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ON A NONLINEAR BOUNDARY VALUE PROBLEM 
OF HIGHER ORDER 

by V. §EDA 

1. The theory of boundary value problems (in short BVP) for ordinary differential 
(d.) equations has been largely developed as one can see from a comprehensive and 
carefully prepared report [1]. It is characterized by a great number of problems and 
a variety of methods attacking them. In the last years two methods, the subfunction 
method and the method based on the funnel theorem of Kneser, became successful 
in guaranteeing the existence of solutions to BVP. Both methods have been applied to 
solving second-order BVP of different types in more than 15 papers. Here only [2], 
[3] and [4] will be mentioned. As to the BVP of higher order, the subfunction method 
has been used only in [5] and some BVP of the third order were solved by means of 
the funnel technique in [6]. Another application of the subfunction theory to anon-
linear BVP of a higher order will be presented now. The problem arose in the theory 
of semiconductors and it has been solved by reducing it to a set of second-order 
ones. The details can be found in [7]. 

2. Suppose a, b, /, a, /?, y, S, A, B, C, D, Fare positive numbers. The problem in 
question is 

yw - a[y" + b(y'y'" + y"2)] = 0, (0 = x = I), / = - ^ , etc., (1) 

j(0) = a{Fy'(P) - By'(0) [C + Dy"(0)]} 

y'(0) = P{Fy"'(0) - By'(0) [C + Dy"(0)]} 

y(l) = A - y{Fy'"(l) - By'(l) [C + Dy\lj\) 

y'(l) = 5{Fy'"(l) - By'(l) [C + Dy"(I)]} 

(2) 

A solution y of that problem represents potential and the function z defined through 
yby 

z = Fym - By\C + Dy") (3) 

means current in a semiconductor. We shall be interested to prove the existence, if 
possible the uniqueness, of the solution y to (1), (2) as well as to find some properties 
of the associated function z given by (3). 

By the double integration of (1) and assuming that 

Fab - BD = 0, (4) 

the BVP (1), (2) can be reduced to four different types of BVP. 
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When 1. P(Fa - BC) - 1 = &(Fa ~ BC) - I = 0, then (1), (2) is equivalent to 

b 
y" = aly+ —/'] +c2, (5') 

jy'(o)-y(o) = o, (6) 

JLy'(i) + y(i)-A = o 

1 , 

and the associated function z = ~o y • 

If 2. P(Fa - BC) - 1 = 0 ^ 'HI7'3 - BC) "~ 1> t n e n (*)' (2) reduces to the BVP 
(5'), 

5 - / ( 0 ) - y ( 0 ) = 0, (7) 

>>(/) = A, y'(l) = 0. 

The associated function z = - r - / . 

In the case 3. jS(Fa - BC) - 1 * 0 = <5(Fa - AC) - 1 instead of (1), (2) we 
have (5'), 

j,(0) = y'(0) = 0 (8) 

-fy(0 + K0-^ = o 

and z = —y'. 
o 

When 4. j8(Fa - BC) - 1 -̂  0 # <5(Fa - BC) - 1 is assumed, the BVP (1), (2) 
means the BVP 

y" = aly + үУ' ) + cгx + c2, (5) 

, л aҒc. ,ínЛ ßFct 

* 0 ) в l-ß(Fa-BC)> y{0)=l-ß(Fa-BC)> 

Ю - Л - У F h fíгҳ, y V ) - Í Л -
1 - 8(Fa - BC)9 J w 1 - c5(Fa - BC) 

and the function z = (Fa — BC) y' + Fc1. In all mentioned cases ct, c2

 G -̂  a r e 

arbitrary. Since the BVP (5), (6) contains all the others as special cases, first this 
problem will be studied. Nevertheless, the problem can be further generalized and 
the existence, uniqueness and a comparison property of the solution to the more 
general BVP will be established in the next section. 
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3, Consider the d. equation 

y"=/(*,y,y') (J°) 

