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RECENT DEVELOPMENTS IN THE THEORY 
OF FUNCTION SPACES 
H. TRIEBEL 
Sektion Mathematik, Universitdt Jena 
DDR-6900 Jena, Universitdts Hochhavs 

1. Introduction 

The word "function spaces" covers nowadays rather different bran

ches and techniques. In our context function spaces means spaces of 

functions and distributions defined on the real euclidean n-space R 

which are isotropic, non-homogeneous and unweighted. More precisely, 

this survey deals with the spaces B^ _ and F"! _ on R„ which cover 
P/q p*q

 n 

Holder-Zygmund spaces, Sobolev-Slobodeckij spaces, Besov-Lipschitz 

spaces, Bessel-potential spaces and spaces of Hardy type. First we try 

to describe how the different approaches are interrelated, inclusively 

few historical remarks. Secondly, we outline some very recent develop

ments which, by the opinion of the author, not only unify and simplify 

the theory of function spaces under consideration considerably, but 

which also may serve a starting point for further studies. 

2. How to Measure Smoothness? 

Let R be the real euclidean n-space. The classical devises to mea

sure smoothness are derivatives and differences. If one wishes to ex

press smoothness not only locally but globally, in our case on R , then 

function spaces, e.g. of L -type, seem to be an appropriate tool. We 

use standard notations for the derivatives D and the differences A. 

I c t l 

and 

Зx- ...Әx 

n 
Z a. 

1 = 1 3 

Һ' 

if x = (x
1
,...,x ) Є R^, a = (a^,...,an),|a| = 

A^f(x) = f(x + h) - f ( x ) , A™ = A™"1
** 

h € R , and m = 2,3,... Furthermore, 

If IL II = ( / l f ( x ) l P d x ) 1 / p , 0 < p < oo t 
P Rn 

with the usual modification if p = °°. Recall that S and S' stand for 

the Schwartz space of all complex-valued infinitely differentiable 

rapidly decreasing functions on R and the space of all complex-
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-valued tempered distributions on R , respectively. Of course, the 
n 

spaces L with 0 < p <. °° have the usual meaning (complex-valued 

functions). 

Definition 1. ( i ) (Holder-Zygmund s p a c e s ) . Let s be a positive 

number and let m be an integer with 0 < s < m. Then 

C
s
 = {f |f E L^, If lC

S
H

m
= IflLj + sup | h | " s | A ^ f ( x ) l < «>} . (1 ) 

0*heR
n 

( i i ) (Sobolev s p a c e s ) . Let 1 < p < °° and let m be a natural 

number. Then 

W™ = {f If G L
D
,llf|Ŵ II = E llD

a
f|L

n
ll < «»}. ( 2 ) 

F F F
 |a|<m

 p 

Remark 1. Let 0 < s < 1. Then 

II dE I C
s
 II ̂  = sup | f ( x ) | + sup

 | f
^

x )
 ".

s

f(
y

)l
 (3) 

xeR
n
 x*y Ix-yl 

are the familiar norms in the Holder spaces C . If s is a positive 

fractional number, i.e. 0 < s = [ s] + {s} with [s] integer and 0 < 

< {s} < 1 then ( 3) can be extended by 

E IІD°flLj + E ІD
a
f|C

{ 8 łl 1 
OSIolSI sl I ot | = t s l 

The corresponding spaces are the well-known Holder spaces (on Rn) as 

they had been used since the twenties. It had been discovered by A. 

Zygmund [ 29] in 1945 that it is much more effective to use higher dif

ferences than derivatives combined with first differences. Definition 

K i ) must be understood in this sense. In particular if s is given 

then all the admissible norms If|CSU are equivalent to each other. The 
m 

spaces W^ have been introduced by S.L. Sobolev [16] in 1936. The deri

vatives involved must be understood in the sense of distributions. 

