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BIFURCATIONS NEAR A DOUBLE 
EIGENVALUE OF THE RECTANGULAR 
PLATE PROBLEM WITH A DOMAIN 
PARAMETER 
Z. SADOVSKY 
Institute of Construction and Architecture of the Slovak Academy of Sciences 
Ihlbravskd cesta, 842 20 Bratislava, Czechoslovakia 

Let us consider the bifurcation problem of the Foppl-Karman equa

tions of a thin elastic rectangular plate having the length a and width 

b when the aspect ratio a = a/b varies near a value a=a_ yielding a 

double buckling load of the plate. In a suitable non-dimensional for

mulation, the governing equations will refer to a common domain. On 

the other hand, there appears a small perturbation parameter say 9 in 

the equations which we introduce as (Matkowsky et al. 1980 ( 1 1 ) 

__ _ ___ 
2 2 

(1) 

Starting from a sample boundary conditions we define a variational 

solution to the boundary value problem using energy spaces H, V given 
2 

as certain subspaces of the Sobolev space W2(r2) . An introduction of 

suitable equivalent norms in H,V leads to the operator equations 

w - QM-jW + 62M2w - A (---j - 0) Lw - (---- - e) C(w,0) a 0 (2a) 
a a 

c c 

- 0 + 0A10 - 0
2A20 - - (---j - ©) B(w,w) x- 0 , (2b) 

2 ac 

where A is the load parameter and weH, 0eV refer to the plate deflec

tion and Airy stress function, respectively. The operators L,B,C are 

essentially those introduced by Berger 1967 [2] for a plate with a 

definite domain. In addition, we have obtained linear bounded and self-

adjoint operators M-, , M~ and A, , A~ acting from H into itself and from 

V into itself, respectively. Eq.(2b) can be uniquely solved for 0 a 

0*(8,w). If 9 is sufficiently small, 0" may be easily found in the form 

of power series in @. Substituting this solution into (2a) for 0 and 

introducing the small load parameter x> 

*~ Xc A =, — — ^ , (3) 
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where A corresponds to the double buckling load of the plate, we ar

rive at the resulting equation 

F (w, x/8) = w - m± - X c ( l + x ) ( ^ 2 - @ ) L w 

c 

+ - ~ C(.w,B(w,w)) + h.o.t.a 0 (4) 
2 a 

C 

to be solved for (w,Xj@ } near the origin of the space HXRXR. Obviously, 

waw::(x-9) = 0 is always a solution to Eq. (4). 

Let H be the eigensubspace of the double eigenvalue A and P the 

operator of the orthogonal projection of H onto H . We assume that the 

following hypotheses hold: 

(HI) For ueHc, B u,u = 0 only if u a 0. 

(H2) The operator P M, restricted to ueH has only simple eigenvalues. 

(H3) F(w,x,Q) commutes with respect to the group 

s a {I,S,-I,-S} 

of operators on H, where S possesses the action of one of the 

operators Sx, S , S x y 

Sx: H-* H, u(x,y) -*(Sxu)(x,y) =-u(l-x,y) 

Sy: H-> H, u(x,y) -* (.Syii) ( x,y) =-u(x,l-y) 

S -> S S -. S S xy x y y x 

and H is spanned by <p,eH' , <p2eH ; llq>..j =» 1, i a 1,2 where 

H+ = {UGH: Suau] , H" = {UGH: Sua-u} . 

The hypothesis (HI) is commonly used.(.H2) implies a transversal split

ting of the double eigenvalue A into simple ones appearing as a re

sult of perturbation..Actually we can show that near A a A the eigen-
© © values A. of the linearized equation are of the form \. a A + A'© + 
i ^ 1 c 1 

+ h.o.t., ial,2 with A/J-J A2 . By the hypothesis (H3 ) restrictions upon 

the boundary and load conditions are imposed allowing for the occurence 

of the assumed symmetry of Eq. (4). 

