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STABILITY AND ERROR ESTIMATES VALID 
FOR EOTINTTE TTME, FOR STRONGLY 
MONOTONE AND INFINITELY STTFF 
EVOLUTION EQUATIONS 
0 . AXELSSON 
Department of Mathematics, University of Nijmegen 
Toemooiveld, 6525 ED Nijmegen, The Netherlands 

Abstract 

For evolution equation with a monotone operator we derive unconditional stability and 

error estimates valid for all t i m e s . For the 6-method, with 6 = 1/(2-+CT ) ,0<v<_l, £>0), 
4/3 

we prove an error estimate 0(T ), T -> 0, if v = 1/3, where i is the maximal time-
step for an arbitrary choice of the sequence of timesteps and with no further condition 

2 
on F, and an estimate 0(T ) under some additional conditions. The first result is an 

improvement over the implicit midpoint method (0 = h), for which an order reduction 

to 0(T) may occur. 

1. Introduction 

Consider the evolution equation 

(1.1) u + F(t,u) = 0, t > 0, u(0) = uQ € V, 

V a reflexive Banach space, where u = — and F(t,«) : V ->• V . Here V is the space 

which is dual with respect to the innerproduct (•,*) in a Hilbert space H, with norm 

||v|| - (v,V)h. 

We shall assume that F is a monotone operator, i.e. 

(1.2 ) (F(t,u) - F(t,v), u-v) •> p(t) | |u-v| |2 V u, v e V, 

where p : (0,«) -> R+, i.e. p (t) >_ 0, t > 0. 

A typical example is the parabolic evolution equation 

(1.3) u = V • (a(t,x,Vu)Vu) + g(t,u) , t,x e (0,°°) u ft , ft c m . 

with boundary conditions, say u = 0 on 9ft. Here V = [H (ft)] (a Cauchy product of the 
°1 2 

Sobolev space H (ft)), H = L (ft) and, under certain conditions on a and g this is a 

parabolic problem, i.e. fulfills (1.2) with p(t) > 0. 

Other important examples are conservative (hyperbolic) problems for which (1.2) 

is satisfied with p(t) _> 0. In the present paper we restrict the analysis to the strong

ly monotone case, p (t) >̂  pQ. > 0. 

Classical techniques for the derivation of discretization error estimates for 

(1.3), uses a semidiscrete method for the discretization in space, namely the 

variational form 
K , u) + (F(t,u),u) = 0 V£ e v, c v, t n 

where V. is a finite element space depending on a mesh parameter h. 

This semidiscrete method ("longitudal method of lines") results in a system of 

ordinary differential equations (ode) which is "stiff", i.e. components of the, solution 

exist, which decay (exponentially) with largely different rates. 
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The system of ode can be solved by many methods for stiff ode's. The difficulty 

is in proving error estimates for the total error of the form C hP+C T , p,q > 0, 

where T is the time-step. Here C.,C should be independent of h,T. Since the dimension 

of the ode depends on'h, classical error estimates used in the numerical analysis of 

ode, cannot be applied. Furthermore, they provide usually only a bound growing with 

time t (sometimes even growing exponentially - see below) . We wa nt to derive error 

estimates which are valid (i.e. bounded) for all t. 

We find it then convenient to consider a "transversal method of lines", i.e. first 

discretize the evolutionary problem (1.3), and more generally (1.1), w.r.t. time. A 

convenient time integration method turns out to be the implicit ("one-leg") form of 

the 9-method with 0 <_ 6 <_ 1 / 2(1 + CT ), C > 0 for some v, 0 <_ v <_ 1 . Error estimates 

O((*5-0)T + T ) valid for all t can now be derived in the strongly monotone case, 
4/3 

where p(t) > p > 0. Without further assumptions the optimal order we prove is 0(T ) 

for v = 1/3 and 6 equal to the upper bound. With some additional assumptions we prove 

2 

also the optimal order, 0(T ).(At this point we remark that there is a marked differ

ence in behaviour of the implicit and explicit forms of the 0-method, in particular 

for variable step-lengths. The latter method may not even converge.) 

To illustrate the problems with proving error estimates for time-stepping methods, 

we consider the Euler (forward) method, 

(1.4) v(t+T) = v(t) - T F(t,v(t)), t = 0,T,2T,... 

where v is the corresponding approximation to u. 

