Mařík, Jan: Scholarly works

John C. Georgiou; Jan Mařík

On a class of orthogonal series

Anal. Math. 16 (1) (1990), 11-25

Persistent URL: http://dml.cz/dmlcz/502141

Terms of use:

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

On a class of orthogonal series

JOHN C. GEORGIOU and JAN MAŘÍK

1. Notations

The letter R denotes the set of all (finite) real numbers. The word function means a mapping to R. The domain of definition of a function f is denoted by $\operatorname{Dom} f$.

For each $A \subset R$ let int $A ; \mathrm{cl} A,|A|$, and c_{A} denote the interior, the closure, the outer Lebesgue measure and the characteristic function of A, respectively. The symbols $f(a+)$ and $f(a-)$ stand for $\lim _{x+a} f(x)$ and $\lim _{x+a} f(x)$. Further, we set $N_{0}=$ $=\{0,1, \ldots\}, N=\{1,2, \ldots\}$. Instead of $\lim \sup a_{n}(n \in N, n \rightarrow \infty)$. we write simply $\lim \sup a_{n} ;$ similarly for lim inf and lim. The meaning of $a_{n} \rightarrow a$ is obvious.

The symbols $[a, b],[a, b)$ etc. $(a, b \in R, a \leqq b)$ have the usual meaning (in particular, $[a, a]=\{a\}) ; \int_{a}^{b} f$ or $\int_{[a, b]} f$ denotes the Lebesgue integrat of f over $[a, b]$. (In this connection f will be always Riemann integrable.) The words almost and measurable refer to the Lebesgue measure.

2. \mathfrak{D}-and IDF-series

2.1. For each $n \in N_{0}$ let D_{n} be a finite set $\left\{d_{n, 0}, d_{n, 1}, \ldots, d_{n, r_{n}}\right\}$, where $0=d_{n, 0}<$ $<d_{n, 1}<\ldots<d_{n, r_{n}}=1$. Set $D=\bigcup_{n=0}^{\infty} D_{n}$. Assume that $D_{0} \subset D_{1} \subset \ldots$ and that D is dense in $[0,1]$ (so that $\max \left\{d_{n, j}-d_{n, j-1} ; j=1, \ldots ; r_{n}\right\} \rightarrow 0$). For each $n \in N_{0}$ let \mathscr{D}_{n} be the system of all intervals $\left[d_{n, j-1}, d_{n, j}\right]\left(j=1, \ldots, r_{n}\right)$. Let \mathfrak{D} denote the sequence D_{0}, D_{1}, \ldots

Let $n \in N_{0}$. For $x \in(0,1]$ define $\alpha_{n}(x)$ and $\beta_{n}(x)$ by $\alpha_{n}(x)<x \leqq \beta_{n}(x)$ and $\left[\alpha_{n}(x), \beta_{n}(x)\right] \in \mathscr{D}_{n}$; for $x \in[0,1)$ define $\alpha_{n}^{*}(x)$ and $\beta_{n}^{*}(x)$ by $\alpha_{n}^{*}(x) \leqq x<\beta_{n}^{*}(x)$ and $\left[\alpha_{n}^{*}(x), \quad \beta_{n}^{*}(x)\right] \in \mathscr{D}_{n}$. Further set $\alpha_{n}(0)=\beta_{n}(0)=0, \alpha_{n}^{*}(1)=\beta_{n}^{*}(1)=1 \quad\left(n \in N_{0}\right)$.

For each $x \in[0,1]$ and each $n \in N_{0}$ set $J_{n}(x)=\left[\alpha_{n}(x), \beta_{n}(x)\right], J_{n}^{*}(x)=\left[\alpha_{n}^{*}(x)\right.$, $\left.\beta_{n}^{*}(x)\right]$ (thus $J_{n}(0)=\{0\}, J_{n}^{*}(1)=\{1\}$).

Remark. If $x \in D_{n}$, then $\alpha_{n}^{*}(x)=\beta_{n}(x)=x$; if $x \in[0,1]-D_{n}$, then $J_{n}(x)=$ $=J_{n}^{*}(x)$.
2.2. For each $n \in N_{0}$ let V_{n} be the system of all functions f on $[0,1]$ with the following properties:

1) f is constant on int J for each $J \in \mathscr{D}_{n}$;
2) $f(x)=\frac{1}{2}(f(x+)+f(x-))$ for each $x \in(0,1)$;
3) $f(0)=f(0+), f(1)=f(1-)$.

Obviously $V_{0} \subset V_{1} \subset \ldots$. Set $V=\bigcup_{n=0}^{\infty} V_{n}$. Then V is a vector space and V_{n} is an r_{n}-dimensional subspace of $V\left(n \in N_{0}\right)$. It is easy to see that V becomes an inner product space, if we define the inner product of any elements f, g of V as $\int_{0}^{1} f g$.
2.3. Let W be a system of functions on $[0,1]$ and let I be a function on W with the following properties:
4) If $f_{1}, f_{2} \in W, a_{1}, a_{2} \in R$, then $a_{1} f_{1}+a_{2} f_{2} \in W$ and $I\left(a_{1} f_{1}+a_{2} f_{2}\right)=a_{1} I\left(f_{1}\right)+$ $+a_{2} I\left(f_{2}\right)$;
5) $V \subset W$ and $I(f)=\int_{0}^{1} f$ for each $f \in V$;
6) if $f \in V$ and $g \in W$, then $f g \in W$;
7) if f is a function on $[0,1]$ such that $f(x)=0$ for almost all $x \in[0,1]$, then $f \in W$ and $I(f)=0$.
2.4. Let $f, g \in V$. Then $f g \in W$ and $\int_{0}^{1} f g=I(f g)$.

Proof. There is an $h \in V$ such that $f(x) g(x)=h(x)$ for almost all $x \in[0,1]$. Now we apply 5), 7) and 4).
2.5. Let T be a finite-dimensional subspace of V. Let $f \in W$. Then there is a unique $g \in T$ such that $I(f \varphi)=I(g \varphi)$ for each $\varphi \in T$. If functions $\varphi_{1}, \ldots, \varphi_{m}$ form an orthonormal basis of T, then $g=\sum_{j=1}^{m} I\left(f \varphi_{j}\right) \varphi_{j}$.

Proof. Easy.
2.6. (i) The element g of 2.5 (the orthogonal projection of f to T) will be denoted by o.p. (f, T).
(ii) Let $T_{0}=V_{0}$. For each $n \in N$ let T_{n} be the set of all elements f of V_{n} such that $I(f g)=0$ for each $g \in V_{n-1}$.
(iii) Any series $\sum_{n=0}^{\infty} f_{r}$ where $f_{n} \in T_{n}$, will be called a \mathcal{D}-series.
(iv) Let $f \in W$. Then the series $\sum_{n=0}^{\infty}$ o.p. $\left(f, T_{n}\right)$ will be called the $I \mathfrak{D} F$-series of f (F suggests Fourier).