The study of Eq. ,(4) is constructive - via the Liapunov-Schmidt reduc

tion and the implicit function theorem. Assuming 

w a 51<p1 + c2 ?2 + w (5 ) 
2 

with c eR, o)G H and following Vanderbauwhede 1982 [3 l we obtain 

that the bifurcation equations admit the form 

G± U,X,©) a C H±(C.rXf©) a 0, ial,2 (6) 

with 



417 

Hi( ±C1, ± s2/X,©)--Hi( r̂ , ',2,X,e), i-1,2. . (7) 

Thus, a Z^ <B Z2 symmetry of Eqs. (6) is p r e s e n t . Moreover, we may dis

tinguish one-mode and coupled-mode solutions to Hq.(4). The one-mode 

solutions wtH or weH correspond to solutions of 

C2 a 0, H1 ( ^ , 0 , \,9) =» 0 (8) 

and 

^ a 0, H2( 0, r,2,x,9) =. 0, (9) 

respectively, while coupled-mode solutions correspond to solutions of 

H1( r,,x#©) -= 0, H2 U,x,0) =» 0. (10) 

Departing from Chow-Hale 1982 [4] , we estimate the small solutions 

to Eqs. 6 by an a priori bound based on (HI) and then scale Eqs.(6) 

((8-10))by 

2 2 
r, = 3v,, x = y sinv , 6 a p cosv , (11) 

where 3=3(v,y), the angle determines a direction in the (x,©) para

meter plane and y is a new small parameter. The scaled equations are 
g. ( 3,v,y) ... 3ih±( 3, v, y ) -, 0, i-1,2 (12) 

X ' 
h±( B,v,y) _ -Sin v + -J: cos v + a 3̂  + b p2 + h - 0 # t # , 

c 
A' 

h2 ( 3,v,y) = -sin v + -^ cosv + b 3̂  + c ^ + h.o.t. . 

'C 

Due to (Hi) it is a> 0, c> 0 and we assume that b> 0, too. 

Definition 1. (Golubitsky-Schaeffer 1979 [5] ) The bifurcation pro-

. 
blem (6) is non-degenerate if b/a 4 1/ b/c ^ 1 and b £ ac. 

According to Golubitsky-Schaeffer [5] , the ratios b/a, b/c repre

sent the modal parameters of bifurcation problem (6). The lines of de-

neracy divide the studied positive quadrant of b/a, b/c plane into six 

regions within each of which the local features of bifurcating solutions 

to Eqs.(6) are topologically equivalent. The nondegenerate cases of 

Eqs.(6) were analysed in [5l by means of the singularity theory. Our 

study comprises the degenerate cases while the employed tools are sim

pler. 

Letting y-> 0, the reduced equations g( 3,v,0) = 0 the scaled equiva

lents of (8-10))can be easily solved for 3=3°. If b ^ ac, the non-tri

vial solutions appear at v values forming an open subinterval within 

the considered interval (--t/2, 3-c/2> of v values, with end points dif-
2 

fering from -ir/2, 3TC/2. If b = ac, the reduced system is solvable only 
at a certain VG(-TC/2, 3TI/2), say v -=vS, having then a continuum of so-

where 
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lutions given by the equation 
^ r 

a ( 3?) 2 + b( 0°) 2 » sin V
S - -^ cosv

S . (13) 
1 z Ac 

Successive continuations of the solutions to p ̂  0 by the implicit 

function theorem succed only within the open set of regular points in 

the parameter plane. Thus, the description of the solution set needs 

to be completed in a beighbourhood of the singular points (potential 

bifurcation curves). The first step in the analysis which appears to 

be crucial is the choice of (£-.,©) or (r;2,€>) or (r,-r C? ) as a new pa

rameter plane if (8),(9) or (10), respectively, is solved. In this way 

we obtain that the small solutions to Eq. (4) form a connected set con

sisting of the trivial, one-mode and coupled-mode solution subsets. 

The description of the solution set to Eq.(4) yields immediately pri

mary and secondary bifurcation curves at cross-sections of trivial and 

one-mode or one-mode and coupled-mode solution subsets, respectively. 