with / being denned and continuous on the set S = {(x, y, y'): 0 _ x _ /, | y | + 
+ | y' | < +00}. The notions of a lower (an upper) solution of (10) as well as of 
a Nagumo condition for f have the usual meaning and they are defined in [3], p. 460. 
Further, if cp is a lower and \j/ an upper solution of (10) and cp(0) < \j/(0) (cp(l) < \j/(l)), 
then by H1(H2) will be denoted the class of all continuous functions g = g(y, y') 
(h = h(y, y')) defined on (cp(0), \j/(0)y x R «<p(/), \j/(l)} x R) which are nondecreas-
ing in y' and satisfy g[<p(0), <p'(0)] ^ 0, g^(0), ^'(0)] _ 0 (h[_cp(l), cp'(l)] _ 0, 
h[*K/), *A'(0] _ 0). H3(H4) will mean the class of all continuous functions g = 
= g(y, y') (h = h(y, y')) defined on R2 which are nonincreasing in y (nondecreasing 
in y) and nondecreasing in y'. The following existence theorem has been proved as 
Theorem 3.6 in [3], p. 464. 

Theorem 1. Let <p0/0 be a lower (an upper) solution of the d. equation (10) with 
cp _ ij/ on <0, /> and let <p(0) < ij/(0), cp(l) < \j/(l). Let f satisfy a Nagumo condition 
with respect to the pair cp, \j/ and let ge Hl9 he H2. Then there is a solution y of the 
BVP (10), 

g[y(0)9y
f(0)-] = o = h[y(i),yXi)2 (11) 

which satisfies cp _ y _ \j/ on <0, 1>. 
With a help of this theorem another existence as well as a comparison theorem 

will be proved. 

Theorem 2. Suppose ft = ft(x, y, y'), f2 = f2(x, y, y') are continuous and fx S 
_/2( / i =f2) on S. Suppose lim f2(x,y, y') = -00 ( lim f2(x,y,y') = +00) uniform-

y-* — 00 y~* + CXD 

ly in x, y' on any compact subset of <0, /> xR. Assume further f2 satisfies a Nagumo 
condition with respect to any pair x9coe Co«0, / » , x _ °>- Suppose g = g(y, y') e H3 

andh = h(y, y') e H4. Then, if there is a solution yx of the problem (11), 

y"=/i(^,y,y'), (12) 

there also exists a solution y2 of the BVP (11), 

y"=/2(*,y,y') (13) 

and a number c > 0 such that yx — c _ y2 _ yx (yt _ y2 _ yx + c) on <0, />. 

Proof. Only the case/i ^ / 2 will be considered. Since fx ^f2, j i is an upper 
solution of (13). By the assumption off2, there is a y0 such that for all xe <0, /> 
and all y _ y0 f2(x,y,y[(x)) _ m = min fx(x, y^(x), y'i(x)). Then for any c > 0 

*e<0,i> 

with yx(x) — c _ y0 (x e <0, / » the function yx — c is a lower solution of (13). g and 
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h being from H3 and H4 respectively, g e Hx and he H2. The result follows on the 
basis of Theorem 1. 

The following theorem generalizes a uniqueness result in [8], p. 108. 

Theorem 3. Let f = f(x9 y9 y') be defined and increasing in y on S. Let g = g(y, y') 
(h = h(y9 y'j) be decreasing in y (increasing in y) and nondecreasing in y' on R2. Then 
there exists at most one solution of the BVP (10), (11). 

Proof. Suppose there are two solutions yl9 y2 of the considered BVP. By the 
properties of g and h, yt(0) > y2(0) (yt(0) < y2(0)) implies that y[(0) > y2(0) 
(yi(0) < ya(0)). Similarly, yt(l) > y2(l) (yx(l) < y2(l)) can stand only with y[(l) < 
< y2(0 (yi(0 > y'lO))- All four cases lead to the existence of either a positive local 
maximum or a negative minimum of yx — y2. This cannot happen, with respect to 
the assumption on / Thus, y^O) = y2(0), yx(l) = y2(l) and yi = y2 on <0, />. 

Remark. Theorems 1 up to 3 are valid also in the case when one or both of the 
functions g9 h show inverse monotonic properties. 

