} -integral of ψ iff the following holds:

(i) The requirements 1)-4) of 4.2 (with $Z=\text{Dom }\Psi$) are fulfilled;

(ii) $\Psi'_{as}(x) = \psi(x)$ for almost all $x \in [0, 1]$.

The reader can easily formulate the analogues of sections 4.3—4.7, 4.9, 4.10, 5.2 and 5.3 for the \mathfrak{D}_{as} -integral. In the analogue of 4.10 we may even replace the Denjoy—Perron integral by the Denjoy—Khintchine integral. The modification of the proofs is trivial.

6.2. Let \mathfrak{D} fulfill $Q(\mu)$. Let B be a measurable set, $D \subset B \subset (0, 1)$. Let h be a function measurable on B such that $\mathfrak{D}h'(x)$ exists for all $x \in B$. Then $h'_{as}(x)$ exists and equals $\mathfrak{D}h'(x)$ for almost all $x \in B$.

Proof. We may suppose that $B \cap D = \emptyset$. Let r_n and $d_{n,j}$ be as in 2.1. Let Ω be a countable dense subset of R. Choose an $\varepsilon > 0$. For $n \in N_0$, $j = 1, ..., r_n$ and $\omega \in \Omega$ let $B(n, j, \omega)$ be the set of all points $x \in B \cap (d_{n,j-1}, d_{n,j})$ such that

$$\left|\frac{h(x)-h(\alpha_k)}{x-\alpha_k}-\omega\right|<\varepsilon, \quad \left|\frac{h(\beta_k)-h(x)}{\beta_k-x}-\omega\right|<\varepsilon \quad (k=n,\,n+1,\,\ldots).$$

It is easy to see that the sets $B(n, j, \omega)$ cover B. Now choose n, j, ω as above and set $A=B(n, j, \omega)$. According to 3.7 with $g(x)=h(x)-\omega x$, r=n etc, we have

$$\left|\frac{h(y)-h(x)}{y-x}-\omega\right| \leq \varepsilon/\mu \quad (x, y \in A, x \neq y).$$

We see, first of all, that h is absolutely continuous on A. It follows that $h'_{as}(x)$ exists and that $|h'_{as}(x) - \omega| \leq \varepsilon/\mu$ for almost all $x \in A$. Obviously $|\mathfrak{D}h'(x) - \omega| \leq \varepsilon$ for all $x \in A$. Therefore $|h'_{as}(x) - \mathfrak{D}h'(x)| < 2\varepsilon/\mu$ for almost all $x \in A$, $|h'_{as}(x) - \mathfrak{D}h'(x)| < 2\varepsilon/\mu$ for almost all $x \in B$ and, finally, $h'_{as}(x) = \mathfrak{D}h'(x)$ for almost all $x \in B$. **6.3.** Theorem. Let all the assumptions of 5.4 be fulfilled. Suppose, moreover, that $\delta_n(x) \rightarrow 0$ for almost all $x \in (0, 1)$. Let f be as in 5.4. Then f is \mathfrak{D}_{as} -integrable and $\sum_{n=1}^{\infty} f_n$ is its $\mathfrak{D}_{as}F$ -series.

Proof. If $x \in (0, 1) - D$, $\sum_{n=0}^{\infty} f_n(x) = f(x)$ and if $\delta_n(x) \to 0$, then, according to 3.6 (see (1) and (2)) we have $\mathfrak{D}F'(x) = f(x)$. It follows from 6.2 that $F'_{as}(x) = f(x)$ for almost all $x \in [0, 1]$. Further, we proceed as in the proof of 5.4.

6.4. Theorem. Let all the assumptions of 5.6 be fulfilled. Let f be as in 5.6. Then f is \mathfrak{D}_{as} -integrable and $a_k = \mathfrak{D}_{as} \int f \varphi_k$ $(k \in N_0)$.

The proof is left to the reader.

6.5. Let
$$c_1 = \frac{1}{2}$$
, $c_2 = \frac{1}{4}$, $c_3 = \frac{3}{4}$, $c_4 = \frac{1}{8}$, $c_5 = \frac{3}{8}$, $c_6 = \frac{5}{8}$, $c_7 = \frac{7}{8}$, $c_8 = \frac{1}{16}$, ...,
 $c_{15} = \frac{15}{16}$, ..., $c_{2^n} = 1/2^{n+1}$, ...; set $D_n = \{0, 1, c_1, ..., c_n\}$ $(n \in N_0)$. Let $\varphi_0, \varphi_1, ...$ be as in 5.5. Then \mathfrak{D} fulfills condition $Q\left(\frac{1}{2}\right)$, φ_n are the Haar functions, a \mathfrak{D} -series is a Haar series and the \mathfrak{D}_{as} -integral is the HD-integral defined in [4]. We see that our assertion 6.4 is a generalization of Theorem 2 in [5] (which, in turn, is a generalization of Theorem 4 in [4]).

6.6. Let $D_n = \{k/2^n; k=0, 1, ..., 2^n\}$ $(n \in N_0)$ and let f be a Perron integrable function on [0, 1]. Let $\sum a_n \chi_n$ and $\sum b_n \psi_n$ be the Haar- and Walsh-Fourier series of f, respectively. Let $n \in N_0$ and let $m = 2^n$. As $\chi_0, ..., \chi_{m-1}$ is an orthonormal basis of V_n and as the same is true for $\psi_0, ..., \psi_{m-1}$, we have

$$\sum_{k=0}^{m-1} a_k \chi_k = \text{o.p.} (f, V_n) = \sum_{k=0}^{m-1} b_k \psi_k$$

(see [6]).

References

- [1] J. MAŘÍK, On a class of orthogonal series, Real Analysis Exchange, 4 (1978–79), 53–57.
- [2] M. A. NYMAN, On a generalization of Haar series, Ph. D. Thesis, Mich. State University, 1972.
- [3] S. SAKS, Theory of the integral, Dover (New York, 1964).
- [4] V. A. SKVORCOV, Calculation of the coefficients of an everywhere convergent Haar series, Math. USSR — Sbornik, 4 (1968), 317—327.
- [5] V. A. SKVORCOV, Differentiation with respect to nets and the Haar series, Math. Notes, 4 (1968) 509-513.
- [6] W. R. WADE, A uniqueness theorem for Haar and Walsh series, Trans. Amer. Math. Soc., 141 (1969), 187-194.
- [7] W. R. WADE, Uniqueness theory for Cesaro summable Haar series, Duke Math. J., 38 (1971) 221-227.

Orthogonal series

Об одном классе ортогональных рядов

ДЖ. К. ГЕОРГИУ и Я. МАРЖИК

Предположим, что задана такая последовательность разбиений отрезка [0, 1], что (n+1) разбиение всегда мельче *n*-го. Такая последовательность естественным образом порождает последовательность попарно ортогональных пространств кусочно постоянных функций. Некоторые свойства соответствующих ортогональных рядов изучались в работе [2]. Цель настоящей работы — найти при некоторых дополнительных предположениях члены такого ряда исходя из его суммы (см. 5.4 и 5.6). Некоторая модификация этих результатов приводит в разд. 6.4 к обобщению теоремы 2 из работы [5]. В наших доказательствах часто используются соображения, разработанные в [4]. Некоторые близкие вопросы исследовались, например, в [6] и [7]. Основные результаты работы без доказательства были сформулированы в [1].

DEPARTMENT OF MATHEMATICS MICHIGAN STATE UNIVERSITY EAST LANSING, MI 48824 U.S.A.