Now the question on the possible additional bifurcation curves and the 

conditions of their appearing or non-existence is to be answered. 

Theorem 2. Suppose (Hl-3) hold and the coefficients a, b, c of bi

furcation equations (6) of Eq.(4) satisfy: 

(i) b2 4 ac, b >0 

(.ii) b2
 s ac, b >0 

In the case (ii) let further be 

„ o . _ _ _, „ _ n _ m. „o 

o 

l im T ( ß ° ) , ф Q ф 0 П И m T( ß ° ) , @ @ ^ °< 

P2 - ° 
o where T(g ) i s d e f i n e d by 

T ( P
C ) =- bh- . , ( £ C , v S rO ) - a h ? , i M ( 8 C , v S , 0 ) 

over the ellipse (l3)(the circles in the subscript positions de

note a total differentiation of T(3°)with respect to ^ or g2J 

and either 

(a) it holds 

T ( 6 ' 0 ) ' ® = - f i o T < B ° > ' © » 0 , V e ° : 3°>0, 6°>0 
2 

or 

(b) for certain 3° =s3°*: 3C*>0n (3C*>0 it is 

TU°*), Q = T(3°*), Q = 0, 

8* 
T(B°*)'®®a (B"75*> ^ B 0 * ) , © © * 0 

B2 



and 

lim T(B° ) / lim T ( 6° ). 

o o 
B1 -0 B2 -0 

Then near the origin of the(x ,8 ) parameter plane, the bifurcation dia

gram of Eq.(4 ) consists of four distinct bifurcation curves: two pri

mary and two secondary bifurcation curves, and in addition in the case 

(ii)(b) of a unique curve of limit points. A crossing of the primary 

and secondary bifurcation curves changes the number of solutions to 

Eq.(4) by two and four, respectively. A crossing of the limit-point 

curve changes the number of solutions by eight. 

Proof. In order to study the set of bifurcation curves, we solve the 

system consisting of the scaled bifurcation equations (12 ) together 

with the condition of vanishing of the corresponding Jacobian 

J a J ($/v,^). At solutions to the reduced system (1.=- 0 the value of 

the corresponding Jacobian is always zero but one of Eqs.(12>, say 

g-, a 0, and the equation J =5 0 may be uniquely solved for B.. -»B ( B u ), 

v = v(B2,u)near such solution. Substituting 3,, „ v for
 ei»v i n t h e re

maining equation g2 a 0 we get an equation the small solutions k^B^tu) 

of which can be studied by Newton's polygon method. The primary and 

secondary bifurcation curves correspond to the tripple roots while the 

limit-point curve to the simple root of the remaining equation (g, -« 0 

or g2 » 0). We note that T(B°,)is a polynomial of second degree in 

( B° ) 2 and ( a2 )
 2 . 

Corollary 3. There exist two pairs of one-mode (one from H and the 

other from H ) and in the cases (i), (ii ) (a ) no or two pairs while in 

the case ii b no", two or four pairs of coupled-mode solutions to 

Eq.(4), ©.=0 near waO and any X> X sufficiently close to X 

Equation F(w,x*0) =- 0 describes an important problem of plate having 

a double buckling load. A direct calculation of the buckled states of 

the plate bifurcating at the buckling load may be performed eliminating 

one of the unknowns and then applying the Newton polygon method to the 

remaining equation. 

