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HERMITE INTERPOLATION ON SIMPLEXES 
IN THE FINITE ELEMENT METHOD 

by ALEXANDER ZENl§EK 

1. G E N E R A L C O N S I D E R A T I O N S 

The theory of triangular elements for solving elliptic boundary value problems of 
an arbitrary order is well-known [ 1 , 3 , 4 ] . The following theorem completes this 
theory. 

Theorem 1. Let the parameters uniquely determining a polynomial p(x, y) on an 
arbitrary triangle be given in such a way that at the vertices of the triangle there are 
prescribed all derivatives up to the order fi inclusive. If the polynomial p(x, y) generates 
piecewise polynomial and m-times continuously differentiable functions in an arbitrarily 
triangulated domain then 

\i = 2m. (1) 

Theorem 1 is proved in [5]. We mention here the idea of the proof only: If (1) does 
not hold, i.e. if 

m — fi — 2m — 1, 

then for preserving the C(m)-continuity we waste on the sides of the triangle so many 
conditions that we are short of conditions in the interior of the triangle which are 
necessary for the unique determination of the polynomial. 

From Theorem 1 and from the results of [1] and [4] we get immediately: 

Theorem 2. The simplest polynomial p(x, y), which generates piecewise polynomial 
and m-times continuously differ entiable functions in an arbitrarily triangulated domain, 
is of the degree n = Am + 1 and is on the triangle uniquely determined by the values*) 

Dap(PtX | ex | = 2m, i= 1,2,3 (2) 

DXP0), | a | = m - 2 (3) 

5 fcp(Q^)/^k, r = 1, .. . , 3k; k = 1, ...,m (4) 

where P1,P2, P3 are the vertices of the triangle, P0 its centre of gravity, Q(i\ . . . , Q 3k 
the points dividing the sides of the triangle into k + 1 equal parts and dp/dv the normal 
derivative. 

*) The following notation is used: 

a = ( a t , a2), | a | = oq + a 2 , Dap = d' a \pldxaidya2. 
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The conditions (2) — (4) uniquely determining the polynomial p(x, y) are of such 
a form that considering PC*, y) along the side PtPj of the triangle, i.e. setting 

x = Xi + (xj - xt) s, y = yt + (yj - yt) s, 0 = s ^ 1, 

we obtain a polynomial p(s) of the degree 4m -f 1 determined in such a way that it 
generates, as a polynomial in one variable s, piecewise polynomial and 2ra-times 
continuously dilferentiable functions. 

Extrapolating this fact to the case of three variables it may be expected that the 
simplest polynomial p(x, y, z) on the tetrahedron generating piecewise polynomial 
functions which are ra-times continuously differentiable should be of such a degree 
and determined by such conditions that considering it on the triangular face PxPjPk 

of the tetrahedron we obtain a polynomial p(s, t) which generates, as a polynomial 
in two variables s, t, 2ra-times continuously differentiable and piecewise polynomial 
functions. Thus the degree of such a polynomial should be 8m -f 1. 

Extrapolating this result by induction to the case of the d-dimensional simplex 
one gets the following conjecture: 

The simplest polynomial on the d-dimensional simplex which generates piecewise 
polynomial and m-times continuously differentiable functions is of the degree 

n = 2dm+ 1. (5) 

The case m = 0 is trivial for every d. As to d ^ 3, m ^ 1 the conjecture was 
confirmed to be true in the cases d = 3, m = 1 and d = 3, m = 2 (see [5]). 

In the following text we present the results concerning the case d = 3, m = 1 and 
mention briefly the case d = 3, m = 2. 

2. NOTATION 

A given closed tetrahedron will be denoted by U, its interior by U. The vertices and 
the centre of gravity of V will be denoted by Pt (i = 1, ..., 4) and P0, respectively. 
The centres of gravity of the triangular faces P2P3P4, PiP3P4, PiP2P4 and PXP2P3 

are denoted by Ql9 Q2, Q3 and Q4, respectively. The symbols Q(
jk

s\ ..., Q^'s) 

denote the points dividing the segment PjPk into s + 1 equal parts. 
The symbols sjk, tjk mean two arbitrary but fixed directions such that the directions 

PjPk, sjk, tjk are perpendicular to one another. 
The symbol nt denotes the normal to the triangular face the centre of gravity of 

which is the point Qt. The symbols st and tt mean two arbitrary but fixed directions 
such that nf, st, t{ are perpendicular to one another. 

