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ORTHOGONAL BIPOLYNOMIALS 

by F. M. ARSCOTT 

1. INTRODUCTION 

(A) The theory of orthogonal polynomials in a single variable, say x, is of course 
extremely well known, e.g. [4], [9]. We have a sequence of polynomials {p„(x)}, 
n being the degree of the polynomial, such that 

b 

<Pn(x)>Pm(x)> = \Pn(x)pm(x) w(x) &X = 0 if 11 + W, (1 .1) 
a 

7-- 0 if n = m 
where the "weight function" w(x) ^ 0 on [a, b]. 

Certain properties of such sequences can be derived from the orthogonality 
relation (1.1) alone, such as 

(a) expansion property; a sufficiently well-behaved function f(x) has a formal 
expansion f(x) ~ cnpn(x) with 

c„ = < A*). Pn{x)>KPn{x), Pn(x)y (1.2) 

and this series converges, at least in norm, on [a, b]. 

(b) 3-term recurrence relationship; for suitable constants An9 Bn9 Cw, 

xpn(x) = Anpn+1(x) + BnPn(x) + C.p^^x) (1.3) 

(c) The Christoffel-Darboux formula 

t hrPr(x) Pr(x') = h;1 h+itopM-pMb+iM. (i.4) 
o • x — x 

where hn = <p„(x), p„(^)> 
(d) Properties of zeros; the zeros of pn(x) are all real, distinct and lie in (a, b) 

and the zeros ofp„+1(x) andpn(x) interlace. 
Certain other properties, however, do not hold for all such families, but only 

for the so-called "classical" polynomials —in effect, the polynomials of Jacobi, 
Laguerre and Hermite with their special cases. These properties include [4] 

(e) Orthogonality of derivatives 
(f) Satisfying of a differential equation 
(g) Rodrigues-type formulae 
(h) Integral representations 
(j) Generating functions. 

(B) In the late 19th and early 20th centuries, some families of polynomials appeared 
with a wider orthogonality property —those of Lame, Heun and Ince ([2], [4], [7]). 
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Such a family has the form of a set {En(x)}i where m = 0 to n, n = 0 to oo; there 
are two simple orthogonality relations, namely 

)lE™(x)EZ2(x) dx = 0 mt*m29 (1.5) 
en 

and a similar property over the range (a2,b2); there is also a "double-orthogonality" 
relation 

J JE;/(x)E^iy)££(*)En
m/(>)w(x, j )dx d>> = 0 (1.6) 

fll #2 

unless «! == «2 and mx = m2 . 

These polynomials have some, but not all, of the properties (a) — (j) mentioned 
above; for instance, though they arise from differential equations, they are given 
by no known generating functions or integral representations. 
(C) Meanwhile, some studies were made of orthogonal polynomials in two or more 
variables, ([6], [8]) but in the course of generalisation the theory lost much of its 
elegance. By restricting ourselves, however, to a special class of such polynonials, 
which we call bipolynomials, one can construct a theory which generalises, fairly 
satisfactorily, properties (a) — (d). The essence of this was presented by the author 
in 1968 [1], and has subsequently been developed. Very recently, some new families 
of polynomials have been constructed which, it may be conjectured, will play a part 
analogous to that of the "classical" polynomials in the single-variable theory. 

2. DEFINITIONS AND NOTATION 

A bipolynomial pn(x, y) of degree n in the two variables x, y is a function which, 
when either of x, y is held constant, becomes a polynomial of degree n in the other. 
Thus a bipolynomial of degree 1 is of the form axy + bx + cy + d. We call such 
a bipolynomial symmetric if pn(x, y) = pn(y, x) and separable if it can be written as 
a product p(x) q(y). 

A matrix notation is useful; if we write X„, Y„ for the column vectors {1, x, 
x2, ...,xn}, {\,y,y2, . . . ,yn}, thenpn(x,y) = XjAnYM, where A,, is a square n-matrix; 
if pn(x, y) is symmetric then An is symmetric, and if pn(x, y) is separable then A„ 
is of rank 1. 

From here on, we shall confine ourselves to symmetric bipolynomials; the theory 
to be developed seems capable of extension, at the cost of some elegance, to general 
bipolynomials. 