In the fifties several attemps hade been made to extend the spaces 
1 2 from Definitio 1, to fill the gaps between L , W , W ,... and to re-

P P P 
place the sup-norm in ( 1 ) by other norms. On the basis of quite diffe
rent motivations S.M. Nikol'skij introduced in the early fifties the 
spaces A s ^ with s > 0 , 1 < p < °° (we always prefer the notations 
used below which are different from the original o n e s ) and L.N.Slobo-
deckij, N.Aronszajn and E.GagliardcJ defined the spaces A with s > 0, 
1 < p < °°. The next major step came around 1960. Let F and F be the 
Fourier transform and its inverse on S', respectively. Let 

I f = F ~ x [ ( l + U Г Г F f ] , f Є S ' , -<*> < s < <*> . ( 4 ) 
s 

= ғ - ^ í i + Ш 2 ) 2 ï 

D e f i n i t i o n 2 . ( i ) ( B e s o v - L i p s c h i t z s p a c e s ) . Let s > 0 , l < p < ° ° 
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and 1 < q < °°. Let m he an integer with m > s. Then 

AS = (fIf e L ,if|AS 8 = IfIL I + 
p,q p' p,q m p 

_1 
+ < /ihr s c-BA mf(.)iL «<- H!L_>q < oo} 

Rn h p |h|n 

(usual modification if q = °°) . 

(ii) (Bessel-potential spaces). Let -°° < s < °° and 1 < p < °° . 

Then 

Hs = {f If e S',ilf|Hsll = ll flL I < «} . (6) 
P P s p 
Remark 2. The Besov-Lipschitz spaces As have been introduced by 

p,q 

O.V. Besov [2,3] (following the way paved by S.M.Nikol'skij). They 

proved to be one of the most successful scales of function spaces. The 

two sup-norms in (1 ) (with respect to x € Rn and h € Rn) are splitted 

in (5) in an L -norm and an L -norm. In some sense these spaces are the 

appropriate extensions of the spaces Cs in the way described above 
and they fill the gaps between the Sobolev spaces in a reasonable way, 

s 
although the Sobolev spaces are not special cases of the spaces A 
if p * 2. As in the case of the spaces Cs all the admissible norms 
"fl^f " (with different m's) are pairwise equivalent. The spaces 
s P/q n- ., 

H have been introduced bv A.P.Calderon [5] and N.Aronszajn, K.T. 

Smith [ l] . First we remark that 

HS = WS if s = 0,1,2, .. . and 1 < p < °° . 
s In other words, also the spaces H fill the gaps between the Sobolev 

spaces and extend these spaces to negative values of s. But more impor

tant, successful method, the Fourier-analytic approach, or the spec

tral approach, which we discuss in the next section. 

3. The Fourier-Analytical Approach 

We return to (4) and (6). Let A be the Laplacian on R and let E 

be the identity. Recall that 

(E - A)f = F-1[(l + m 2)Ff] , f e s' . 

More g e n e r a l , t h e f r a c t o o n a l powers of E - A are g i v e n by 
s s 

(E - A) 2 f = F"*1[(l + U I 2 ) 2 F f ] , f e S ' , -°° < s < °° . 
In other words, f G Hs if and only if (E - A) S /^ 2 f G L . This gives a 

P P 
better feeling what is going on in (6). In particular, smoothness is 

2 s/2 
measured in the Fourier image by t h e weight-function g(£) = (1 +UI ) ' ' 
and the growth of this weight-function at infinity represents the degree 

of smoothness. Let h(£) be another positive smooth weight-function, 

not necessarily of the above polynomial type. In order to provide a 



l)ÎS 

better understanding of the Fourier-analytical method we dare a bold 

speculation: If h (£) and h (£) are two weight-functions with the 

same behaviour at infinity then they generate the same smoothness 

class in the above sense. It comes out that something of this type is 

correct (via Fourier multiplier theorems), but we shall not try to 

make this vague assertion more precise. But on the basis of this 

speculation we try to replace the above weight-function g(£.) = 

2 s/2 

= (l t |£ I ) by more handsome weight-functions which offer a great

er flexibility. If I CI ~ 2 D with j = 0,1,2,... then g( £) ~ 2 D S . Hence 

one can try to replace g(£) by a step function g( £) with g( O ~ 2JS if 

I £ I ~ 2-1. This replacement is a little bit too crude, but a smooth 

version of this idea is just what we want. We give a precise formula

tion. Let <p(0 G S with 

supp <p C { r j i < If, | < 2} 

and 
£ cp(2-D0 = 1 if Z 4= 0 

- —oo 3'-

Functions with these properties exist. Let <?>.(£.) = (p(2 £) if j = 1,2, 
oo J 

3,... and q>0(£) = 1 - E f.(5). Then <P0(£) has also a compact support. 
j = l J s 