4, The above stated theorems can be applied to the BVP (5), (6). By Theorem 3, 
there exists at most one solution of that problem. On the basis of Theorem 1, the 
existence of a solution to that BVP can be assured by finding suitable lower and 
upper solutions to (5). Taking linear functions for lower and upper solutions we get 

Lemma 1. There exists a unique solution y to the problem (5), (6). This solution 
satisfies the inequalities 

where 

~^-x + q = y(x) S ~~x + qx (0 = x = I), (14) 

«-* [j(4^T^')^-f} 
™[TK>^(H--V-£} 

The mentioned solution will be denoted as y(c1, c2). Some of its properties are 
given in the following lemmas. 

Lemma 2. If c[x + c2 > cxx + c2 on (0, /> and 

c = max —[cix + c2 — (ctx + c2)], (15) 
.xe<0,.'> a 

then 
y(ci ,c2) - c = y(c\, c2) < y(ct, c2) on <0, />. (16) 
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Proof . By Theorem 2 and by the uniqueness of y(c[, c2), there is a c > 0 such 
that y(ct, c2) - c ^ y(c\, c2) ^ y(c1, c2) on <0, />, A direct calculation gives (15). 
The strict inequality in (16) can be easily shown. 

Lemma 3. For any two numbers cx, d there exist uniquely determined numbers 
c2, c"2 such that y(ct, c2) (0) = d = y(ct, c"2) (I). 

Proof. (16) implies that the functions y(c1, c2) (0), y(cl, c2) (I) of the variable c2 

are continuous and decreasing in c2. With respect to this and to the comparison 
properties of y(cx, c2) only the unboudedness of y(0, c2) (0), y(0, c2) (I) has to be 
proved. Using some properties of y(0, c2) we get the following statements. First, 
(14) implies the inequalities 

y(0, c2) > 0 for all c2 < 0, and y(0, c2) < A for all c2 > 0, 

on <0,/>. (17) 

Secondly, if one of the functions y(0, c2) (0), y(0, c2) (I) is bounded, there exists 
a linear function M + Nx such that 

| y(0, c2) (x) | < M + Nx (xe <0, / » (18) 

for all c2 sufficiently great in absolute value. At the same time 

y'2(0,c2)<M1 on <0,/> (19) 

is true since on both intervals of monotonicity of y(0, c2) the function v(0, c2) = 
dv 

= / 2 ( 0 5 c2)/2 satisfies the d. equation -̂ — = abv + (ay + c2). When e.g. c2 < 0 is 

sufficiently great in absolute value, then — Y < 0 a n ^ hence v(0, c2) is smaller 
dy 

than v[y(0, c2) (0)] or v[y(0, c2) (/)] which are bounded. From (18) and (19) it follows 
that for any K < 0 there is a'c2 < 0 such that y"(0, c2) < K on <0, />. This gives 
a contradiction with (17). 

Lemma 4. When y"(cx, c2) ^ 0 in <0, />, then 

y(ci,c2)(0)ikjy(c,,c2)(\)/(i + ^ , 

y(c,, c2) (/) ?£ j - y(Cl, c2) (o)/(i + l)j + A (i + j ) 

'+*B*]/[(i+'+*X,+*)]-
If y"(cv, c2)^0 in <0, />, then 

v ( c 1 ^ 2 ) ( 0 ) ^ - | X c 1 , c 2 ) ( Z ) / ( z + ^ 
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and 

X c 1 ) c 2 ) ( O è | Я c 1 , c 2 ) ( 0 ) / ( / + | ) . 

Proof. The corresponding homogeneous BVP to (5), (6) has only the trivial 
solution, therefore there exists its Green's function G -= G(x, t). A direct calculation 

yields that G(0, t) = jG(l, t)/(l + j \ and G(l, t) = -|- G(0, t)/(l + - U for 

0 = t = /. From these two inequalities the lemma follows. 

5. By means of the foregoing lemmas the BVP (1), (2) in the first case is solved in 

Theorem 4. Let Fab — BD = 0, ft = S, Fa — BC = — . Then for each number y0 

there exists a unique solution yyo of the BVP (I), (2) such that yyo(0) = y0. The solutions 
yyo possess the following properties: When y0 < yl9 then yyo < yyi on <0, /> and 
yyo continuously depend on y0. Further there is a unique c0, 0 < c0 < A, such that 
for y0 > c0 or for y0 < 0 there exists a number d0 = d0(yo), 0 < d0 < I, for which 
the following is true: 

When y0 > c0, then yyo(x) > 0 for 0 ^ x < d0 and yyo(x) < 0 for d0 < x = I. 
I/*yo < 0, then y'yo(x) < Ofor 0 ^ x < d0 as well as yyo(x) > Ofor d0 < x ^ /. 