We now set up the appropriate linear space. Let R be a region of the xy plane 
and w(x, y) ^ 0 a weight function such that 

JJ xmyn w(x, y) dx dy 
R 
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exists V m, n _ 0. Let LW(R) be the space of all functions/(x, y) such that 

$s{f(x,y)}2w(x,y)dxdy 
R 

exists, and define 

< / £> = J J /(*> y) g(x, y) w(*, y) dx dy, 
R 

|| / 1 | = </,/>*. Then Ll(R) is an inner product space. We shall writef J_ g if <f,g> = 

= 0. 

3. C O N S T R U C T I O N O F A F A M I L Y O F O R T H O G O N A L 

B I P O L Y N O M I A L S 

A bipolynomial of degree zero is, of course, a constant, so let us set p0 = 1. 
Now consider px = axy + b(x + y) + c. The condition pX J_ p0 gives one linear 
relation between the constants a, b, c of the form c = — oca — fib, so 

Pi(x, y) = a(xy - a) + b(x + y - /?). (3.1) 

Thus p! is not a uniquely determined bipolynomial but is a manifold spanned by 
the two bipolynomials 

n\ = xy — a, 71} = x + y — ft . (3.2) 

To maintain the same pattern, we write p0 = 7c0. Now we take p2(x, y) = ax2y2 + 
+ bxy(x + y) + c(x + y)2 + dxy + c(x + y) +f; the conditionsp2 _Lp0 ,p2 ± p i 
yield three linear relations, which give d, e,fin terms of a, b, c and hence 

Pi(x, y) = an°2 + b7i2 + c7c2 , (3.3) 

where 7i2 = x2y2 + ..., 7i2 = xy(x + y) + ..., 7r2 = (x + ^y)2 + ..., the terms omit­
ted in each case forming a bipolynomial of degree 1. 

This process can be continued indefinitely; p„(x, y) is given in the form of a mani­
fold of dimension n + 1, spanned by the polynomials nm, m = 0 to n, the leading 
term in nm being (xy)n~m (x + y)m. 
For example, if R is the square (0, 1) x (0, 1) and w(x, y) = 1 we have 

A = xy -—, n\ = x + y - I, 

7i2 = x2y2 - x y - -j(x + y) - — , 

Til = xX* + y) - 2^y + -g"(^ + y), 

7*2 = (^ + yf ~ 2 ^y ~ X - y + y . 
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Each bipolynomial nn is orthogonal to each bipolynomial 7in' where n' # w, 
but the 71™, for the same « but different m, are not orthogonal. However, we can now 
apply the usual Schmidt orthogonalisation process to the set {nn} m = 0 to n, and 
obtain from these an orthogonal set {nn} with 7in = 7in, 7in = 7in — yxnn, etc. such 
that n^ J_ n^\ml # m2) and hence Z% ± n™2 

unless n! = n2 and mx = m2. (3.4) 

4. MATRIX FORMULATION 

The process described above can usefully be put in matrix notation. Let nn = 
= {7in, 7in, ..., 7in}, so any bipolynomial of degree n is C7rn, where c is an a row-vector. 
The orthogonality property is thus 

<7in,7in
7:> = 0, n^ri. (4.1) 

Further, let 7in = {nn, 7rn, ..., 7in}; then 

rc„ = Ln7in , (4.2) 

where Ln is lower triangular. Finally, let us set 

<7in, n
T

n} = Hn, <£B, njy = Dn ; (4.3) 

thus Dn is diagonal with positive elements, and Dn = LnHnLj, so Hn is non-singular. 
The process of construction of the 7in is as follows: let 

Zn = {xny\ x^y-1 (x + y), ..., (x + y)n} (4.4) 

so that 7in = Zn + a vector of bipolynomials of degree n — 1. Write, therefore, 

*n = zn ~ a » - i ^ » - i - a r t_27rn_2 - .. . - a 0 7 i 0 , (4.5) 

where at is an (n + 1, i + 1) matrix. Then the orthogonality conditions to be imposed 
on 7in give 