2 2 °° ~i s 
The desired substitute of (1 + \K I ) is now given by £ 2J <p-(£). We 

-i-0 J 

introduce the pseudodifferential operators J 

(p.(D)f(x) = F"1[(p .(5)Ff](x) , x G Rn, j = 0,l,2,...,f G s'. (7) 

This makes sense because by the Paley-Wiener-Schwartz theorem <p.(D)f(x) 

is an analytic function in R for any f £ S'. Furthermore, by a theorem 

of Paley-Littlewood type we have 

II f IHSH ~ II ( £ |2jS(p (D)f(.)| 2) 1 / 2|L H, -°° < s < «>, 1 < p<~, (8) 
P j=0 J P 

(in the sense of equivalent norms). This is the substitute we are look

ing for. Now we can ask questions.Does it make sense to replace the 

l2-norm in (8) by an 1 -norm (or quasi-norm), 0 < q < °° ? Is it reaso

nable to interchange the roles of L and 1^ (or more general 1 ) in 

(8)? 

Definition 3. (i) Let -°° < s < «>, 0 < p < °° and 0 < q < °°. Then 

B P , 
\iq= {flf 6 S',lflB^qll?= (,E 2 j s q B 9 j ( D ) f ( . ) I L p « g ) 1 / q < « } , O ) 

(usual modification if q = °°) • 

( i i ) Let -°° < s < °°/ 0 < p < ° ° and 0 < q < °°. Then 

FS = f f l f € S' í f l F S « = K E 2 j s q l ^ ( D ) f ( . ) l q ) 1 / q I L »<<»} (10 
p , q ' P,q <P j - 0 D P 
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(usual modification if q = °° ) . 

Remark 3. For all admissible values s,p,q the spaces B s and 

F are quasi-Banach spaces (Banach spaces if p > 1 and q > 1), and 

they are independent of the chosen function <p (in the sense of equiv

alent quasi-norms). Maybe this fact is not so astonishing if p and q 

are restricted by 1 < p < °° and 1 < q < °°, because in those cases the 

Fourier multiplier theory for L with 1 < p < °° and its vector-valued 

counterparts can be taken as hints that something of this type may be 

valid. But it was a big surprise, also for the creators of this theory, 

that these definitions make sense even if 0 < p < 1 (and 0 < q < l). 
v s 

The only exception is p = °° in the case of the spaces F (but even 

in this case one can do something after appropriate modifications). 

The above definition of the spaces B is due to J.Peetre [11,12]. 
p,q 

The spaces Fs have been introduced by the author [19], P.I.Lizorkin 
p,q 

[10] and J.Peetre [13]. Fro the greater part of the theory of these 

spaces a restriction to p > 1, q > 1 would be artifical. But from a 

technical point of view such a restriction often simplifies the proofs 

because one has the elaborated technique of Banach space theory at 

hand (and one avoids a lot of pitfalls which are so abundant if p<l). 
Systematic treatments of the theory of the spaces B and F have 

s p'q p'q 

been given in [14] (mostly restricted to B with 1 < p < °° ) and 
P t q 

[23] (with [21,22] as forerunners, cf. also [ 2 0 ] ) . Again one can ask 
questions. What is the use of these spaces? What is the connection of 

these spaces and those ones introduced in Section 2? As far as the 

latter question is concerned one has the following answer. 

