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APPROXIMATE TRAJECTORIES AND LYAPUNOV 
EXPONENTS FOR DYNAMICAL SYSTEMS 

SERGEJ Y U . PILYUGIN 

ABSTRACT. The following problems arising in the investigation of dynamical 
systems by pseudotrajectories are discussed: shadowing and weak shadowing, ap
proximate evaluation of Lyapunov exponents, approximation of the shape of at
tract ors. 

Let M be a compact, C°°-smooth n-dimensional manifold with Riemannian 
metric d. We consider the space Z(M) of discrete dynamical systems generated 
by homeomorphisms <j>: M —> M with the C°-topology induced by the metric 

Po(4>,fl>) = n^x\d(4>(x), *l>(x)), d((j>~1(x), ^ _ 1 ( x ) ) J . 

It is well-known that Z(M) is a complete metric space. We denote below by 
0 (x , (f>) the trajectory of a point x e M with respect to </> e Z(M): 

0(x,<j)) = {j)k(x): keZ}. 

Fix 6 > 0. We say that a set of points £ = {xk: k e Z} or £ = {xk: k > 0} is 
a ^-trajectory (pseudotrajectory) of <f> if 

d(xk+ud>(xk)) < (5, k e Z (k > 0) . 

Pseudotrajectories are a common idealization of "locally accurate" numerical 
methods for dynamical systems. We can consider a numerical method of accuracy 
6 > 0 for a system (j> e Z(M) as a map I/J: M —• M such that 

d(<f>(x),il>(x))<6, xeM. (1) 

Evidently, if (1) holds, then for any x e M the set £ = {ipk(x): k > 0} is a 
6-trajectory of <f>. 

AMS S u b j e c t C l a s s i f i c a t i o n (1991): 58F10, 58F30. 
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1. Shadowing 

We say that 4> G Z(M) has the P O T P (pseudoorbit tracing property) if given 
e > 0 there is b > 0 such that for any (5-trajectory £ = {xk: k G Z} there exists 
x G M with 

d(<f)k(x),xk) < e, fc G Z . 

We say that </> G Z(M) has the WSP (weak shadowing property) if given e > 0 
there is 8 > 0 such that for any <5-trajectory £ = {xk: k G Z} there exists 
x G Af with 

£c/V e(0(z,( />)) (2) 

(here IV£(A) is the ^-neighborhood of a set A c M). 
As usual we say that a subset of a topological space is residual if it contains a 

countable intersection of open and dense subsets. We say that a generic system 
<j> G Z(M) satisfies property 1Z if there is a residual subset of Z(M) such that 
any system in this subset satisfies 1Z. 

K. O d a n i in [1] showed that if d i m M < 3 then a generic <\> G Z(M) has 
the POTP. 

THEOREM 1 [2]. A generic system <p G Z(M) (with arbitrary dimM) has the 
WSP. 

Let us give an example of a system <\> which has the WSP and does not have 
the POTP. Consider M = S1 with coordinate x G K (mod 1). Let (j)(x) = 
x + a (mod 1) where a is irrational, then for any x G M its trajectory is 
dense in M. Hence, for any 8-trajectory £, for any x G M, and for any e > 0 
(1) holds, so that <j) has the WSP. Take arbitrary 8 > 0 and 0 G R with 
0 < \a — f}\ < 6. Consider r/>(x) — x + (3 (mod 1). Evidently, (1) holds, and for 
any x, y there is k G Z such that 

d{<t>k{x)Ak(y))>\, 

hence (j> does not have the POTP. 
Now let 0 be a diffeomorphism of class C1, and let D<p(x) be the derivative 

of 4> at x. Denote by TXM the tangent space of M a t x , and by \v\ the norm 
of v G TXM generated by d. For x G M define 

L+(x) = {v G T^M: |Zty*(x)t;| - • 0 as k -* oo} , 

I T ( X ) = {v G T^M: |Ityfc(aOt;| - • 0 as fc -> - o o } . 

We say that (j) satisfies the STC (strong transversality condition) if for any 
x G M we have L+(x) + L"(a?) = -T^M. It is well known (see [3]) that </> 
satisfies the STC if and only if <j> is structurally stable. 

THEOREM 2 [4]. If a diffeomorphism (j) satisfies the STC then there exist 
L, A > 0 such that if £ = {xk: k G Z} is a 8-trajectory with 8 < A then there 
is a point x G M with 

d(<i)k(x),xk)<L8. 
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This theorem is a generalization of results of C. R o b i n s o n [5], K. S a w a 
d a [6]. 

2. Lyapunov exponents 

Let (j> be a diffeomorphism Rn -> Rn . Consider two maps i[>: Rn -> Rn , 
\I>: Rn —• j£fn (j£fn is the space of n x n matrices). For a point x G Rn we 
consider the upper Lyapunov exponent of 0(x,(j>): 

u(x) = max lim — log\D6Tn(x)v\, 
veun m->oo ra ' ' ' 
M=i 

and the approximate exponent 

/}(#) = max lim — log |$(x m _i) • • • $(x0)v\ , 
v£Un m—•oo 771 
I«I=I 

here Xk = ij>k (x). Assume that for some 6 > 0 we have 

\4>(x) - V(*)| < «, ||*(z) - D^(x)|| < «, (3) 

in this case the pair (^^) is a model of a numerical method with accuracy 6 
of evaluating of Lyapunov exponents. 

THEOREM 3 [7]. Assume that (j) G C2, and that A is a hyperbolic attractor 
of (j> with one-dimensional unstable foliation. Then there exist L, A > 0 such 
that if (3) holds with 6 < A then for any point x G N$(A) there is a point 
y G A with 

\fi(x)-fi(y)\<L6. 

3. Shape of attractors 

Let I be an attractor of </> G Z(M), denote by J the boundary of I and by 
D(I) its basin of attraction. There exists a neighborhood V of I such that 

/ C V C V C D(I), 0 (F) C V . 

In this case V is called an absorbing neighborhood of / . P. K l o e d e n and 
J. L o r e n z [8] showed (in a slightly different situation — for one-step discretiza
tions of systems of differential equations) that if V is an absorbing neighborhood 
of an attractor I and £ = {xk: k G Z} is a <5-trajectory with small 6 then V 
absorbs £, that is Xk G V implies Xk+i G V. 
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We say that S = {£(p): p £ M} is a CF(6, (p) (complete family of 6-
trajectories for 0 ) if any £(p) -= {xk(p): k > 0} is a <5-trajectory with 
*o(p) = P-

Denote by i?(A, B) the HausdorfF distance between two compact sets A, F?. 
Let V be an absorbing neighborhood of an attractor J , consider the set 

F = v\<i>{V). 
Let for natural T and for a CF(S, <f>) S = {£(p)} where f (p) = {xjfe(p): fc > 0} , 

S(T, F) = |J xT(p), 5(T, oo, F) = |J E(k, F). 
PeF k>T 

THEOREM 4 . Consider arbitrary <f> € Z(M). Given e > 0 there exists T(e) 
such that for any T > T(e) we can find 6(T) > 0 with the property: if S is a 
CF(8,<f>) with 6€ (0,«(T)) then 

B.(S(T,F),J)<e. 

THEOREM 5 . Assume that either I = J or cf> has the WSP. Then given e > 0 
there exists T(e) such that for any T > T(e) we can find 6(T) > 0 with the 
property: if E is a CF(6, <f>) with 8 e (0,6(T)) then 

R(E(T,oo,F),J) <e. 
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