The proofs of the next three assertions are left to the reader.
2.7. Let $n \in N, f \in V_{n}$. Then the following three conditions are equivalent to each other:
(i) $\int_{0}^{x} f=0$ for each $x \in D_{n-1}$;
(ii) $\int_{J} f=0$ for each $J \in \mathscr{D}_{n-1}$;
(iii) $f \in T_{n}$.

Remark. If $J \in \mathscr{D}_{n} \cap \mathscr{D}_{n-1}$ and if $f \in T_{n}$, then $f=0$ on int J.
2.8. Let $f \in W, g \in V, n \in N_{0}$. Then the following three conditions are equivalent to each other:
(i) $\int_{0}^{x} g=I\left(f c_{[0, x]}\right)$ for each $x \in D_{n}$;
(ii) $g(x)|J|=I\left(f c_{J}\right)$ for each $J \in \mathscr{D}_{n}$ and each $x \in \operatorname{int} J$;
(iii) $g=0 . p .\left(f, V_{n}\right)$.
2.9. Let $f_{k} \in V \quad(k=0,1, \ldots), f \in W$. Then $\sum_{k=0}^{\infty} f_{k}$ is the $I \mathfrak{D} F$-series of f iff $\sum_{k=0}^{n} f_{k}=$ o.p. $\left(f, V_{n}\right)$ for each $n \in N_{0}$.

3. Auxiliary theorems

3.1. Throughout the paper, $\sum_{n=0}^{\infty} f_{n}$ is a \mathfrak{D}-series. We set

$$
s_{n}=\sum_{n=0}^{n} f_{k}, \quad F_{n}(x)=\int_{0}^{x} f_{n} \quad\left(n \in N_{0}, x \in[0,1]\right) .
$$

The sum of the series $\sum_{n=0}^{\infty} F_{n}(x)$ will be denoted by $F(x)$ at the points of its convergence.

We will often write $\alpha_{n}, \beta_{n}, \alpha_{n}^{*}, \beta_{n}^{*}, J_{n}, J_{n}^{*}$ instead of $\alpha_{n}(x), \ldots, J_{n}^{*}(x)$, respectively.
3.2. Let $n \in N_{0}, x \in D_{n}$. Then $F(x)=\int_{0}^{x} s_{n}$.

Proof. By 2.7 we have $F_{k}(x)=0$ for $k>n$. Thus $F(x)=\sum_{k=0}^{n} F_{k}(x)=\int_{0}^{x} s_{n}$.
3.3. Let $n \in N_{0}, x \in(0,1)-D_{n}$. Then $s_{n}(x)=\left(F\left(\beta_{n}\right)-F\left(\alpha_{n}\right)\right) /\left(\beta_{n}-\alpha_{n}\right)$.

Proof. It follows from 3.2.
3.4. Let $0<q<1$. Suppose that \mathfrak{D} has the following property: If $n \in N_{0}$, $J \in \mathscr{D}_{n}, K \in \mathscr{D}_{n+1}, K \subset J, K \neq J$, then $|K| \leqq q|J|$. Let $x \in[0,1]$ and let

$$
\int_{J_{n}} f_{n} \rightarrow 0 \quad\left[\int_{J_{n}^{*}} f_{n} \rightarrow 0\right]
$$

Then

$$
\int_{J_{n}} s_{n} \rightarrow 0 \quad\left[\int_{J_{n}^{*}} s_{n} \rightarrow 0\right]
$$

Proof. Let $\int_{J_{n}} f_{n} \rightarrow 0$. We will show that $\int_{J_{n}} s_{n} \rightarrow 0$. We may suppose that $x>0$. Set

$$
b_{n}=\sup \left\{\int_{J_{k}} f_{k} \mid ; k \geqq n\right\}, \quad B_{n}=b_{0} q^{n}+\ldots+b_{n-1} q+b_{n} \quad\left(n \in N_{0}\right), \quad B=\lim \sup B_{n}
$$

Since $B_{n} \leqq b_{0} /(1-q)$, we have $B<\infty$; since $B_{n+1}=q B_{n}+b_{n+1}$ and $b_{n} \rightarrow 0$, we have $B=q B$ so that $B=0$.

Let $P=\left\{n \in N ; J_{n} \neq J_{n-1}\right\}$. We may write $P=\left\{p_{1}, p_{2}, \ldots\right\}$, where $p_{1}<p_{2}<\ldots$; further set $p_{0}=0$. Let $\varepsilon>0$. Since $B=0$, we can find an $m_{0} \in N$ such that $B_{m}<\varepsilon$ for each $m \geqq m_{0}$. Now let $n \in N, n \geqq p_{m_{0}}$. There is an $m \geqq m_{0}$ such that $p_{m} \leqq n<$ $<p_{m+1}$. Let $j \in N_{0}, j \leqq m$. Obviously $\left|J_{p_{m}}\right| \leqq q^{m-j}\left|J_{p_{j}}\right|$; since $f_{p_{j}}$ is constant on $\operatorname{int} J_{p_{j}}$ and $p_{j} \geqq j$, we have

$$
\left|\int_{J_{p_{m}}} f_{p_{j}}\right| \leqq q^{m-j}\left|\int_{J_{p_{j}}} f_{p_{j}}\right| \leqq q^{m-3} b_{j}
$$

If $k \in N-P$ and $k \leqq n$, then $J_{k-1}=J_{k} \supset J_{n}=J_{\boldsymbol{p}_{m}}$ whence $\int_{\boldsymbol{p}_{\boldsymbol{p}_{m}}} f_{k}=0$. Thus

$$
\left|\int_{J_{n}} s_{n}\right| \leqq \sum_{j=0}^{m}\left|\int_{J_{p_{m}}} f_{p_{j}}\right| \leqq \sum_{j=0}^{m} q^{m-j} b_{j}=B_{m}<\varepsilon
$$

Similarly can be proved that

$$
\int_{J_{n}^{*}} s_{n} \rightarrow 0 \text { if } \int_{J_{n}^{*}} f_{n} \rightarrow 0
$$

3.5. (i) Let $\mu>0$. We say that \mathfrak{D} fulfills (condition) $Q(\mu)$ iff it has the following property: If $n \in N_{0}, J \in \mathscr{D}_{n}, K \in \mathscr{D}_{n+1}, K \subset J$, then $|K| \geqq \mu|J|$. (In such a case, obviously, $\mu<1$.) We say that \mathfrak{D} fulfills Q iff it fulfills $Q(\mu)$ for some $\mu>0$.
(ii) For each $x \in(0,1)$ and each $n \in N$ set

$$
\delta_{n}(x)=\left|J_{n-1}\right|^{-1} \min \left\{\left|\int_{\alpha_{n-1}}^{\alpha_{n}} f_{n}\right|,\left|\int_{\beta_{n}}^{\beta_{n-1}} f_{n}\right|\right\} .
$$