When 0 ^ y0 = c0, then y'yo(x) _• 0 0n <0, /> and there is at most one zero point 

°fy'yo-

Proof. The first part of the theorem, concerning the existence of yyo, its monotony 
and continuity property follows from Lemmas 1, 2 and 3. By (14), 0 < y(0, 0) (0) ^ 

= y(0, 0) (x) ^ y(0, 0) (I) < A, 0 < yf(0, 0) (x), 0 < y"(0, 0) (x) on <0, />. Hence 
yy0 > yo < 0, behaves according to the statement of the theorem. Further there is 
a c20 > 0 such that y0 = y(0, c20) and y"(0, c20) > 0, y'(0 c20) = 0 on <0, /> 
with the only zero-point at 0. By Lemma 3, there is a c21 < 0 such thaty(0, c21) (/) = 
= A, and by the properties of y(0, c2) it follows that y"(0, c21) < 0, y'(0, c2l) = 0 
on <0, />, the only zero-point being at /. When c0 = y(0, c21) is put, yyo, y0> c0, 
shows the properties mentioned in the theorem. In the ease c21 < c2 < c20 y(0, c2) 
has no local extrema and thus, it is increasing in <0, />. 

In the case 2 (3) each solution to (5'), (7) ((5'), (8)) also satisfies the BVP (5'), (6) 
and the solutions y(0, c21), y(0, c20) are the unique solutions of the mentioned 
problems, so we have the following 

Corollary. Let (4) be satisfied, p ^ S, Fa - BC = j (Fa - BC = y V Then 

there exists one and only one solution y of the BVP (1), (2). y satisfies the inequalities 
y^0,y'^0, y" = 0 (y = 0, y = 0, y = 0) on <0, />, the only zero-point of y' 
being at I (at 0). 
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Consider now the last case. By Lemma 3, for any cx there is a unique c2 = c2(ci) 
such that 

^••^'•BW-rr^rBg- <*» 

y(ci» ^2(̂ 1)) is continuous on K x <0, /> and it satisfies the d. equation (5) with 
ci = ^2(ci)> and the first half of the conditions (9). The second half will be satisfied 
(for a cx) iff c! is a root of the equation S(cO = F(ci), where 

S(cx) = y(ct, c2(c0) (/) ( - oo < cx < + oo) (21) 
and 

T^ = A~ T^W^c) (— < ^ < + -)• (--> 

The function S is continuous. Its further properties are given by 

Lemma 5. When 1 - p(Fa - BC) < 0, S is decreasing. If 1 - j3(Fa - BC) > 0 
and 

l < ^L (23) 
= 1 - P(Fa - BC) ' K } 

then S is increasing. 

Proof. Suppose cx > c\. The difference u = y(ct, c2(c,)) — y(c\, c2(c\)) satisfies 

u" - p(x) u' - au = H(x) (24) 

H<°>=T=m^te>-c'^ u'^=T^whsc)^-'•>• (25) 

X-u'(l) + u(l) = 0 

where p(x) = ^- [y'(cl9 c1(c1)) (x) + / ( c i , c2(c[)) (x)], H(x) = (ct - c\) x + 

+ c2(ct) - c2(cl), (x e <0, / » . 
When 1 - P(Fa - BC) < 0, by (25), u must attain a negative local minimum at £, 

0 < £ < /, and by (24) it has no local maximum in (£, />. Thus u(/) < 0. 
If 1 — P(Fa — BC) > 0, then there is a positive local maximum of u at a point 

X e (0, /). Since au(X) + H(X) = 0, by (23), we get H(l) = 0 and thus H = 0 in <0, />. 
If w(ju) = 0, X < p < /, then there exists a non-positive local minimum of u at v, 
p < v < I. But au(v) + H(v) < 0, what gives a contradiction. When u(l) = 0, and 
hence u'(l) = 0, the comparing u with the solution v of the BVP 

v" - p(x) v' - av = 0 (x e <0, / » (26) 

1,(0) = u(0), v(l) = u(l) 
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gives that u _ v in <0, /> and hence v'(l) > 0, from where the existence of two zeros 
of v follows. This contradicts the disconjugacy of (26). The proof is complete. 