7 1 - 1 

0 = <Jtn>
 nI> = <z«> îT> ~ Z *s<n8> ni> = 

5 = 1 

= <ZH,nl>-«l<nt,itJ> (by (4.1)) 
= <Z„, 7cr> - a,H, (using (4.3)) 

so 
ai = <Z„,^ r>Hr 1 (4.6) 

Thus n„ is constructed in the form (4.5). The process is, formally, almost identical 
with the corresponding construction in functions of a single variable, but vector 
and matrix quantities have replaced scalars. 
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5. G E N E R A L PROPERTIES OF FAMILIES OF ORTHOGONAL 

BIPOLYNOMIALS 

Properties of families of orthogonal bipolynomials, analogous to properties 
(a) — (c) mentioned in para. 1, will now be given: 

(a) Formal expansion. If the symmetric function F(x,.y) is expressible as a double 
series 

oo n 

£ Y«(x,y) (5.1) 
n=0 m=0 

this may be written as 

F(x,y) = fjcnn„(x,y), (5.2) 
71 = 0 

and application of (4.1), (4.3) gives 

C, = <F(X,^),TCB
T>H;1 (5.3) 

If F e L^(R) the convergence in norm of this series follows immediately. 
(b) Recurrence Relations 
We introduce the two n x (n + 1) matrices J„, KM by 

J- = (l-,0), K„ = (0, l„) (5.4) 

that is, the unit n x n matrix followed or preceded by a column of zeros. 
Then we have 

xynn = Jnnn + 1 + Bnnn + HnJ„_1 H;}i nn_{ (5.5) 
and 

(x + y)nn= K A + 1 + Bnnn + HMKT_1 H;}lnn.i (5.6) 
where 

Bn = (xynn, TTT> H;1 , BM = <(x + y) nn, 7iJ> H;1 . (5.7) 

The analogy between (5.5), (5.6) and (1.3) is obvious. The proof is essentially as given 
in [6], the simplification to the above forms resulting from the manner in which 
we have chosen the leading terms of 7i„. 

(c) Christoffel-Darboux formula 
By repeated application of (5.5) we obtain an analogue of the formula (1.4), 

namely 
n 

(xy - x'y) £ 7rr
T(x', / ) H,."1^*, y) = 

o 

\jjn(x, y, x', y') - \j/Jt(x', y', x, y) + 

+ t nj(x', j / X H ; 1 Br - B^^nXx, y), (5.8) 
where 

фn(x, y, x', y') = ҡl(x', ÿ) H„ ] J„лn+1(x, y). 
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6. ZEROS OF ORTHOGONAL BIPOLYNOMIALS 

When considering what properties might be possessed by zeros of orthogonal 
bipolynomials analogous to those for single-variable polynomials, as detailed in (d), 
para. 1, we immediately meet a difficulty of interpretation. For a bipolynomial is a 
function of two variables, and the relation p„(x, y) = 0 yields, not a set of points, 
but a curve, usually with several branches, in the xy plane. To emphasise this difference 
we shall call the curve given by the relation pn(x, y) = 0 the zeroid of p„(x, y). 

No general study of the properties of these zeroids has been made, but an examina­
tion of simple cases provoked the following conjectures 

(a) Every zeroid —but not necessarily each branch of it —crosses the region K. 
This can be deduced from the property pn J_ p0 • 

(b) No two zeroids corresponding to bipolynomials of the same manifold p„(x, y) 
can meet outside the region R. 

In certain cases, we find that the zeroids of all the bipolynomials of a manifold 
Pn(x> y) ~ i-e- aU t r i e curves nn(x, y) = 0, m = 0 to n, have one or more points in 
common; these points we call nodes. It may be conjectured that 

(c) No node can lie outside the region R. 

1. THE SEPARABILITY PROBLEM 

An interesting, and so far quite unresolved, problem is that of determining, in 
any given system of orthogonal bipolynomials, the number of independent separable 
bipolynomials. Thus in the case of R = (0,1) x (0,1), w = 1 we find there is only 
one separable bipolynomial of degree 1, namely (x — |) (y — | ) , while in the corres­
ponding family with w = x, there are two such. Separable bipolynomials seem to be 
exceptional, yet there are families —as we shall see—in which the number of separable 
bipolynomials of degree n is the maximum possible, namely n + 1. The zeroid of a 
separable bipolynomial is, of course, a set of straight lines parallel to the axes of 
the xy plane. 