(11 ) 

Theorem 1. (i) Let s > 0. Then 

Cs = B s . 
oo oo 

(ii) Let 1 < p < °° and -°° < s < °°. Then 
HS = FS , (12) 
P P,q 

(in particular, W m = F s i f m = 0 , l , 2 , . . . and 1 < p < °° ) . 
P P, --

(iii) Let s > 0 , 1 < p < °° and 1 < q < °°. Then 

AS = BS . (13) 
p>q p^q 
(iv) Let 0 < p < °°. Then F 0 is a (non-homogeneous) space of ; p, z 

Hardy type. 

Remark 4. Proofs may be found in [23], cf. also Sections 6 and 7. 

4. Points Left Open 

The Fourierranalytical approach proved to be very useful in con-
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nection with applications to linear and non-linear partial differen

tial equations, cf. [20,23] as far as linear equations are concerned. 

In the recently developed method of para-multiplications by J.M.Bony 

and Y.Meyer (in order to obtain local and microlocal smoothness asser

tions for non-linear partial differential equations) characterizations 

of type (11) play a crucial role. An extension of these methods to the 
s s 

full scales B and F has been given by T.Runst [ 15] (there one 
p*q p>q 

can also find the necessary references to the papers by Bony, Meyer). 

There is no claim that this paper gives a systematic description 

of the history of those function spaces which are treated here. We o-

mitted few important developments. But we wish to mention at least few 

key-words and some milestone-papers. Interpolation theory plays a cru

cial role in the theory of function spaces since the sixties. The out

standing papers are those ones of J.-L.Lions, J.Peetre [9] and A.P. 

Calderon [6]. A systematic approach to the theory of function spaces 

from the standpoint of interpolation theory has been given in [20]. 

Another important approach to the theory of function spaces is the 

real variable method in the theory of Hardy spaces and the elaboration 

of the technique of maximal functions. The milestone-paper in this 

field is C.Fefferman, E.M.Stein [7], 

5. Harmonic and Thermic Extensions 

The interest in Hardy spaces has its origin in complex function 

theory: traces of holomorphic functions in the unit disc or the upper 

half-plane on the respective boundaries. A generalization of this idea 

yields a characterization of functions and distributions of the spaces 
s s 

B and F on R as traces of harmonic functions or temperaturs in 
P/q P/q n 

R = {(x,t)|x <= R , t > 0} en the hyperplane t = 0, which is identi-

n Q2 
fied with R . We reformulate this problem as follows. Let A = E —~r 

1=1 9x. 
s s J 

be the Laplacian in R and let f £ B or f 6 F . What can be said 
n p,q p,q 

(in the sense of characterizing properties) about the solutions u(x,t) 

and v(x,t) of the problems 

.2 
(----— + Au)(x,t) = 0 if (x,t) €E R , ' , u(x,0) = f(x) if x e R (14) 

*s .i_; •*. n T J. n 

(harmonic extension) and 

(|r - Av)(x,t) = 0 if ( x , t ) e R + - v(x,0) = f(x) if x G R (15) ou n+i n 

(thermic extension)? At least in a formal way the solutions u(x,t) and 
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v(x,t) are known, 

u(x,t) = P(t)f(x) = c / — f(y)dy, x e R R, t>0 (16) 

R n (lx-y!2+ t2)""2""" 

(Cauchy-Poisson semigroup) and 

n Ix-yI 
"? —3+ 

v(x,t) = W(t)f(x) = ct fe HJL f(y)dy, x e R , t > 0 (17) 
R n 

(Gauss-Weierstrass semigroup). If f G S' is given, then (17) makes sen

se. Furthermore, (16) must be understood in the following theorem via 

limiting procedures. If a is a real number we put a = max (0,a). 

Theorem 2. Let <p e S with <PQ(0) 4= 0. 