Further, we define

$$
\delta(x)=\sup \left\{\delta_{n}(x): n \in N\right\}, \quad S(x)=\sup \left\{\left|s_{n}(x)\right|: n \in N_{0}\right\}
$$

for each $x \in(0,1)$.
3.6. Let \mathfrak{D} fulfill $Q(\mu)$. Let $x \in(0,1)-D, n \in N_{0}$. Set $\varepsilon=\sup \left\{\delta_{k}(x): k>n\right\}$, $\eta=\sup \left\{\left|f_{k}(x)\right|: k>n\right\}$ and suppose that $\max \{\varepsilon, \eta\}<\infty$. Further, set $\theta=$ $=(\varepsilon+(1-\mu) \eta) / \mu^{2}$. Then $\sum_{k=0}^{\infty}\left|F_{k}(x)\right|<\infty$ (so that $F(x)$ has a meaning) and there is a $p \geqq n$ such that

$$
\begin{align*}
& \left|F(x)-F\left(\alpha_{n}\right)-\left(x-\alpha_{n}\right) s_{p}(x)\right| \leqq\left(x-\alpha_{n}\right) \theta, \tag{1}\\
& \left|F\left(\beta_{n}\right)-F(x)-\left(\beta_{n}-x\right) s_{p}(x)\right| \leqq\left(\beta_{n}-x\right) \theta . \tag{2}
\end{align*}
$$

If, moreover, $S(x)<\infty$ and if λ is a number such that $\lambda \geqq(\delta(x)+2 S(x)) / \mu^{2}$, then

$$
\begin{equation*}
\left|F(x)-F\left(\alpha_{n}\right)\right| \leqq\left(x-\alpha_{n}\right) \lambda, \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\left|F\left(\beta_{n}\right)-F(x)\right| \leqq\left(\beta_{n}-x\right) \lambda . \tag{4}
\end{equation*}
$$

Proof. Let p be the greatest integer for which $\alpha_{p}=\alpha_{n}$. Since $\left[\alpha_{p}, \alpha_{p+1}\right]$ contains some element of \mathscr{D}_{p+1}, we have

$$
\begin{equation*}
x-\alpha_{p}>\alpha_{p+1}-\alpha_{p} \geqq \mu\left|J_{p}\right| . \tag{5}
\end{equation*}
$$

Now choose a $k>p$. Let, e.g.,

$$
\left|\int_{\alpha_{k-1}}^{\alpha_{k}} f_{k}\right|=\delta_{k}(x) \mid J_{k-1} 1
$$

If $J_{k} \neq J_{k-1}$, then $\mu\left|J_{k-1}\right| \leqq\left|J_{k-1}-J_{k}\right|$; therefore (even if $J_{k}=J_{k-1}$)

$$
\left|\int_{\alpha_{k-1}}^{x_{k}} f_{k}\right| \leqq\left|J_{k-1}-J_{k}\right| \delta_{k}(x) / \mu
$$

Obviously

$$
\left|\int_{a_{k}}^{x} f_{k}\right| \leqq\left|f_{k}(x)\right|\left|J_{k}\right|, \quad F_{k}(x)=\int_{\alpha_{k-1}}^{\alpha_{k}} f_{k}+\int_{\alpha_{k}}^{x} f_{k},
$$

so that

$$
\begin{equation*}
\left|F_{k}(x)\right| \leqq\left|J_{k-1}-J_{k}\right| \delta_{k}(x) / \mu+\left|f_{k}(x)\right|\left|J_{k}\right| . \tag{6}
\end{equation*}
$$

Let $P=\left\{k \in N ; k>p, \quad J_{k} \neq J_{k-1}\right\}$. We may write $P=\left\{p_{1}, p_{2}, \ldots\right\}$, where $p<p_{1}<p_{2}<\ldots$. If $k>p, k \notin P$, then $f_{k}(x)=0$; thus

$$
\sum_{k=p+1}^{\infty}\left|f_{k}(x)\right|\left|J_{k}\right| \leqq \eta \sum_{r=1}^{\infty}\left|J_{p_{r} r}\right| .
$$

It is easy to see that

$$
\left|J_{p_{r}}\right| \leqq(1-\mu)\left|J_{p_{r-1}}\right| \leqq \ldots \leqq(1-\mu)^{r}\left|J_{p}\right|
$$

Now we get from (6) and (5)

$$
\begin{equation*}
\sum_{k=p+1}^{\infty}\left|F_{k}(x)\right| \leqq\left|J_{p}\right| \varepsilon / \mu+\eta\left|J_{p}\right|(1-\mu) / \mu \leqq\left(x-\alpha_{p}\right) \theta \tag{7}
\end{equation*}
$$

Since, by 3.2,

$$
\sum_{k=0}^{p} F_{k}(x)-F\left(\alpha_{p}\right)=\int_{\alpha_{p}}^{x} s_{p}=\left(x-\alpha_{p}\right) s_{p}(x)
$$

we have

$$
F(x)-F\left(\alpha_{p}\right)=\left(x-\alpha_{p}\right) s_{p}(x)+\sum_{k=p+1}^{\infty} F_{k}(x) .
$$

This together with (7) proves (1).
If, finally, S and λ are as above, then

$$
\eta \leqq 2 S(x), \quad \theta+S(x) \leqq\left(\delta(x)+S(x)\left(2-2 \mu+\mu^{2}\right)\right) / \mu^{2} \leqq \lambda
$$

and, by (1),

$$
\left|F(x)-F\left(\alpha_{n}\right)\right| \leqq\left(x-\alpha_{n}\right)(\theta+S(x)) .
$$

This proves (3); (2) and (4) can be proved similarly.
3.7. Let \mathfrak{D} fulfill $Q(\mu)$. Let g be a function such that $\operatorname{Dom} g \supset D$. Let $\varepsilon>0$, $r \in N_{0}$, $J \in \mathscr{D}_{r}$. Let $A \subset(J-D) \cap \operatorname{Dom} g$ and let

$$
\begin{gathered}
\left|g(x)-g\left(\alpha_{k}\right)\right| \leqq\left(x-\alpha_{k}\right) \varepsilon, \quad\left|g\left(\beta_{k}\right)-g(x)\right| \leqq\left(\beta_{k}-x\right) \varepsilon \quad(k=r, r+1, \ldots) \\
\text { for all } x \in A .
\end{gathered}
$$

Then

$$
|g(y)-g(x)| \leqq|y-x| \varepsilon / \mu \text { for all } x, y \in A .
$$

Proof. Let $x, y \in A, x<y$. Let n be the smallest integer for which $(x, y) \cap D_{n} \neq \emptyset$. Obviously $n>r$.