(It is only for notational simplicity that we let the time step T be constant.) 

Let e(t) = u(t) - v(t) be the error function. Classical error estimates, uses the 

two-sided Lipschitzconstant, 

(1.5) L = sup {||F(t,u) - F(t,v)|| / ||u-v||}, t > 0 , u,v £ VQ c v 

where V contains all functions in a sufficiently large tube about the solution u. In 

the analysis of the Euler forward method we have to assume that F is two-sided Lipschitz-

bounded, i.e. that L < °°, but for the implicit methods to be considered later, we need 

only a one-sided bound such as (1.2). From (1.1.) it follows 

(1.6) u(t+T) = u(t) - /Q F(t+Ts, u(t+Ts))ds 

and from (1.4) and (1.5) we get 

(1.7) e(t+T) = e(t) - T{F(t,u(t)) - F(t,v(t))} + xR(t,u), 

where 

R(t,u) E /* [F(t,u(t)) - F(t+Ts,u(t+Ts))]ds = /Q Cu(t+Ts) - u(t)]ds 

is the (normalized) local truncation error. 

Note that 

(1.8) sup ||R(t,u)|| = T sup /n ds /^||u^
2)(t+ax)||da <_ ^TD 9, 

t>0 t>0 ° ° t 

where we use the notation 

(1.9) D, = sup | |u°° (t) | |, k = 1,2,... 
tX) 

(k) 
and we assume that u e Loo(H) , i.e. that D < °°. 
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By (1.5) and (1.7) it follows 

| |e(t+T) || <_ (1 + iL) | |e(t) | | + T| |R(t,u) ||, t == 0, T, 2T, ... 

or, by recursion, . 

||e(t)|| <_ (l + TL)
t / T

| |e(0) | | + T Z (1+TL)
 j _ 1

| |R(t-JT,u) | | 

j = l 
ui 

(1.10) I |e(t) | | 1 e
t L
| |e(0) | | + f(e

tL
-l) max | |R(t,u) | |, t = T, 2T, ... 

tio 

Notice that the initial and truncation errors may grow as exp(tL). 

By (1.8) we have ||R(t,u)|| <_ CT, where C depends only on the smoothness of the 

solution, and not on the Lipschitz constant L. However, in most problems of practical 

interest, L is large, so even for moderately large values of t, the truncation error 

is amplified by a large factor ~L exp(tL). 

This is in particular true for stiff problems, in which case the bound (1.10) (and 

the method (1.4), even for very small time-steps satisfying TL « 1) is practically 

u s e l e s s . This is in fact true for all explicit time-stepping methods . 

However, we easily derive the following stability bound for solutions of the 

continuous problems valid. 

| |u(t)-w(t) | | __ exp(/
t
 - p(s)ds) | |u(0)-w(0) | | <_ I |u(0)-w(0) | |, t > 0. 

Here, u, w are solutions of (1.1) corresponding to different initial values, u(0) 

and w(0), respectively. 

We now face the following problems: 

(i) Can we find a numerical time-stepping method for which a similar stability 

bound is valid? 

(ii) Can we derive discretization error estimates without a "nasty" large 

(exponentially growing) stiffness factor, such as the factor in (1.10)? 

The answer to these problems is affirmative as was pointed out in [3] and [4] because 

the "backward" or implicit Euler method 

(1.11) v(t+T) + TF(t+T)) = v(t), t = 0, T, 2T, ... 

fulfills these conditions. 

One finds now the error bound (if e(0) = 0) 

-1 

where C depends only on p
n
 and D . 

This method is only first order accurate. 

In this report we discuss an extension of (1.12) to the class of 0-methods. The 

results found complement some of the results in [2]. 

2. Stability of the 9-method 

We shall consider the implicit (also called one-leg) form of the 9-method 

(2.1) v(t+T) + TF(t,v(t)) = v(t), t = 0, T, 2T, ..., 

v(0) = u
Q
, where t = 6t + (1-6)(t+T) = t + (1-6)T and v (t) = 9v(t) + (l-6)v(t+x), 

0 <_ 6 <_ 1. For 9 = 0 and 9 = 1. we get the Euler backward (i.e. the Rothe method (see 

[7]),for evolutionary partial differential equations and Euler forward methods, 

respectively. 