(i) Let - 0 0 < s < 0 0 , 0 < p < °°, and 0 < q < °°. Let k and m be non-

negative integers with k > n(— - 1), + max (s,n(- - l) ) and 2m > s. 
P + P + 

Then I k -
I U n ( D ) f | L II + ( / t

( k " s ) q l a P ^ t ) f ! L »q & ) q (18) 
0 P *0 8 t k P fc 

a n d 1 ( 5L) A 
«<P (D) f |L II + ( / t m " 2 q\\^Sl2l\L Hq 5£ ) q (19) 

0
 P o atm p fc 

(modification if q = °° ) are equivalent quasi-norms in B . If s > 
n(- - 1 ) then Iq» (D)flL I in (1 8 ) , (1 9 ) can be replaced by llflL II. 
p + 0 p ' P 

(ii) Let -oo<s<°°, 0 < p < ° ° and 0 < q < °°. Let k and m be non-

-negative integers with k > —.—? r- + max (s,n(— - 1) ) and 2m > s. 
m i n ( p , q ; p + 

Then 
IU0(D)f |LDH + IK / t C k - s ) q | 3 k P ( t ) f ( > ) | q d t ) c j | „ ( 2 Q ) 

p o at F 

and 1 , Sv 1 

l-0(D)flL » + »( / t ^ ^ ^ l ^ i i ^ C . ) , ^ )«,L II (21) 
0 P 0 9tm fc P 

g 
(modification if q = °° ) are equivalent quasi-norms in F • If s > 

i p^q 
n (p " 1}+ t h e n 'U0(D)flL II in (20), (21) can be replaced by II f IL II . 

Remark 5. Characterizations of the above type have a long history. 
s 

As far as the classical Besov-Lipschitz spaces A and the Bessel-
s p' q 

-potential spaces H are concerned the first comprehensive treatment 

in the sense of the above theorem has been given by M.H.Taibleson [18], 

cf. also T.M.Flett [ 8] . In this context we mention also the books by 

P.L.Butzler, H.Berens [4] and E.M. Stein [17] where one can find 
many informations about characterizations of the above type (for the 
classical space) and the semigroups from (16) and (17), cf. also [20, 
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2*5.2, 2,5.31. More recent results (characterizations of the spaces 
s s 

B^ _ and F^ „ in the sense of the above theorem) have been obtained 
P/^ p#g 

by G.A.Kaljabin, B.-H.Qui and the author. The above formulation has 

been taken over from [25](cf. also [23, 2.12.2] where we also gave re

ferences to the papers by B.-H.Qui and G.A.Kaljabin). 

6. Unified Approach 

Up to this moment we said nothing how to understand that the 

apparently rather different approaches via derivatives, differences, 

Fourier-analytical decompositions, harmonic and thermic extensions, 

always yield the same spaces B and F . In [ 2 3] we proved equiva-
p,q p,q 

lence assertions of the above type mostly by rather specific arguments, 

cf. also [14,22] . But recently it became clear that there exists a 

unified approach which covers all these methods, at least in principle-. 

and which sheds some light on the just-mentioned problem. We follow 

[25] where [24] may be considered as a first step in this direction. 

The basic idea is to extend the admissible functions q> and <p . in (7) 

and (9), (10), such that corresponding (quasi-)norms in the sense of 

(9), (10) cover automatically characterizations of type (18), (19) and 

(5). We recall that 

(p(tD)f(x) = F'H (p(t.)Ffl(x) =
 c
t

k 9 P
_^

t)
f(x) if q>U) = 

k -ICI
 8 t ( 2 2 ) 

= UI
K
e

 m 

and 

Ф
(Vt D)f(x) =

 c
t

m
Л ( ţ ) f W ,f ф ( ç ) £ m 2 m e - I U

2
 (23) 

Furthermore we remark that the discrete quasi-norms in (9) and (10) 

have always continuous counterparts, i.e. 

i , -
»<pn(D)flL » + ( / t~

Sqll<p(td)f(.)IL llq #£ )<3 (24) 
0 P 0 P t 

is the continuous substitute of the quasi-norm in (9) and 
1 __ I 

Hcpn(D)f IL II + H( / t
 Sq|cp(tD)f(.)lq P> )q|L II (25) 

0 P 0 t p 

is the continuous substitute of the quasi-norm in (10). This replace

ment of "discrete" quasi-norms by "continuous" ones is a technical mat

ter and has nothing to do with the extension of the class of admissible 

<p's which we have in mind. If one puts (22), (2 3) in (24), (25) then 

one obtains (18)-(21). Of course one has to clarify under what condi

tions for the parameters involved this procedure is correct. However 

before giving some details we ask how to incorporate derivatives and 
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differences in this Fourier-analytical concept. We have 