1) Let $(x, y) \cap D_{n}$ contain only one point. Then $\alpha_{n}(y)=\beta_{n}(x)$ whence

$$
|g(y)-g(x)| \leqq\left|g(y)-g\left(\alpha_{n}(y)\right)\right|+\left|g\left(\beta_{n}(x)\right)-g(x)\right| \leqq \varepsilon(y-x) .
$$

2) Let $(x, y) \cap D_{n}$ contain more points than one. Set $\alpha=\alpha_{n-1}(x), \beta=\beta_{n-1}(x)$. Since $(x, y) \cap D_{n-1}=\emptyset$, we have $\alpha_{n-1}(y)=\alpha$ so that

$$
|g(y)-g(x)| \leqq|g(y)-g(\alpha)|+|g(x)-g(\alpha)| \leqq(x+y-2 \alpha) \varepsilon ;
$$

similarly

$$
|g(y)-g(x)| \leqq(2 \beta-x-y) \varepsilon
$$

If $x+y \leqq \alpha+\beta$, then $x+y-2 \alpha \leqq \beta-\alpha$; if $x+y>\alpha+\beta$, then $2 \beta-x-y<\beta-\alpha$. Since (x, y) contains some element of $\mathscr{\mathscr { O }}_{n}$, we have $\mu(\beta-\alpha) \leqq y-x$ whence

$$
|g(y)-g(x)| \leqq(\beta-\alpha) \varepsilon \leqq(y-x) \varepsilon / \mu .
$$

3.8. For each $m>0$ set

$$
E_{m}=\{x \in(0,1)-D ; \max \{\delta(x), S(x)\} \leqq m\} .
$$

3.9. Let $m>0$. Then $\mathrm{cl} E_{m}-D=E_{m}$.

Proof. Obviously $E_{m} \subset \mathrm{cl} E_{m}-D$. Now let $x \in \operatorname{cl} E_{m}-D$ and let $n \in N_{0}$. There is a $y \in E_{m} \cap \operatorname{int} J_{n}(x)$. Thus $f_{k}(x)=f_{k}(y), J_{k}(x)=J_{k}(y)$ for $k=0, \ldots, n$ so that $\left|s_{n}(x)\right|=\left|s_{n}(y)\right| \leqq m$ and, if $n>0$, also $\delta_{n}(x)=\delta_{n}(y) \leqq m$. Therefore $x \in E_{m}$.

Remark. It follows from 3.6 and 3.9 that if \mathfrak{D} fulfills $Q, F(x)$ exists for each $x \in \bigcup_{m>0} \operatorname{cl} E_{m}$.
3.10. Let \mathfrak{D} fulfill $Q(\mu)$. Let $m>\max \left\{\left|f_{0}(x)\right|: x \in[0,1]\right\}$ and let $x, y \in \mathrm{cl} E_{m}$. Then

$$
\begin{equation*}
|F(y)-F(x)| \leqq|y-x| 3 m / \mu^{3} . \tag{8}
\end{equation*}
$$

Proof. Define $\lambda=3 \mathrm{~m} / \mu^{2}$. Notice that the relations (3), (4) in 3.6 hold for each $x \in E_{m}$ and each $n \in N_{0}$.
(i) Let $x, y \in E_{m}, x<y$. Let p be the smallest integer for which $(x, y) \cap D_{p} \neq \emptyset$.

1) Suppose that $p=0$. Set $\beta=\beta_{0}(x), \alpha=\alpha_{0}(y)$. Then $x<\beta \leqq \alpha<y$. By 3.6 we have

$$
|F(\beta)-F(x)| \leqq(\beta-x) \lambda, \quad|F(y)-F(\alpha)| \leqq(y-\alpha) \lambda ;
$$

obviously

$$
|F(\alpha)-F(\beta)|=\left|\int_{\alpha}^{\beta} f_{0}\right| \leqq(\beta-\alpha) m \leqq(\beta-\alpha) \lambda .
$$

Therefore $|F(y)-F(x)| \leqq(y-x) \lambda$.
2) Suppose that $p>0$. Then we apply 3.7 with $g=F, \varepsilon=\lambda, r=p-1$, etc.
(ii) Let $x, y \in \operatorname{cl} E_{m}$. If $y \notin D$, then, by $3.9, y \in E_{m}$ and we define $y_{n}=y$ for each $n \in N$. If $y \in D$, we fix a p such that $y \in D_{p}$ and proceed as follows: For each $n<p$ we choose an arbitrary element $y_{n} \in E_{m}$. For each $n \geqq p$ there is a $y_{n} \in E_{m}$ such
that either $y=\alpha_{n}\left(y_{n}\right)$ or $y=\beta_{n}\left(y_{n}\right)$; by 3.6,

$$
\left|F\left(y_{n}\right)-F(y)\right| \leqq\left|y_{n}-y\right| \lambda .
$$

Thus, in any case, $y_{n} \rightarrow y$ and $F\left(y_{n}\right) \rightarrow F(y)$. We find similarly points $x_{n} \in E_{m}$ such that $x_{n} \rightarrow x$ and $F\left(x_{n}\right) \rightarrow F(x)$. By (i) we have

$$
\left|F\left(y_{n}\right)-F\left(x_{n}\right)\right| \leqq\left|y_{n}-x_{n}\right| \lambda / \mu \quad(n \in N) ;
$$

this implies (8).