(1.12) | |e(t) | | <_ p^
1
 sup | |R(t,u) | | __ Cт, t > 0, 

t>0 
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When F is monotone, i.e. satisfies (1.2), it will follow that the nonlinear 

equation (2.1) has a unique solution v(t+T) in V, if 0 <_ 1. 

As is wellknown the implicit form of the 0-method can be written as an Euler 

backward (implicit) step (t ->• t = t + (1-6)T). 

(2.2) v(t) + x(l-0)F(t,v(t)) = v(t), 

followed by an Euler forward (explicit) step (t •> t+T) 

(2.3) v(t+T) + T 0 k(t) = v(t), 

where k(t) = F(t,v(t)). 

(2.2) follows if we multiply (2.1) by (1-0) and define v( ) as a linear function 

in each interval Lt,t+x]. Then v(t) = v(t). (2.3) follows if we subtract (2.2) 

from (2.1). 

In practice we perform errors, such as iteration and round-off errors when 

solving (2.2) and also round-off errors when computing v(t+T) from (2.3). 

(In the parabolic evolution equation, we also get space discretization errors, when 

solving (2.2).) We shall assume that these errors are TrQ(t) and xs.(t), respectively, 
o o 

where ||rQ(t)|| < C.,I|s.(t)|| < C., t > 0, and C., i = 1,2 are constants, independent 
u — ID Z — 1 

of T. We get then the perturbed equations 

(2.4.1) v(t) + T(l-0)F(t,v(t)) = v(t) + xrQ(t). 
D 

(2.4.b) v(t+T) + T 0 k(t) = v(t) - TsQ(t), 

k(t) = F(t,v(t)) , 

which are the equations the computed approximations v actually satisfy. 

Multiplying (2.4.a) by 0 and subtracting (2.4.b), multiplied by (1-0), we get 

(2.5) v(t) = (l-0)v(t+x) + 0v(t) + Ta(t) = v(t) + Ta(t), 

where a (t) = 0r (t) + (l-0)s0(t). 

By summation of (2.4.a) and (2.4.b), we find 

(2.6) v(t+T) + xF(t,v(t)) = v(t) + x3(t), 

where 3(t) = rQ (t) - se(t). 

For the unperturbed equations we have 

(2.5') v(t) = v(t) 

and 

(2.61) v(t+T) +TF(t,v(t)) = v(t), 

respectively. 

Let the difference be e (t) = v(t) - v(t). 

We find then from (2.5), (2.5') and (2.6), (2.6'), 

(2.7) e(t) = e(t) + Ta(t), 

(2.8) e(t+T) - e(t) + x[F(t,v(t)) - F(t,v(t))] = x3(t), 

respectively. 

We shall assume that p (t) >̂  p (t) >̂  pQ > 0 in (1.2). 

Taking the inner product by (2.8) with e(t), we find then, by (1.2) and (2.7), 

(e(t+x) - e(t) , e(t) + xa (t)) + xpQ | |e"(t) + xa(t) | |
2 <_ x(3, e (t) + xa (t)) . 

By use of the arithmetic-geometric mean inequality, we find 
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T ( 6 , e ( t ) ) <_ S P ^ T I | $ | I2 + V r p J | e ( t ) | | 2 , and 

(e(t+T) - e(t), e(t)) + Vrp | |e(t) + xa(t) | |2 ± ^p^T | | (3 | |2 - (e(t+r) - e(t) , xa) . 
9 2 2 

By use of the inequality, | |a+b| | 21 *-1 Ia I I ~ I I-51 I a n d t n e arithmetic-geometric 

inequality once more we get 

(2.9) (e(t+T) - e(t), e (t) ) + JaTp0 | |e (t) | |
2 <_ hp^i | | 3 | | 2 

+ bTV||e(t+T)-e(t)||2 + hT2-V(l+p0T
l4-V)||a||2, 

where 0 <_ v <_ 1 . The chosen value of v will be specified later. 

An elementary computation (see [1] shows that 

(e(t+T) - e(t), i(t)) = hl\|e(t+x)||2 + (1-29)||e(t+T) - e(t)|| 2 - ||e(t)||2] 

and 

||e(t)||2 = (1-6) | |e(t+T) | |2 + 6||e(t)||2 - (1-6)6| |e(t+T) - e(t)|| 2. 

