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ASYMPTOTIC BEHAVIOR FOR SEMILINEAR 
DAMPED WAVE EQUATIONS ON RN 

EDUARD F E I R E I S L 

ABSTRACT. Large time asymptotic behavior of solutions to the problem 

utt + dut - Au + f(x, u) = 0, u = u(x, £), x G M.N, t > 0, d > 0 , 

is considered with respect to various structural properties of the nonlinearity / . 

We shall discuss the long time behavior of solutions of the problem 

utt + dut - Au + f(x, u) = 0 , u = u(x, t), x G RN, t > 0, d > 0 , (E) 

(u,ut)(-,0) EX = H\RN) x L2(RN). (I) 

Two rather different situations are considered : 

(A) If the nonlinearity / is coercive for large x, the dynamics is asymptoti
cally compact like for the corresponding problem on a bounded spatial domain. 
More specifically, we report the following result : 

PROPOSITION 1. [2, Theorem 1]. Let N = 3 . Under the hypotheses 

/ G C 2 ( R 4 ) , f(.,0)eH\R3), | / , ( x , 0 ) | < C for all x EM3 , (1) 

| / „ ( o ; ^ ) | < C ( l + |z|) forallx-z, (2) 

fix z) 
lim inf ±±-LJ. > 0 uniformly i n x G R 3 , (3) 
\z\—>oo Z 

( / (x , z) - f(x, 0))z >Cz2, C > 0 , for all x large, (4) 

there exists a unique global attractor A of the semigroup 

St: (u,ut)(0)->(u,ut)(t) 

on X , i.e., 
AcX is compact, (5) 

AMS S u b j e c t C l a s s i f i c a t i o n (1991): 35B40, 35L05. 
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St(A) = A for all* > 0 , (6) 

dint (Sf (B), A) - • 0 as t -+ oo (7) 

for any bounded fid, 

where 
dist(C,£>) = sup inf \\c - d\\x . 

cec
 d^v 

R e m a r k . Though the result is formulated for IV = 3, there are no essential 
difficulties to prove the same for a general IV the growth condition (2) being 
modified properly. 

z 
(B) For a general noncoercive / , i.e., when F(z) = J f(s)ds is allowed to 

o 
be negative for certain values of the argument z, the dynamics exhibits truly 
infinite-dimensional character though some compactness results are still possible. 
We assume that / = f(u) along with the following hypotheses 

fsC^R), / (0) = 0, / ' (0) = o > 0 , (8) 

f(u)u > -Cxi2 for all u € R, (9) 

| / » | < C( l + | * H with 2(q+l)<w-^ (10) 

if IV > 2 , q arbitrary finite otherwise. 

According to the recent state of affairs, the main features of the problem may 
be characterized as follows : 

w 
1. If F(w) = J f(s)ds < 0 for certain w and N > 3 , then there is a 

o 
sequence {un} of finite energy stationary states, i.e., un solve 

-At; + f(v) = 0, veH\RN), (11) 

such that 

T(un) -+ oo as n -> oo , T(v) = - ( / \Vv\2 + 2F(v) dx) 

(see B e r e s t y c k i - L i o n s [1]). 

2. The zero solution UQ = 0 is the only stable steady state in X (see 
K e l l e r [5]). 

3. The solution semigroup {St} is not dissipative in X , in other words, the 
damping term dut is not strong enough to ensure boundedness of the trajectories 
in X ([4, Corollary 5]) 

In this case, we claim the following : 
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PROPOSITION 2. [4, Theorem 1]. Under the above hypotheses, let 

u G C ( R + , t f 1 ) , ut e C(R+,L2) 

be a (weak) solution to (E) such that there is a sequence {tn}, tn —» oo, 

\\(u,ut)(tn)\\x<C<oo. (12) 

Then (passing to a subsequence if necessary ) we have 

k 

\\(u,ut)(tn)-^(uj(- + xrl),0)\\x^0 as n->oo, (13) 
J=1 

where k is a finite integer, Uj , j = 1 , . . . , k, are (not necessarily distinct) solu
tions of (11) and x] , x? G R N , 

dist(:r™, x?) —> oo for i ̂  j , n —> oo . (14) 

Proposition 2 is proved by means of the concentration compactness theory 
due to L i o n s [6]. 

Finally, it may be shown that even in case (B) there is a chance to obtain 
compactness changing the phase space appropriately. In addition to the above 
hypotheses, we shall assume 

liminf - ^ > b > 0 , f(z) > -C for all z . (15) 
\z\—>co Z 

Next, we introduce the norm 

|f||^2 = sup 
B y£RN 

\x-y\<l 

í v2 dx (16) 

along with the corresponding space L2
B defined as a completion of the set of 

all smooth and bounded functions on R.N with respect to || ||r,2 . In a similar 

way, the space tf B is defined by means of the norm 

IHIlri = l l l ^ | | | i 1 + | | * s . (17) 

Finally, we write 
XB = H1

BxL2
B. (18) 

It may be shown (see [3, Section 2]) that the Cauchy problem for (E) is 
well posed on XB, and that the solution operator {St} forms a group of locally 
Lipschitz continuous mappings on XB. 

Our final result reads as follows : 
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P R O P O S I T I O N 3. [3, Theorem 1] 

There is a set A C XB enjoying the following properties : 
(Al) A attracts bounded sets in X^ , i-G., for any B(u,ut) C XR bounded, 

we have 
dist(5 t (B), -4) -> 0 as t --> oo , 

(A2) A is time invariant, i.e., 

St(A) = A for all t>0, 

(A3) A is locally compact in the sense that A is bounded in XB and 
compact in X\oc, where 

D/V> 

Xloc = HU^)xLf(Ж)-

R e rn a r k . It is clear that A is uniquely determined by the conditions 
(Al) (A3). Moreover, any set satisfying (Al), (A2) contains A. This justi
fies the denomination global attractor for A. 

The proof of Proposition 3 does not use the conclusion of Proposition 2. 
The main idea is to work in weighted Sobolev spaces with weights polynomially 
decreasing for large values of |x| . 
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