4. D-integral

4.1. (i) Let g be a function such that Dom $g \supset D$ and let $x \in[0,1]$. We say that g is $S \mathfrak{D}$-continuous at x iff $g\left(\beta_{n}^{*}\right)-g\left(\alpha_{n}\right) \rightarrow 0 \quad\left(\beta_{n}^{*}=\beta_{n}^{*}(x)\right.$ etc.). We set

$$
S \mathfrak{D} \bar{g}(x)=\limsup \left(g\left(\beta_{n}^{*}\right)-g\left(\alpha_{n}\right)\right) /\left(\beta_{n}^{*}-\alpha_{n}\right), \quad S \mathfrak{D} \underline{g}(x)=\liminf \ldots ;
$$

$S \mathfrak{D} g^{\prime}(x)$ means $S \mathfrak{D} \bar{g}(x)$ provided that $S \mathfrak{D} \bar{g}(x)=S \mathfrak{D} g(x) \in R$.
(ii) Let $x \in[0,1]$ and let g be a function such that $\operatorname{Dom} g \supset D \cup\{x\}$. We say that g is \mathfrak{D}-continuous at x iff $\lim g\left(\alpha_{n}\right)=g(x)=\lim g\left(\beta_{n}^{*}\right)$.
(iii) Let $x \in(0,1)$ and let g be a function such that $\operatorname{Dom} g \supset D \cup\{x\}$. By $\mathcal{D}^{\prime}(x)$ we mean the common value of

$$
\lim \left(g\left(\beta_{n}^{*}\right)-g(x)\right) /\left(\beta_{n}^{*}-x\right) \quad \text { and } \quad \lim \left(g(x)-g\left(\alpha_{n}\right)\right) /\left(x-\alpha_{n}\right)
$$

provided that these limits are finite and equal.
4.2. Let ψ, Ψ be functions; set $Z=\operatorname{Dom} \Psi$. We say that Ψ is an indefinite D-integral of ψ iff the following conditions are fulfilled:

1) $\operatorname{Dom} \psi=[0,1]$.
2) $D \subset Z \subset[0,1]$ and $[0,1]-Z$ is countable.
3) Ψ is \mathfrak{D}-continuous at each point of Z and $S \mathfrak{D}$-continuous at each point of [0, 1].
4) There is a countable system \mathfrak{H} of closed sets such that $Z=U \mathfrak{A}$ and that Ψ is absolutely continuous on A for each $A \in \mathfrak{H}$.
5) $S \mathfrak{D} \Psi^{\prime}(x)=\psi(x)$ for almost all $x \in[0,1]$.
4.3. Let Ψ be an indefinite \mathfrak{D}-integral of a function ψ such that $\psi(x)=0$ for almost all $x \in[0,1]$. Then Ψ is constant.

Proof. Let M be the set of all points $x \in[0,1]$ such that $\lim \Psi\left(\alpha_{n}(x)\right)$ exists. For each $x \in M$ denote this limit by $\Phi(x)$. It follows from $4.2,3$) that Φ is an extension of Ψ. Let Z, \mathfrak{H} be as in 4.2. Let G be the set of all points $x \in(0,1)$ with the following property: There is an open interval $J \subset M$ such that $x \in J$ and that Φ is constant on J. Then G is open and Φ is constant on each component of G. Set $H=(0,1)-G$.

Suppose that h is an isolated point of H. Then there are numbers v, w, λ, μ such that $v<h<w, \Phi=\lambda$ on (v, h) and $\Phi=\mu$ on (h, w). Obviously $h \in M, \Phi(h)=\lambda$. Since (see 4.2,3)) Φ is $S \mathcal{D}$-continuous at h, we have $\mu=\lambda, \Phi=\lambda$ on $(v, w), h \in G$, which is a contradiction. We see that H has no isolated point.

Suppose that $H \neq \emptyset$. Set $C=[0,1]-Z$. Obviously,

$$
H=(C \cap H) \cup \bigcup_{A \in \mathfrak{N}}(A \cap H)
$$

The set C is countable and H is a G_{δ}-set. Since H has no isolated point, there is, by Baire's theorem, an open interval $J \subset(0,1)$ and an $A \in \mathfrak{A}$ such that

$$
\begin{equation*}
\emptyset \neq J \cap H \subset A . \tag{9}
\end{equation*}
$$

Let $U=(v, w)$ be a component of $J-H=J \cap G$. Then Φ is constant on U. If, e.g., $v \in J$, then $v \in H, v \in A \subset Z$ so that Φ is \mathfrak{D}-continuous at v. Thus Φ is constant on $J \cap \mathbf{c l} U$. This together with the absolute continuity of Φ on $J \cap H$ implies easily that Φ is absolutely continuous on J. Therefore $\Phi^{\prime}(x)=S \mathfrak{D} \Phi^{\prime}(x)=\psi(x)=0$ for almost all $x \in J$. We see that Φ is constant on J. It follows that $J \subset G$ which contradicts (9). Thus $H=\emptyset, G=(0,1)$ so that Φ is constant on (0,1). Since Φ is \mathfrak{D}-continuous at 0 and $1, \Phi$ is constant on $[0,1]$ and Ψ is constant on Z.
4.4. Let Ψ be an indefinite \mathfrak{D}-integral of ψ and let $\gamma \in R$. Then $\gamma \Psi$ is an indefinite \mathfrak{D}-integral of $\gamma \psi$.

Proof. Easy.
4.5. Let Ψ_{j} be an indefinite \mathfrak{D}-integral of $\psi_{j}(j=1,2)$. For any $x \in \operatorname{Dom} \Psi_{1} \cap$ $\cap \operatorname{Dom} \Psi_{2}$ set $\Psi(x)=\Psi_{1}(x)+\Psi_{2}(x)$. Then Ψ is an indefinite \mathfrak{D}-integral of $\psi_{1}+\psi_{2}$.

Proof. Let Z_{j}, \mathfrak{H}_{j} correspond to ψ_{j}, Ψ_{j} in the sense of 4.2. It is easy to see that $S \mathfrak{D} \Psi^{\prime}(x)=\psi(x)$ for almost all $x \in[0,1]$ and that the set $Z=Z_{1} \cap Z_{2}$ and the system \mathfrak{U} of all sets $A_{1} \cap A_{2}\left(A_{j} \in \mathfrak{H}_{j}\right)$ satisfy the requirements of 4.2 with respect to $\psi_{1}+\psi_{2}$ and Ψ.
4.6. Let Ψ_{1}, Ψ_{2} be indefinite \mathfrak{D}-integrals of the same function. Then $\Psi_{1}(1)-\Psi_{1}(0)=\Psi_{2}(1)-\Psi_{2}(0)$.

Proof. It follows easily from 4.3-4.5.
4.7. A function which has an indefinite \mathfrak{D}-integral will be called \mathfrak{D}-integrable. Let ψ be such a function and let Ψ be its indefinite \mathfrak{D}-integral. According to 4.6, the number $\Psi(1)-\Psi(0)$ does not depend on the choice of Ψ; we call it the \mathfrak{D}-integral of ψ and denote it by $\mathfrak{D} \int \psi$.
4.8. Let $A \subset B \subset[0,1]$. Let g be a function on $B, b \in B$. Let A be closed and let g be absolutely continuous on A. Set $g_{1}(x)=g(x)$ for $x \in B \cap[0, b], g_{1}(x)=g(b)$ for $x \in B \cap(b, 1]$. Then g_{1} is absolutely continuous on A.