Using these identities in (2.9), we find 

(2.10) [1 + -2Tpe (1-6) D | |e(t+T) | |
2 + [1-26 - 4 T P 0 ( 1 - 6 ) 6 - T

V]||e(t+T) - e(t)|| 2 

<_[!- S T P 0 6 J | |e(t) | |
2 + p^xllBll2 + 2T2-V||a||2, 

1+v 
where we have assumed that T <_ 1 is small enough so that pfiT <_ 1 . 

We shall now choose 6 <_ 6 , where 8„ is the largest number <̂  1, for which the factor 

of the second term of (2.10), 1 - 26 - ^Tp (1-6)6 - T >_ 0. 

We find then 6 = h - |O(T V) | , T -> 0. 

By recursion, it now follows from (2.10), 

||e(t)||2 < qt/T||e(0)||2 + Tp"1 <E/T>"'1 qit/T)-i-hl*Hll-e)iP0r
lsvp Y2(s) 

j=l s>0 

where 

(2.11) Y 2 ( S ) = | |6(s) | |2 + 2p 0T
1 _ V| |a(s) | |2, 

and 

q = (1 - -aeip..) / [1 + -J(1-0)TP O] 

Since 6 < h, we ha\> q < 1, and we find 

I |e(t) | |2 1 q t / T| |e-(0) | |2 + p^2[2 + (l-6)xp ] sup y2(s) , Vt > 0. 
s>0 

Hence, the 6-method is unconditionally stable (independent of the stiffness and 

of T) , if 0 <_ 8 . 

We collect the result found in 

Theorem 2.1. (Stability.) If (1.1) is strongly monotone, i.e. p(t) ̂_ Pn
 > 0 in (1.2), 

and if 6 <_ 6 , where 8 Q is the largest number <_ 1, for which 

l-26-15Tpo(l-6)0-T
V >_ 0, 0 <_ v <_ 1, then 

I |e(t) | | 2 <_ g t / T| |e(0) | | 2 + p^2[2 + (1-6)T P ] sup Y
2 (s) , V t > 0 

s>0 
where Y ( S ) satisfies (2.11). 

Here e (t) = v(t) - v(t) is the perturbation error, v(t) is the solution of the 

perturbed equations (2.4.a,b), and v(t) is the solution of the unperturbed 6-method (2.1). 

Corollary 2.1. If e (0) = 0, then 

(2.12) ||e(t)|| i p " 1 [2+(l-6)Tp()]
i5 S U D | Y ( S ) | , Vt > 0. 

This generalizes the stability part of (1.12) to the implicit class of 8-methods. 
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3. Truncation errors 

It remains to consider the truncation errors for the 0-method. For the solution 

u of (1.1) we have 

(3.1) u(t) 

where, by an elementary computation, 

. d-G)s 

a_(t) = - ( 1 - 6 ) T fn ds / Q(t-aT)do 

-8s 

Hence 

(3.2) sup | | a (t) | | = -26(1-6)1 D 
t>0 

Similarly, 

(3.3) u(t+T) + TF(t,u(t)) = u(t) + Tg_(t), 

y 

where, 
(3.4) 6e(t) = T

_1(u(t+T) - u(t) - Tu(t)) 

1 s 
= T / ds /. _ U(t+OT)dO 

U 1-6 
I s l i, 

= T /. ds /. u(t+OT)do + T /_ ds f. QU(t+OT)dO 
U *5 U 1-W 

= T /^ ds [/Q U(t + (h+0)T)dO - U(t+(h-0))l']d0 + T /^dS /^_0U (t+OT) dO . 

Hence, if u e L (H) , i.e. sup | |u (s) | | < °°, then 

1 7 s > 0 

(3.5) sup ||3 Q(t)|| <_—TD3 + T|-J-6|D 2. 

Let the time-discretization error, E(t) = u(t) - v(t). By (2.5'), (3.1) and (2.6'), 

(3.3) and using the estimates in section 2, we get by Corollary (2.1), for the strong

ly monotone case, 

(3.6) | | E ( t ) | | < p " 1 [ 2 + ( l - 6 ) T P o ] i 5 sup | Y f i ( t ) | , 0 < 6 < 6_, 
- 0 _ t>o e - - 0 

where Y Q ( U = | | e Q ( t ) | | 2 + 2 p 0 T 1 - V | | o Q ( t ) | | 2 . 