A necessary part of the analysis of the studied bifurcation problem 

is the investigation of stability of bifurcating solutions. Following 

the concept of linearized stability, a solution waw*(x,e ) to Eq. U ) is 

stable if the eigenvalues p of the eigenvalue problem 

F ' (w'\ Xr® H - P̂  -» 0 (14 ) 

are positive. It is well known that the trivial solution is stable at 

any © and x> 0 less than the first positive eigenvalue X of the li
ft + 

nearized equation. For A> A + the trivial solution is always unstable. 
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McLeod and S a t t i n g e r 1973 l6l showed t h a t t h e L iapunov-Schmid t r e d u c 

t i o n c o n t a i n s i n f o r m a t i o n s r e q u i r e d fo r t h e s t a b i l i t y a n a l y s i s of b i f u r 

c a t i n g s o l u t i o n s . L a t e r S a t t i n g e r 197 9 [7] has shown t h a t t h e s t a b i 

l i t y of a o n e - p a r a m e t e r fami ly of b i f u r c a t i n g s o l u t i o n s i s d e t e r m i n e d , 

t o the l o w e s t o r d e r , by t h e e i g e n v a l u e s of t h e J a c o b i a n m a t r i x of r e d u -
2 

ced b i f u r c a t i o n e q u a t i o n s . S a t t i n g e r s theorem f a i l s e . g . i f b - a c , 

s i n c e t h e n t h e J a c o b i a n m a t r i x of t h e r educed e q u a t i o n s has always one 

z e r o e i g e n v a l u e . The non-conforming d e g e n e r a t e c a s e s can be t r e a t e d by 

t h e f o l l o w i n g theorem: 

Theorem 4 . Suppose (Hl -3^ ho ld and t h e c o e f f i c i e n t b of b i f u r c a t i o n 

e q u a t i o n s (6) of Eq. (4) s a t i s f i e s b> 0. T h e n , t h e l i n e a r i z e d s t a b i l i t y 

of any o n e - p a r a m e t e r f ami ly of i s o l a t e d s o l u t i o n s t o E q . ( 4 ) b i f u r c a t i n g 

a t t h e d o u b l e e i g e n v a l u e A i s s u f f i c i e n t l y c l o s e t o t h e b i f u r c a t i o n 

p o i n t d e t e r m i n e d by t h e J a c o b i a n of b i f u r c a t i o n e q u a t i o n s (6 ) ( p o s i t i v e 

v a l u e i m p l i e s s t a b i l i t y ) . 

Proof., F ' ( w " , x , © ) i s an a n a l y t i c and symmetr ic p e r t u r b a t i o n of t h e 

o p e r a t o r F ' ( 0 , 0 , 0 ) . The spec t rum of F ' ( 0 , 0 , 0 ) i s d i s c r e t e and n o n - n e g a 

t i v e w i t h z e r o as a doub le e i g e n v a l u e hav ing a p o s i t i v e i s o l a t i o n d i s 

t a n c e . Apply ing t h e L iapunov-Schmid t r e d u c t i o n t o E q . ( 1 4 ) we a r r i v e a t 
2 

an e i g e n v a l u e problem in R y i e l d i n g t h e p e r t u r b a t i o n of z e r o e i g e n v a 
l u e . Now i f we c o n s i d e r t h e e i g e n v a l u e problem for t h e J a c o b i a n m a t r i x 
of b i f u r c a t i o n e q u a t i o n s (6 ) e v a l u a t e d a t w=3W*; we see t h a t t h i s e q u a 
t i o n d i f f e r s from t h e former one on ly i n t h e h i g h e r - o r d e r t e r m s . J u s t i 
fy ing t h e p e r t u r b a t i o n t e c h n i q u e i n bo th c a s e s and compar ing t h e p e r t u r 
b a t i o n e q u a t i o n s we conc lude t h e a s s e r t i o n . 

Let us n o t e t h a t t h e s t a b i l i t y a n a l y s i s sometimes f a i l s t o i n d i c a t e 

t h e e n e r g e t i c a l l y p r e f e r r e d e q u i l i b r i u m p a t h of t h e p l a t e and d i r e c t 

compar ison of ene rgy l e v e l s of b u c k l e d s t a t e s i s n e c e s s a r y . Such s i t u a 

t i o n i s e n c o u n t e r e d i f 6-»0, b>a, b>c , s i n c e t h e n a t * = *• t h e r e b i f u r 

c a t e two d i f f e r e n t p a i r s of s t a b l e s o l u t i o n s t o Eq. (4 ). 
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