Proof. Let $\varepsilon>0$. Let us choose a $\delta>0$ corresponding to ε and the absolute continuity of g on A. If $b \in A$, set $\delta_{1}=\delta$; if $b \nsubseteq A$, choose an $\eta>0$ such that $(b-\eta, b+\eta) \cap A=\emptyset$ and set $\delta_{1}=\min \{\delta, \eta\}$. Now it is not difficult to prove that δ_{1} fulfills the requirements corresponding to ε and the absolute continuity of g_{1} on A.
4.9. Let Ψ be an indefinite \mathfrak{D}-integral of ψ and let $b \in \operatorname{Dom} \Psi$. Then

$$
\mathfrak{D} \int \psi c_{[0, b]}=\Psi(b)-\Psi(0) .
$$

Proof. Let $\Psi_{1}(x)=\Psi(x)$ for $x \in[0, b] \cap \operatorname{Dom} \Psi, \Psi_{1}(x)=\Psi(b)$ for $x \in(b, 1] \cap$ \cap Dom Ψ. It is easy to prove (see 4.8) that Ψ_{1} is an indefinite \mathfrak{D}-integral of $\psi c_{[0, b]}$. Obviously, $\Psi_{1}(1)-\Psi_{1}(0)=\Psi(b)-\Psi(0)$.
4.10. Let ψ be a function on $[0,1]$ whose Denjoy-Perron integral exists; let us denote it by P. Then $\mathcal{D} \int \psi=P$.

Proof. Let Ψ be an indefinite (Denjoy-Perron) integral of ψ. Then Ψ is continuous on $[0,1], \Psi^{\prime}(x)=\psi(x)$ for almost all $x \in[0,1]$ and there is a countable covering \mathfrak{A} of $[0,1]$ such that Ψ is absolutely continuous on A for each $A \in \mathfrak{A}$. Since Ψ is continuous, we may suppose that each element of \mathfrak{Q} is closed. Therefore Ψ is an indefinite \mathfrak{D}-integral of ψ so that $\mathfrak{D} \int \psi=\Psi(1)-\Psi(0)=P$.

5. Recovery of terms of a \mathfrak{D}-series from its sum

5.1. Let \mathfrak{D} fulfill Q. (See Section 3.5.) Let g be a function on D. Set

$$
A=\{x \in[0,1]: \text { either } S \mathfrak{D} \bar{g}(x)<\infty \text { or } S \mathfrak{D} g(x)>-\infty\} .
$$

Then $S \mathfrak{D} g^{\prime}(x)$ exists for almost all $x \in A$.
This is Theorem 6 of Chapter 4 in [2]. The proof uses methods developed in [3, pp. 134-138].
5.2. Let W be the system of all \mathfrak{D}-integrable functions. For each $f \in W$ set $I(f)=\mathfrak{D} \int f$. Then W and I fulfill the assumptions of 2.3.

Proof. It follows from 4.2-4.10.
5.3. Let I, W be as in 5.2 . Then, instead of $I \mathfrak{D} F$-series, we will say simply $\mathfrak{D} F$ series.
5.4. Theorem. Let \mathfrak{D} fulfill condition Q. Let $\sum_{n=0}^{\infty} f_{n}$ be a \mathfrak{D}-series such that

$$
\max \left\{\left|\int_{J_{n}(x)} f_{n}\right|,\left|\int_{J_{n}^{*}(x)} f_{n}\right|\right\} \rightarrow 0
$$

for each $x \in[0,1]$. Let the set $\{x \in(0,1): \max \{S(x), \delta(x)\}=\infty\}$ be countable. Then there is a \mathfrak{D}-integrable function f such that $f(x)=\sum_{n=0}^{\infty} f_{n}(x)$ for almost all $x \in[0,1]$; $\sum_{n=0}^{\infty} f_{n}$ is its $\mathfrak{D} F$-series.

Proof. Let F have the usual meaning. Set $f(x)=S \mathcal{D} F^{\prime}(x)$ for each x for which $S \mathfrak{D} F^{\prime}(x)$ exists, and $f(x)=0$ for any other $x \in[0,1]$. For each $x \in(0,1)-D$ we have, by 3.3 ,

$$
S \mathfrak{D} \bar{F}(x)=\limsup s_{n}(x), \quad S \mathfrak{D} \underline{F}(x)=\lim \inf s_{n}(x)
$$

It follows easily from our assumptions and from 5.1 that

$$
f(x)=S \mathfrak{D} F^{\prime}(x)=\lim s_{n}(x)=\sum_{k=0}^{\infty} f_{k}(x) \quad \text { for almost all } \quad x \in[0,1]
$$

Let E_{m} be as in 3.8 ; set $Z=D \cup \bigcup_{m=1}^{\infty} E_{m}$. It is easy to see that $[0,1]-Z$ is countable. Suppose that \mathfrak{D} fulfills $Q(\mu)$. By 3.6 (with $\left.\lambda=3 m / \mu^{2}\right) F$ is \mathfrak{D}-continuous at each point of E_{m} for each $m \in N$. For every $x \in[0,1]$ we have, by 3.2 and 3.4 (with $q=1-\mu$),

$$
F\left(\beta_{n}\right)-F\left(\alpha_{n}\right)=\int_{J_{n}} s_{n} \rightarrow 0
$$

and, similarly, $F\left(\beta_{n}^{*}\right)-F\left(\alpha_{n}^{*}\right) \rightarrow 0$. This shows that F is \mathfrak{D}-continuous at each point of D (thus at each point of Z) and $S \mathfrak{D}$-continuous at each point of $[0,1]$.

It follows from 3.9 that $Z=D \cup \bigcup_{m=1}^{\infty} \mathrm{cl} E_{m}$. Since $E_{1} \subset E_{2} \subset \ldots$, we infer from 3.10 that F is absolutely continuous on $\mathrm{cl} E_{m}$ for each $m \in N$. This shows that the restriction of F to Z is an indefinite \mathfrak{D}-integral of f. By 3.2 and 4.9 we have

$$
\int_{0}^{x} s_{n}=F(x)=F(x)-F(0)=\mathfrak{D} \int f c_{[0, x]} \text { for each } x \in D_{n} \quad\left(n \in N_{0}\right)
$$

Now we apply 2.8 (with $g=s_{n}$) and 2.9.
Remark 1. Let us keep the assumptions and the notations of 5.4. Then (see 2.8 (ii))

$$
\begin{gathered}
f_{0}(x)=\left|J_{0}(x)\right|^{-1} \mathfrak{D} \int f c_{J_{\ell}(x)} \quad \text { for each } \quad x \in(0,1)-D_{0} \\
f_{n}(x)=\left|J_{n}(x)\right|^{-1} \mathfrak{D} \int f c_{J_{n}(x)}-\left|J_{n-1}(x)\right|^{-1} \mathfrak{D} \int f c_{J_{n-1}(x)} \\
\text { for each } x \in(0,1)-D_{n} \quad(n \in N)
\end{gathered}
$$