Hence, by (3.2) and ( 3 . 5 ) , 

(3 .7) | y 0 ( t ) | = | jT 2 D_ + T | ^ - 0 | D _ + /p*^72 T ( 3 _ V ) / 2 6 (1-6) D_ . 
v 

) <_ 0 ( i . e . wi th C a l a r g e enough pc 

| y 9 ( t ) | = | O ( T 2 ) | + i o ( T 1 + v ) | + | O ( T ( 3 - V ) / 2 ) | , T + 0 . 

4/3 
Its order is highest, namely 0 ( T ) , if we choose v = 1/3. 

We collect these results in 

Theorem 3.1. (Discretization error.) The discretization error of the 0-method with 

0 = l/(2+CTV) <_ 

| |E(t) | | < p"1[2 + (l-ejxp.]12 sup |Yfi(t) | = | 0 ( T 1 + V ) |, if 0 < v < \ 

° t>o e ,_ .. " " 3 v t > 0, 
|0(T ( 3- V ) i 5)|, i f i < v < l 

(3) 
for any solution u of a strongly monotone problem (1.1) , for which u e Loo^H^ * 

Its order is highest, ||E(t)|| = |O(T / ) | , if v = 1/3. 
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Remark 3 . 1 . It follows readily from ( 3 . 4 ) , that Theorem 3 . 1 remains valid if we 

replace the regularity requirement, u e H, with the weaker requirement that u 

(2)
 t 

is Holdercontinuous with exponent v . In fact it suffices that u is Holder-t 
continuous in the interior of each interval ( t , t + T ) . 

Remark 3.2. Theorem 3.1 remains valid for any choice of timesteps T , constant or 

variable, for which T < C T , for some positive constant C. 
k — 

In some problems we have to adjust the timesteps to get convergence or fast 

enough convergence, because some derivative of u of low order can be discontinuous 

at certain points. It may for instance happen that F in (1.1) is discontinuous for 

certain values of t. 

In such cases we want to adjust the timesteps so that those values of t become 

stepping-points. Hence the result in Theorem 3.1, although not of optimal order as 

we shall see, is of particular importance for cases where we have to change the time-

steps in an irregular fashion. 
2 

We shall now present an optimal order, 0 ( T ), result, but valid only if the 

timesteps are essentially c o n s t a n t . 

Consider first the equations (2.4,a,b) for variable parameters 6 = 8 and T = T , 

k = 0,1,... . For the solution of (1.1) we get then truncation errors R = R(t ,T ,0 ) 

and S = S(t ,T ,0 ), defined by 

(3.8.a) u(t) + T
k
(l-0

k
)F(t,u(t)) = u d ^ ) - T ^ , 

V
 L

k
 Qil

"
 L
k 

Guided by a trick in [5] for the implicit midpoint method (i.e. (2.2), (2.3) 

with 9 = h) we define 

(3.9) u(t
k
) = u ( t

k
) - x

k V 

Then (3.8.a,b)'takes the form 

V 
o . i o . b ) u ( t k + 1 ) + T k e k F ( t , u ( t ) = u ( t ) + T

k 3 0 ( t k ) , 

where 

(3.11) І ( V 

(3.12. a) u(t) 

Summation of (3.10.a) and (3.10.b) yields 

(3.12.b) u ( t
k + 1

) + T
k
F(t,u(t)) -= u(t

k
) +

 T

k
3

0
t

k
) . 

V
 SO fc

k 

(3.13) u(t) = u(t
k
) +

T

k
»

0
( t

k
) , where a

Q
(t

k
) = - (1-6^ i§

e
 (t^) . 

Note that (3.13) and (3.12.b) have the same form as (3.1) and (3.3), r e s p e c t i v e l y . 
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To estimate a and BQ, we need to estimate R̂^̂  and S k . By (3.8. a) and (3.8.b) we find 

(3.14) ^ = d-6k) Cu(t) - /* uft^ + (l-6k)Tks)ds] 

= ( 1 - V 2 T k / o d s / s G ( t k + l l - v v ( d o ) 

and 

(3.15) sk = ekC/;; fi(VvekV)ds-fi(t)] 

• e k \ 'o ds fl G ( W s k T k 0 ) d 0 -
By ( 3 . 1 1 ) , ( 3 . 1 4 ) and ( 3 . 1 5 ) we f i n d 

H V V H ^ K V k ' 2 ' ( 1 - e k + i» 2 Vil l5D2 + 0 ( T k ) D 3 
i f CT <_ T <_ CT for some p o s i t i v e c o n s t a n t s c ,C . 