(p(D)f(x) = cDaA™f(x) if <j>(£) = £a(eiCh- 1 ) m , (26) 
n 

n a 
with a = (a,..., a ) , m natural number, and £h = £ r,,h., r,a= r, 

an X n i=l J D X 

. ..£ . The three functions <p in ( 29 ) , ( 2 3) , ( 26 ) have in common that n ' ' 
they tend to tero if |£| - 0 (even if a = 0 in (26)). In addition the 

functions <p from (22) ,(2 3) have the same property if Ul -» °°. If one 

compares these functions cp with the function <p from Section 3 used 

in Definition 3 then it seems to be at least plausible that one can 

substitute cp in (9) ,(10) by the functions cp from (22), (2 3) if k and 

m are chosen sufficiently large. As for the function cp form (26) 

this question is more delicate. First one has no decay if E, tends to 

infinity and secondly one has not only to handle an isolated function 

cp but a family of functions parametrized by h £ R (and, maybe, by a). 

We return to these questions later on and formulate a result which co

vers in principle all cases of interest. 

Let h(x ) G S and H( x) G S with supp h C {y | | y | < 2}, supp H C (y | 

i < |y| < 4} , h(x) -1 if Ixl < 1, and H(x) = 1 if ~ < |x| < 2. 

Theorem 3. Let 0 < p < °°, 0 < q < °° and -°° < s < °°. Let sQ and s 

be two real numbers with 

sQ+ n(i - 1) + < s < s1 and s1 > n(i - 1) + . (27) 

Let <p (5 ) and cp (£ ) be two infinitely dif f erentiable complex-valued 

functions on R and R - {0}, respectively, which satisfy the Tauberian 

conditions 

|<P0(r,)l > 0 if Ul < 2 and |<p(Ol > 0 if | < U | < 2. (28) 

let p = min (1 ,p) and ^ 

/ K p - 1 1 < 1 M 5 I ) ( y ) | P d y < oo , ( 2 9 ) 
R , Sl 
n Iz| 

-ins p _ ~ 
sup 2 ° /l(F 1(P(2

m.)H(.))(y)|Pdy < « , ( 30) 
m=l,2,.. Rn 

and ( 30) with <pn instead of 9. Then 

1 i. 
Hcp0(D)flL II 4- ( / t""

SqHcp(tD)f(.)|L Hq f£ ) q (31) 
P 0 P 

(modification if q = °° ) is an equivalent quasi-norm in Bs 

Remark 6. This formulation coincides essentially with Theorem 3 in 

[25]. Of course, <p(tD)f = F~1[ cp (t. )Ff ] (x) and (3D coincides with (24). 
s 

This theorem has a direct counterpart for the spaces F .Furthermore 

there are some modifications (both for B^ „ and F_ _) where not only a 
P/q P/4 
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single function <p but families of these functions are involved, cf. 

the considerations in front of the above theorem. Maybe the crucial 

conditions (29) and (30) look somewhat complicated and seem to be hard 

to check. But this is not the case, in particular for functions of type 

(26) the formulations (29),(30) are well adapted. Furthermore, if one 

uses 

!!F"1X|LVII < CIIAIH^I, 0 < v < 1, 6 > n(~ - ~ ) , ( 32) 

then one can replace (29),(30) by more handsome-looking conditions, 

L (or even Sobolev spaces W ' where only Bessel-potential spaces H (or even Sobolev spaces W ) are 

involved. 

Remark 7. Theorem 2 follows from Theorem 3 and its F -counter-
P/q 

part. One has to use the functions <p from (22), (2 3). 

7. Characterizations via Differences 

In principle one can put q> from (26) in Theorem 3 and its Fs 

p>q 

counterpart. One can calculate under what conditions for the pamaterers 

(29),(30) are satisfied. However as we pointed out in front of Theorem 

3 one has to modify Theorem 3, because one needs now theorems with fa

milies of functions <p instead of a single function <p. This can be 

done, details may be found in [ 25] . We formulate a result what can be 

obtained on this way. 