Remark 2. If $D_{n} \cap \operatorname{int} J$ has at most one element for each $J \in \mathscr{D}_{n-1}$ and each $n \in N$, then, obviously, $\delta(x)=0$ for each $x \in(0,1)$ (which enables us to simplify the assumptions of 5.4).
5.5. In sections 5.5 and 5.6 we suppose that D_{n} has $n+2$ points; we write $D_{n}=$ $=\left\{0,1, c_{1}, \ldots, c_{n}\right\}\left(n \in N_{0}\right)$. Set $\varphi_{0}(x)=1 \quad(x \in[0,1])$. For each $n \in N$ let φ_{n} be a function in T_{n} such that

$$
\begin{gathered}
\varphi_{n}(x)=\left(\frac{\left|J_{n}^{*}\left(c_{n}\right)\right|}{\left|J_{n}\left(c_{n}\right)\right|\left|J_{n-1}\left(c_{n}\right)\right|}\right)^{1 / 2} \text { for } x \in \operatorname{int} J_{n}\left(c_{n}\right), \\
\varphi_{n}(x)=-\left(\frac{\left|J_{n}\left(c_{n}\right)\right|}{\left|J_{n}^{*}\left(c_{n}\right)\right|\left|J_{n-1}\left(c_{n}\right)\right|}\right)^{1 / 2} \text { for } \quad x \in \operatorname{int} J_{n}^{*}\left(c_{n}\right) .
\end{gathered}
$$

It is easy to see that the function φ_{n} forms an orthonormal basis for $T_{n}\left(n \in N_{0}\right)$. Thus, a series $\sum_{n=0}^{\infty} f_{n}$ is a \mathfrak{D}-series iff there are numbers a_{n} such that $f_{n}=a_{n} \varphi_{n}$; such a series is the $\mathfrak{D} F$-series of a function f iff $a_{n}=\mathfrak{D} \int f \varphi_{n}\left(n \in N_{0}\right)$.
5.6. Theorem. Let \mathfrak{D} fulfill condition Q. For each $x \in[0,1]$ define $M(x)=$ $=\left\{n \in N: \varphi_{n}(x) \neq 0\right\}$. Let a_{0}, a_{1}, \ldots be numbers such that

$$
\begin{equation*}
a_{n} / \varphi_{n}(x) \rightarrow 0 \quad(n \in M(x), n \rightarrow \infty) \text { for each } x \in[0,1] \tag{10}
\end{equation*}
$$

and that the set

$$
\left\{x \in[0,1]: \lim \sup \left|\sum_{k=0}^{n} a_{k} \varphi_{k}(x)\right|=\infty\right\}
$$

is countable. Then there is a \mathfrak{D}-integrable function f such that $f(x)=\sum_{k=0}^{\infty} a_{k} \varphi_{k}(x)$ for almost all $x \in[0,1]$; we have $a_{k}=\mathfrak{D} \int f \varphi_{k}\left(k \in N_{0}\right)$.

Proof. Let $x \in[0,1], n \in M(x), x \neq c_{n}$. Obviously $x \in\left[\alpha_{n}\left(c_{n}\right), \beta_{n}^{*}\left(c_{n}\right)\right]$. Suppose first that $\alpha_{n}\left(c_{n}\right) \leqq x<c_{n}$. Then $0<\varphi_{n}(x) \leqq \varphi_{n}(y)$ for each $y \in \operatorname{int} J_{n}^{*}(x)$ so that

$$
\varphi_{n}(x) \int_{J_{n}^{*}(x)} \varphi_{n}<\int_{0}^{1} \varphi_{n}^{2}=1
$$

If $x=\alpha_{n}\left(c_{n}\right)$, then $\int_{J_{n}(x)} \varphi_{n}=0 ;$ if $\alpha_{n}\left(c_{n}\right)<x<c_{n}$, then $J_{n}(x)=J_{n}^{*}(x)$. Thus

$$
\begin{equation*}
\max \left\{\left|\int_{J_{n}(x)} \varphi_{n}\right|,\left|\int_{J_{n}^{*}(x)} \varphi_{n}\right|\right\}<1 /\left|\varphi_{n}(x)\right| \tag{11}
\end{equation*}
$$

In a similar way we can prove (11) for $c_{n}<x \leqq \beta_{n}^{*}\left(c_{n}\right)$. If $n \nsubseteq M(x), x \neq c_{n}$, then

$$
\int_{J_{n}(x)} \varphi_{n}=\int_{J_{n}^{*}(x)} \varphi_{n}=0
$$

This shows that

$$
\begin{equation*}
\max \left\{\left|\int_{J_{n}(x)} a_{n} \varphi_{n}\right|,\left|\int_{J_{n}^{*}(x)} a_{n} \varphi_{n}\right|\right\} \rightarrow 0 . \tag{12}
\end{equation*}
$$

Obviously $\delta(x)=0$ for each $x \in(0,1)$. Now we apply 5.4.
Remark. It is not difficult to prove that (under the assumptions of 5.6) conditions (10) and (12) are equivalent for each $x \in[0,1]$.

6. Additional remarks

6.1. Let ψ, Ψ be functions. We say that Ψ is an indefinite $\mathfrak{D}_{a s}$-integral of ψ iff the following holds:
(i) The requirements 1)-4) of 4.2 (with $Z=\operatorname{Dom} \Psi$) are fulfilled;
(ii) $\Psi_{a s}^{\prime}(x)=\psi(x)$ for almost all $x \in[0,1]$.

The reader can easily formulate the analogues of sections $4.3-4.7,4.9,4.10,5.2$ and 5.3 for the $\mathfrak{D}_{a s}$-integral. In the analogue of 4.10 we may even replace the Denjoy-Perron integral by the Denjoy-Khintchine integral. The modification of the proofs is trivial.
6.2. Let \mathfrak{D} fulfill $Q(\mu)$. Let B be a measurable set, $D \subset B \subset(0,1)$. Let h be a function measurable on B such that $\mathfrak{D} h^{\prime}(x)$ exists for all $x \in B$. Then $h_{a s}^{\prime}(x)$ exists and equals $\mathfrak{D} h^{\prime}(x)$ for almost all $x \in B$.