Let Pj, Pk be two vertices of the triangular face the centre of gravity of which is 
the point Qt. The symbol vijk denotes the direction perpendicular to the directions 
nt and PjPk. 
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Letfbe a function of the variables x,y, z and OL1 ^ 0, a2 ^ 0, a3 ^ 0 three arbitrary 
integers. Setting 

a = (a!,a2 ,a3) , | a | = v.^ + a2 + a3 

the operator Da is defined by 

Daf= 8la{fldxaidya2dza\ 

Let /?! = 0, P2 = 0 De t w o arbitrary integers. Setting 

P = (PI,P2), \P\ = PI + P2 

the operators D^ and D*fc are defined by 

D%f = dMfldsfr dt'jg Dff = d^fldsf* dtf\ 

3. INTERPOLATION THEOREM IN THE CASE d = 3, m = 1 

Theorem 3. Let the function w(x, y, z) be continuous on a closed tetrahedron U and 
have bounded derivatives of the tenth order in the interior U of U: 

| Dxw(x, y,z)\ = Ml0, | a | = 10, (*, y, z) e U. (6) 
Let 

D°w(Pd = 0, | a | = 4 (7) 

D>(Qfts )) = 0, \P\ = s, r = l, . . . , s ;s = 1,2 (8) 

wCCi) = 0 (9) 
D?M6i = 0, m = 2 (10) 

Z>V(i>0) = 0, | a | = l (11) 

where i = 1, . . . ,4 , j = 1, 2, 3, A: = 2, 3,4(j < A:). Then it holds on U 

l D M w ) I ^ ^ ^ M 1 0 h 1 0 - ' « ' , |al = 8 
(12) 

where h w the length of the largest edge of the tetrahedron U and K is a constant in
dependent on U and on w(x, y, z). The constant V is defined by 

V=min(V1,...,V4), (13) 

Vt being the volume of the unit parallelepiped having edges parallel to the edges of V 
which intersect at the vertex Pt. The quotient q is defined by 

q = max min (ajh, bx\h, cjh), (14) 
i = l , . . . , 4 

ai9 b( and ct being the lengths of the edges having the vertex P( as a common point. 
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Theorem 3 is proved in [6], The method of the proof of Theorem 3 is a modification 
of the method which was developed in the case of two variables in [3] and then 
generalized in [4], 

It should be noted that the quantity V is a three-dimensional analogy of sin co, 
co being the smallest angle of a given triangle, because sin co is the measure of the unit 
rhombus having sides parallel to the sides making the angle co. 

In the two-dimensional case the estimates for derivatives depend just on h and 
sin co (see [1, 3, 4]) because \\q < 2. In the thre-dimensional case the quantity \\q is 
unbounded. (To prove it it suffices to consider the tetrahedron with vertices Pj(0,0, 0), 
P2(l, 0, 0), P3(0, £, 0) and P4(l, 0, e).) 

The interpolation character of Theorem 3 follows from the following 

Corollary 1. A polynomial of the ninth degree 

p(x,y,z) = a! + a2x + a3y + a4z + ... + a220Z
9 (15) 

is uniquely determined by the conditions (7) —(11) where 

w(x, y, z) = p(x, y, z) - f(x, y, z), (16) 

f(x, y, z) being a function four-times continuously differentiable on the tetrahedron U. 
Further, if the function f(x, y, z) has bounded derivatives of the tenth order in the interior 
UofU, 

\Daf(x,y,z)\SM10, | a | = 10, (x,y,z)eU, 

then the difference (16) satisfies the inequality (12). 

Proof. The number of the conditions (7) —(11) is equal to 220. If w(x, y, z) is of 
the form (16) then the conditions (7) —(11) form a system of 220 linear equations for 
the 220 unknown coefficients ax, ..., a220 • It is sufficient to prove that the determinant 
of this system is different from zero. 

Let us assume that the function w(x, y, z) = p(x, y, z) satisfies the conditions 
(7)--(11). As, according to Eq. (15), 

D"p(x, y,z) = 0, | a | = 10 

it follows from Theorem 3 that p(x, y, z) = 0. The inverse implication is trivial. 
Corollary 1 is proved. 

4. APPLICATIONS 

Let Q be a bounded domain in E3 with the boundary F consisting of a finite 
number of polyhedrons Ff (/ = 0, ..., s); Fl5 ...,FS lie inside of F0 and do not 
intersect. Let 9W be a set of a finite number of closed tetrahedrons having the 
following properties: 1. The union of all tetrahedrons is Q; 2. Two arbitrary 
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tetrahedrons are either disjoint or have a common vertex or a common edge or a 
common face. The tetrahedrons of SM will be denoted by c7f (i = 1, ..., N). 

Let us define by means of Corollary 1 on each tetrahedron Ut a polynomial of the 
ninth degree pt(x, y, z). Let the parameters prescribed at a common vertex (or on 
a common edge or on a common face) are the same for all tetrahedrons having this 
vertex (or edge or face) common. Then the following theorem, which is proved in [5]., 
holds: 

Theorem 4. The function 

g(x, y, z) = Pi(x, y, z), (x, y, z) e Ut (i = \, ..., N) (17) 

is once continuously differentiable on the closed domain Q. 
Let us denote the set of all functions of the type (17) by G(SOl)- The set G(9Ji) is 

a finite dimensional space and it is clear that G(SOl) c: W(2)(Q). Thus we can use the 
functions of the type (17) as trial functions in the finite element procedure for solving 
three-dimensional boundary value problems of elliptic equations of the fourth order.. 
We restrict ourselves to the variational formulation of the problem. 