Theorem 4. ( i ) Let 0 < p < °°, 0 < q < °° and n(- - 1 )+< s < m, 

where m is a natural number. Then 

If IL II + ( / lhrSqllAmf lLnll
q 2 ] _ )q ( 33) 

P |h|<l n P |h| 

(modification if q = °° ) is an equivalent quasi-norm in B s 

n ' ( i i ) L e t 0 < p < ° ° , 0 < q < °° and —:—- r < s < m, where m i s a ^ ^ mm(p,q) 
natural number. Then 

•" i 

If IL I + l( / lnrsq|(Amf)(.)|q S i — )q|L I ( 3+) 
P lhl<l h Ih|n P 

(modification if q = °° ) is an equivalent quasi-norm in F 
p,q 

Remark 8. We refer for details to [25] where we proved many other 

theorems of this type via Fourier-analytical approach from Section 6 

and few additional considerations. However the theorem itself is not 

new, it may be found in [23, 2.5.10, 2.5.12], But the proof in [23] is 

more complicated and not so clearly based on Fourier-analytical results 

in the sense of Theorem 3. On the basis of Theorem 4 one has now also a 
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better understanding of (11) and (1 3). We prefered in the above theo

rem a formulation via differences only. But one can replace some 

differences by derivatives, as it is also suggested by (26). 

8. The Local Approcah 

The original Fourier-analytical approach as described in Section 3 

does not reflect the local nature of the spaces BS and FS . If 
Prq Prq 

x £ R is given then one needs a knowledge of f on the whole R in 

order to calculate (p-(D)f(x) in (7). This stands in sharp contrast to 

the derivatives Daf(x) and the differences A™f(x) with In I < 1 as they 

have been used above. However the extended Fourier-analytical method 

as described in Section 6 gives the possibility to combine the advan

tages of the original Fourier-analytical approach and of a strictly 

local procedure. We give a description. Let kn £ S, and k £ S with 
SUpp kQ C {y | | y | < 1} , s u p p k C {y | | y | < 1} , 
(Fk )(0) * 0 and (Fk)(0) * 0. 

n 82 N Let kN = ( E — 7 ) k, where N is a natural number. We introduce the 

means J 

K(kN,t)f(x) = /k (y)f(x + ty)dy, x e R , t > 0, (35) 
Rn 

where now N = 0,1,2,... This makes sense for any f £ S'. 

Theorem 5. ( i ) Let - 0 0 < s < 0 0 , 0 < p <. °° and 0 < q < °°. Let 

0 < e < ° ° , 0 < r < o o and 2N >max ( s , n ( - - 1 ) ) . Then 
q + 

1 
r — 

l lK(k 0 , e ) f |Lp« + ( / t~
SqllK(kN,t)f |LpH

q ft ) q (36) 

(modification if q = °° ) is an equivalent quasi-norm in B s 

Pfq 
(ii) Let -°° < s < °°, 0 < p < ° ° and 0 < q < °°. Let 0 < e < °°, 

0 < r < °° and 2N > max (s,n(- - 1) ) . Then 

r P i-
l lK(k n , e ) f |LDI + l( / t " S q | K ( k , t ) f ( . ) i q ^ ) q l L II (37) 

U p Q IN u p 

(modification i f q = °° ) i s an equivalent quasi-norm in F 
p,q 

Remark 9. It comes out that the above theorem can be obtained 

from Theorem 3 and its Fs -counterpart. On the other hand it is clear 
P/q 

that (35) describes a local procedure. 

Remark 10. With the help of Theorem 5 one can simplify and unify 

several proofs in [231, cf. e.g. [26]. But it is also an appropriate 
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tool to handle psudodifferential operators, cf. [28], and to introduce 
s s 

spaces of B and F type on complete Riemannian manifolds (which 
F P,q P,q 
are not necessarily compact), cf. [27], 
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