8. SEPARABLE BIPOLYNOMIALS AS SOLUTIONS 

OF D I F F E R E N T I A L EQUATIONS 

The separability problem mentioned in para. 7 above prompted a search for some 
fairly simple separable bipolynomials, constructed as the solutions of suitable 
differential equations. The results are published in [9], and can only be sketched here. 

We take a differential equation of the form 

A(x) u"(x) + B(x) u'(x) + {Xf(x) + fig(x)} u(x) = 0 (8.1) 

where A(x), B(x), f(x), g(x) are polynomials. We also set 

R(x) = exp [J B(x)/A(x) dx]. (8.2) 
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Then a simple adaptation of the method used in [2] gives the following orthogonality 
result: if u(x), u(x) are polynomial solutions of (8.1) corresponding to different values 
of X and/or \i, then 

*2 yi 

\ \ u(x) u(y) u(x) u(y) w(x, y) dx dy = 0 

where 

provided 

A(x) A(y) 

[R(x) {u(x) u'(x) - u'(x) u(x)}Yx\ = 0 | 
and (8.4) 

lR(y){u(y)u'(y)-u'(y)u(y)}yyl = 0 | 

and the paths of integration do not pass through a zero of A. (A zero of A may, 
however, occur at one end of a range provided the resulting integral converges.) 

The search, therefore, reduces essentially to choosing A, B, fand g so that (8.1) 
has polynomial solutions, the conditions (8.4) are satisfied and the paths of integration 
are so chosen that, for x e (x t, x2), y e (y1, y2), the weight function w(x, y) is non-
negative. 

A simple case arises when A(x) = x. This leads to a differential equation 

xu" + (p0 + F\x + Pi*2) u' + (X - np2x) u = 0; (8.5) 

it is found that, for any non-negative integer n there are n + 1 distinct real values 
of X giving rise to solutions which are polynomials of degree n. The weight function 
is found to be 

w(x, y) = (xyY0'1 QPlix+y)
 e^2(x2+y2) (y - x) (8.6) 

and provided p0 > 0, /?2 < 0 the region of integration R can be taken as x e (— 00, 0), 
y e (0, 00); that is, the second quadrant of the xy plane. For the simple case /?0 = 1, 
p± = 0, f$2 = — 2 the orthogonality relation becomes 

\\ u(x) u(y) u(x) u(y) c~x2~y2 (y - x) dx dy = 0, (8.7) 
R 

the form of which makes it reasonable to regard these as analogous to the Hermite 
polynomials. 

Next taking A(x) = x(l — x) we consider the equation 

x(l - x) u" + (p0 + ^!x + p2x
2) u' + (X - nP2x) u = 0; (8.8) 

which leads to an orthogonality relation over the infinite strip (0,1) x (l,oo) with 
weight function 

w(x, y) = (xyY*-1 {(1 - x) (y - l)}5"1 e ^ 2 ^ (y - x), (8.9) 
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where d = — fi0 — /it — p2, provided /?0, d, (l2 > 0. For different values of the 
parameters, we can have orthogonality over the infinite strip (-00, 0) x (0, 1) 
with essentially the same w(x, y). The Ince polynomials arise from the case /?0 = 

= * = v2. 
Finally taking A(x) = x(x — 1) (x — b) leads to the Heun polynomials ([7]) —a 

special case of which is the Lame polynomials—where the region of integration is a 
rectangle. The finiteness of the two ranges of integration suggest an analogy with 
the Jacobi polynomials. 

The location of the zeros of these polynomials have recently been investigated 
by Mr. Josef Rovder of Bratislava, who has shown that, in many cases, the n + 1 
polynomials un(x), say, of degree n can be so ordered that un(x) has r zeros on one 
side of the region R and n — r zeros on the adjacent side, so that the zeroid of the 
bipolynomial un(x) un(y) consists of r straight lines parallel to one side of R and n — r 
lines parallel to the other. 
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