From the last lemma the next theorem follows immediately. 

Theorem 5. Let Fab - BD = 0 and let either a) 1 - P(Fa - BC) > 0, 1 -
- S(Fa - BC) > 0, / = aaF/[l - p(Fa - BC)] or b) 1 - P(Fa - BC) < 0, 1 -
— 8(Fa — BC) < 0. Then there exists a unique solution y of the BVP (1), (2). In the 
case a) the corresponding associated function z to that solution is positive, while in the 
case b) z is either positive or its only local extremum is a local minimum. When 1 is 
sufficiently small, this minimum is positive. 

Proof. In the proof of Theorem 4 the inequalities 0 < 5(0) < A were shown. 
Since S and Tare continuous, F(0) = A, Lemma 5 implies the first part of the theorem. 
The associated function z = (Fa — BC) y' + Fcx of the established solutions sat
isfies the BVP 

n abFcx , ab , n^ ,._. 
2 ""-T^rt2+T^Bc"-BC"- ( 2 7 > 

(28) imply that z(0) > 0, z(l) > 0. In the case a) from (27) it follows that z cannot 
have a non-positive local minimum and hence, z > 0 in <0, />. In the case b) z may 

have a local minimum. Carrying on some considerations we get that this minimum is 
positive, when / is sufficiently small. 

Theorem 6. Let Fab - BD = 0,1 - p(Fa - BC) < 0, 1 - d(Fa - BC) > 0. Let, 
further 

y 
1 - d(Fa - BC) 

or 

-{^VjT-ßiła-BC) (29) 

I < _ 1 _ a (30) 
1 - d(Fa -BC) SI- P(Fa - BC) y ' K } 

+ T 
Then there exists at least one solution y of the BVP (1), (2). In the former case (the 
latter case) the associated function z shows the properties: z(0) < 0, z(l) > 0, z'(x) ^ 0 
for all x in <0, />(z(0) > 0, z(l) < 0, z'(x) ^ 0 in <0, /». 

Proof. When c± > 0, the investigation of y(cl9 c2(c$) as well as of y'(cl9 c2(ci)) 
gives that y"(c1, c2(c1)) ^ 0 in <0, /> and hence, Lemma 4 can be applied. Thus, 
when (29) is true, there is a c± > 0 such that S(ci) > T(cx) what establishes the exist
ence of a solution to the BVP (1), (2). (28) guarantee the inequalities z(0) < 0, 
z(l) > 0 and z' = (Fa - BC) y" ^ 0. If ct < 0 is sufficiently great in absolute value, 
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one can prove that y"(c1, c2(c1)) = 0 in <0, /> and again, with a help of Lemma 4, 
on the basis of (30), the result can be proved. 

When 1 - p(Fa - BC) > 0, 1 - S(Fa - BC) < 0, then the situation is a little 
more complicated. Still the methods from the last proof are efficient to prove 

Theorem 7. Let Fab - BD = 0, 1 - P(Fa - BC) > 0, 1 - <5(Fa - BC) < 0. 
Let, further, 

y ( . Jfi\ a 
1 - S(Fa -BC)< \ a / 1 - P(Fa - BC) ' 

or 

> 1 - S(Fa - BC) 

> max{-|a/[(/ + | ) [ 1 - KFa - BC)]], ~} % _ fj(/a _ BC)}• 

Then there exists at least one solution of the BVP (1), (2). In the former (the latter) case 
the associated function z to the mentioned solution shows the properties z(0) < 0, 
z(l) > 0 and either z' ^ 0 on <0, /> or there is a subinterval <0, /x> such that z' = 0 
on <0, /x> and z' = 0 in </x, /> (z(0) > 0, z(l) < 0, and either z' = 0 on <0, /> or 
^hcre is a subinterval <0, /x> such that z' ^ 0 I/J <0, /x> and z' _ 0 in </x, />). 
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