Proof. We may suppose that $B \cap D=\emptyset$. Let r_{n} and $d_{n, j}$ be as in 2.1. Let Ω be a countable dense subset of R. Choose an $\varepsilon>0$. For $n \in N_{0}, j=1, \ldots, r_{n}$ and $\omega \in \Omega$ let $B(n, j, \omega)$ be the set of all points, $x \in B \cap\left(d_{n, j-1}, d_{n, j}\right)$ such that

$$
\left|\frac{h(x)-h\left(\alpha_{k}\right)}{x-\alpha_{k}}-\omega\right|<\varepsilon, \quad\left|\frac{h\left(\beta_{k}\right)-h(x)}{\beta_{k}-x}-\omega\right|<\varepsilon \quad(k=n, n+1, \ldots) .
$$

It is easy to see that the sets $B(n, j, \omega)$ cover B. Now choose n, j, ω as above and set $A=B(n, j, \omega)$. According to 3.7 with $g(x)=h(x)-\omega x, r=n$ etc, we have

$$
\left|\frac{h(y)-h(x)}{y-x}-\omega\right| \leqq \varepsilon / \mu \quad(x, y \in A, x \neq y) .
$$

We see, first of all, that h is absolutely continuous on A. It follows that $h_{a s}^{\prime}(x)$ exists and that $\left|h_{\text {as }}^{\prime}(x)-\omega\right| \leqq \varepsilon / \mu$ for almost all $x \in A$. Obviously $\left|\mathcal{D} h^{\prime}(x)-\omega\right| \leqq \varepsilon$ for all $x \in A$. Therefore $\left|h_{\text {as }}^{\prime}(x)-\mathfrak{D} h^{\prime}(x)\right|<2 \varepsilon / \mu$ for almost all $x \in A,\left|h_{\text {as }}^{\prime}(x)-\mathfrak{D} h^{\prime}(x)\right|<$ $<2 \varepsilon / \mu$ for almost all $x \in B$ and, finally, $h_{a s}^{\prime}(x)=\mathfrak{D} h^{\prime}(x)$ for almost all $x \in B$.
6.3. Theorem. Let all the assumptions of 5.4 be fulfilled. Suppose, moreover, that $\delta_{n}(x) \rightarrow 0$ for almost all $x \in(0,1)$. Let f be as in 5.4. Then f is $\mathfrak{D}_{a s}$-integrable and $\sum_{n=0}^{\infty} f_{n}$ is its $\mathfrak{D}_{\text {as }} F$-series.

Proof. If $x \in(0,1)-D, \sum_{n=0}^{\infty} f_{n}(x)=f(x)$ and if $\delta_{n}(x) \rightarrow 0$, then, according to 3.6 (see (1) and (2)) we have $\mathfrak{D} F^{\prime}(x)=f(x)$. It follows from 6.2 that $F_{a s}^{\prime}(x)=f(x)$ for almost all $x \in[0,1]$. Further, we proceed as in the proof of 5.4.
6.4. Theorem. Let all the assumptions of 5.6 be fulfilled. Let f be as in 5.6. Then f is $\mathfrak{D}_{a s}$-integrable and $a_{k}=\mathfrak{D}_{a s} \int f \varphi_{k}\left(k \in N_{0}\right)$.

The proof is left to the reader.
6.5. Let $c_{1}=\frac{1}{2}, c_{2}=\frac{1}{4}, c_{3}=\frac{3}{4}, c_{4}=\frac{1}{8}, c_{5}=\frac{3}{8}, c_{6}=\frac{5}{8}, c_{7}=\frac{7}{8}, c_{8}=\frac{1}{16}, \ldots$, $c_{15}=\frac{15}{16}, \ldots, c_{2^{n}}=1 / 2^{n+1}, \ldots ;$ set $D_{n}=\left\{0,1, c_{1}, \ldots, c_{n}\right\} \quad\left(n \in N_{0}\right)$. Let $\varphi_{0}, \varphi_{1}, \ldots$ be as in 5.5 . Then \mathfrak{D} fulfills condition $Q\left(\frac{1}{2}\right), \varphi_{n}$ are the Haar functions, a \mathfrak{D}-series is a Haar series and the $\mathfrak{D}_{a s}$-integral is the HD-integral defined in [4]. We see that our assertion 6.4 is a generalization of Theorem 2 in [5] (which, in turn, is a generalization of Theorem 4 in [4]).
6.6. Let $D_{n}=\left\{k / 2^{n} ; k=0,1, \ldots, 2^{n}\right\} \quad\left(n \in N_{0}\right)$ and let f be a Perron integrable function on [0, 1]. Let $\sum a_{n} \chi_{n}$ and $\sum b_{n} \psi_{n}$ be the Haar- and Walsh-Fourier series of f, respectively. Let $n \in N_{0}$ and let $m=2^{n}$. As $\chi_{0}, \ldots, \chi_{m-1}$ is an orthonormal basis of V_{n} and as the same is true for $\psi_{0}, \ldots, \psi_{m-1}$, we have

$$
\sum_{k=0}^{m-1} a_{k} \chi_{k}=\text { o.p. }\left(f, V_{n}\right)=\sum_{k=0}^{m-1} b_{k} \psi_{k}
$$

(see [6]).

References

[1] J. Mâ̌ík, On a class of orthogonal series, Real Analysis Exchange, 4 (1978-79), 53-57.
[2] M. A. Nyman, On a generalization of Haar series, Ph. D. Thesis, Mich. State University, 1972.
[3] S. SAks, Theory of the integral, Dover (New York, 1964).
[4] V. A. Skvorcov, Calculation of the coefficients of an everywhere convergent Haar series, Math. USSR - Sbornik, 4 (1968), 317-327.
[5] V. A. Skyorcov, Differentiation with respect to nets and the Haar series, Math. Notes, 4 (1968) 509-513.
[6] W. R. Wade, A uniqueness theorem for Haar and Walsh series, Trans. Amer. Math. Soc., 141 (1969), 187-194.
[7] W. R. Wade, Uniqueness theory for Cesàro summable Haar series, Duke Math. J., 38 (1971) 221-227.

Об одном классе ортогональных рядов

ДЖ. К. ГЕОРГИУ и Я. МАРЖИК

Предположим, что задана такая последовательность разбиений отрезка $[0,1]$, что $(n+1)$ разбиение всегда мельче n-го. Такая последовательность естественным образом порождает последовательность попарно ортогональных пространств кусочно постоянных функций. Некоторые свойства соответствующих ортогональных рядов изучались в работе [2]. Цель настоящей работы - найти при некоторых дополнительных предположениях члены такого ряда исходя из его суммы (см. 5.4 и 5.6). Некоторая модификация этих результатов приводит в разд. 6.4 к обобщению теоремы 2 из работы [5]. В наших доказательствах часто используются соображения, разработанные в [4]. Некоторые близкие вопросы исследовались, например, в [6] и [7]. Основные результаты работы без доказательства были сформулированы в [1].

DEPARTMENT OF MATHEMATICS
MICHIGAN STATE UNIVERSITY
EAST LANSING, MI 48824
U.S.A.