Hence | \hQ(t^) \ | = 0 ( T 2 ) , T - 0 , k = 0 , 1 , . . . i f O ^ ) 2 - U~\+1)
2\+i = 0 ( T 3 ) o r 

k T. + 0 ( T 2 ) . 
k+1 1-6, « k 

k+1 

Remark 3.3. Since for stability reason, 

(3-16) \+i " T^TT V 
k+1 

then {T } is a decreasing sequence. Frequently, in practice we want to choose small 

steps in the initial (transient period) and then larger steps, i.e. contrary to (3.16). 

Consider now for simplicity the case T = T, 0 = 0 = l/(2+r,T), C > 0, k = 0,1,... 

Let E(t) = u(t) - v(t). It follows as before (see 3.6) and Theorem 2.1) that 
I|E(t)||2 lqt/T||E(0)||2 + p~2 [2 + (l-9)Tp ] 0(T2)D3 

We have E(0) = u(0) - v(0) = u(0) - u(0) = T R Q, i.e. by (3.9) and (3.14), 

| |E(0) I | = 0(T2)D2« 

Similarly, by (3.1)f 

| |u(t) - v(t) | | <_ | |u(t) - G(t) | | + | |G(t) - v(t) 11 = O(T 2)D 2 + | |i(t) 11. 

We collect these results in 
6k 2 

Theorem 3.2. If T. = — T. + 0(T ), 
K+1 l-o, ., K 

k+1 

6 = 1/(2+C,T ), r, > C > 0, k = 0,1,..., then the 0-method (2.2), (2.3) has a 
K 2 (3) 

discretization error 0(T ), valid at all stepping points t ,if u e Loo(H) and if 
(1.1) is strongly monotone. 

2 
Remark 3.4. In [2], it is proven an optimal order, 0(T ) estimate, valid for arbitrary 

variable time-steps, if in addition to the assumptions in Theorem 3.1, we assume that 

v = 1, that ||8F/3t|| is not large and that the Gataux derivative 3F/3u exists and 

satisfies: | 13F/3u u | | ±s of the same order as D.. (i.e. not large for smooth 

solutions). Note that for a linear problem u = Au with constant operator A, we have 
(2) 3 (3) 

3F/3u U = A U = U . For a more general parabolic problem, we have typically that 

i>up | | 3F/3U U^ I I is of the order of sup | |u | | when the solution (and its 
t->+- t ._..__ *-
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derivatives) is smooth for t >_ tn, because then u has essentially components along 

the eigenfunctions corresponding to the smallest eigenvalues of the Jacobian 8F/3u . 

In the results presented in the present paper, we have however not even assumed the 

existence of the J a c o b i a n . 

4 . Conclusions 

In [6] was shown by considering the problem u(t) + X(u-g(t)) = g(t) , t > 0 

for X very large, that the accuracy of the approximate solutions obtained often are 

unrelated to the classical order of the method u sed . 

For the implicit midpoint method (i.e. (2.1) with 8 = 4 ) , this error order 

reduction is easily seen to be caused by that the damping factor q in Theorem 2.1 

approaches the value -1. For (almost) constant steplength this causes a cancellation 
2 

effect and the global error remains 0(T ), but for X and/or T variable this is not 

the case and the order is only 0(T) in general. 
v 

We have shown that by choosing 0 = 1/(2+£T ), C > 0, 0 < v < 1, a higher order 
4/3 

(at least 0(T )) can be achieved. This is due to the damping with a factor q, 

where |q| 21 6/(1-6) for X large. 
2 

Under additional assumptions and with v = 1 we can also get an error 0(T ). Hence 

the error order is never worse that for the implicit midpoint rule. 

It is anticipated that a similar modification of higher order Lobatto type 

implicit Runge-Kutta methods can give a less severe order reduction than if they are 

not modified (cf [6] and [4]). 
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