Let H c W2
2)(Q) be a real Hilbert space with the norm induced by W2

2)(Q).. 
Let a(v, w) be a real bilinear form continuous on H x H, i.e. a mapping (v, w) -> 
-> a(v, w) from H x H into the field of real numbers which is linear in both v and w 
and bounded: 

| a(v, w) | ^ M || v \W?\Q) || w \w
{22\n)> Vv, w e H (18) 

where M is a constant independent on v, w. Further, let the form a(v, w) be symmetric,, 

a(v, w) = a(w, v), Vv, w e H, (19) 
and H-elliptic, i.e. 

a(v,v) = x\v\2
w?\Q), VveH (20) 

where x, > 0 is a constant independent on v. Finally, let L(v) be a linear functional 
continuous on H. It is well-known that under these conditions there exists just one 
function u e H minimizing sharply on H the functional 

F(v) = l a ( v , v ) - L ( v ) . (21) 

The space H is determined by the stable homogeneous boundary conditions of the 
boundary value problem to which the given variational problem corresponds. In our 
case of tetrahedral elements we must restrict our considerations to such cases when 
the part F' of F on which the stable boundary conditions are prescribed can be covered 
by a finite number of triangles. In this case we can choose the division 9R in such 
a way that F' is a union of some triangular faces. 

The approximate solution of the given variational problem is then defined as the 
function which minimizes the functional (21) on the space G(9Jt) n H. It follows 
immediately from (20) that there exists just one function of this property. 
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Now, let {fflh} be a set of divisions of Q into closed tetrahedrons with the following 
properties: 

h -> 0, qh = q0 > 0, V, = V0 > 0, (22) 

h being the length of the largest edge in fflh9 qh the smallest quantity (14) in fflh 

and Vh the smallest quantity (13) in fflh. Let Hh = G(fflh) n H and uh be the appro
ximate solution of the given variational problem on Hh. The following two conver
gence theorems hold. 

Theorem 5. Under the assumptions (18)-(20) and (22) it holds 

lim || uh - u \W2
2\Q) = 0, (23) 

/.-+o 

u being the exact solution of the given variational problem. 
Using Theorem 3 the proof of Theorem 5 goes in the same lines as the proof of 

the convergence theorem introduced in [7]. Further, Theorem 3 allows to state a 
sufficient condition for the maximum rate of convergence: 

Theorem 6. Let the conditions (18) — (20) and (22) be satisfied and the exact solution 
u(x9 y9 z) have bounded derivatives of the tenth order in Q9 

| D*u(x9 y9 z) | = M10 , | a | = 10, (x9 y, z) e Q. (24) 
Then 

\\uk-u\\wi2>W£ CM10h
8 (25) 

where the constant C does not depend on the division ffl and on the exact solution 
u(x9 y9 z). 

Proof. According to [2], p. 365, it holds 

|| uh - u \w{
2

2\Q) = M**T* \u-v \w2
2\n), Vv e Hh. 

Let q> be the function from Hh having the same values at the nodal points of the 
division fflh as the exact solution u. Making use of Corollary 1 we can state 

|| u - cp \w2
2\n) = CM10h

s 

where the constant C depends on q0, V0 and mes Q only. As q> e Hh the last two 
inequalities imply the estimate (25). Theorem 6 is proved. 

5. THE CASE d = 3, m = 2 

Theorem 7. A polynomial of the seventeenth degree 

p(x9y9z) = a1 + a2x + a3y + a4z + ... + a1140z
11 (26) 

is uniquely determined by the following 1140 parameters: 
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- W t ) , I « I = 8> i = l , - , 4 (27) 
D%p{Q%% | i 8 | = s , r = 1, ...,*;*= 1,..., 4; (28) 

i = 1, 2, 3, A' = 2, 3, 4 (j < Ar) 

DfaQd, I /*I = 2> i=l,-,4 (29) 

p f M ^ i ) , | 0 | g 4 , i = !,. . . ,4 (30) 

-.2. 

i = ! , . . . , 4 (31) 

g5p(<2frs)) / - = l , . . . , 5 ; / = l , . . . ,4; 7-= 1,2,3, 

ôvlkônf ' k = 2,Ъ,4 {jф î, k ф i,j < k) 
(32) 

vijk<~ " - ' _ . „ _ . . ., . . 

D>(P0), | a | ^ 5. (33) 

The polynomial of the seventeenth degree determined in such a way generates piecewise 
polynomial and twice continuously differentiable functions. 

Theorem 7 is proved in [5]. The great number of parameters is the reason that 
both the polynomial of the ninth degree and the polynomial of the seventeenth 
degree are not applicable in numerical computations. So we may speak about a good 
luck that we meet three-dimensional boundary value problems the order of which 
is greater than two very rarely in practical applications. 
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