EQUADIFF 6

Alberto Valli

Qualitative properties of the solutions to the Navier-Stokes equations for compressible fluids

In: Jaromír Vosmanský and Miloš Zlámal (eds.): Equadiff 6, Proceedings of the International Conference on Differential Equations and Their Applications held in Brno, Czechoslovakia, Aug. 26-30, 1985. J. E. Purkyně University, Department of Mathematics, Brno, 1986. pp. [259]--264.

Persistent URL: http://dml.cz/dmlcz/700187

Terms of use:

© Masaryk University, 1986
Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

QUALITATIVE PROPERTIES OF THE SOLUTIONS TO THE NAVIER-STOKES EQUATIONS FOR COMPRESSIBLE FLUIDS

A. VALLI
Dipartimento di Matematica, Università di Trento 38050 Povo (Trento), Italy

1. Introduction.

```compressible barotropic fluid. At first it is useful to recall some known results concerning the non- stationary case. The equations of motion are```		
$\begin{cases}\left.\rho\left[\frac{\partial v}{\partial t}+(v \cdot \nabla) v-f\right]=-\nabla[p(\rho)]+\mu \Delta v+(\zeta+\mu / 3) \nabla \operatorname{div} v \text { in }\right] 0, T[x \Omega \\ \frac{\partial \rho}{\partial t}+\operatorname{div}(\rho v)=0 & \text { in }] 0, T[x \Omega, \\ v_{\mid \partial \Omega}=0 & \text { on }] 0, T[x \partial \Omega, \\ \int_{\Omega}=\bar{\rho}\|\Omega\|>0 & (\|\Omega\| \equiv \operatorname{meas}(\Omega)), \\ v_{\mid t=0}=v_{0} & \text { in } \Omega, \\ \rho \mid t=0=\rho_{0} & \text { in } \Omega,\end{cases}$		

where $\Omega \subset \mathrm{R}^{3}$ is a bounded domain, with smooth boundary $\partial \Omega$; v and $\rho$ are the velucity and the density of the fluid; $p$ is the pressure, which is assumed to be a known function of $\rho ; \mathrm{f}$ is the (assigned) external force field; the constants $\mu>0$ and $\zeta \geqq 0$ are the viscosity coefficients; $\bar{\rho}>0$ is the mean density of the fluid, i.e. the total mass of fluid divided by $|\Omega| ; v_{o}$ and $\rho_{o}$ are the initial velocity and density.

In the last years it has been proved that:
(i) if $v_{o}$ and $\rho_{0}-\bar{\rho}$ are small enough and $f=0$, then problem (NS) has a unique global (in time) solution (Matsumura-Nishida [1]);


#### Abstract

(ii) the preceeding result also holds for a sufficiently small $f \neq 0$; moreover, two small solutions are asymptotically equivalent as $t \rightarrow+\infty$, and consequently if $f$ is periodic (independent of $t$ ) then there exists a periodic (stationary) solution (Valli [3]).

It must be underlined that no other method is known for showing the existence of a stationary solution, excepting when the viscosity coefficients satisfy $\zeta \gg \mu$. In this case Padula [2] proved that, if $f$ is small enough, then there exists a stationary solution. Remark, however, that in general the shear viscosity coefficient $\mu$ is larger than the bulk viscosity coefficient $\zeta$. Moreover, from the mathematical point of view it would seem only necessary to require that $\mu$ is positive, without assumptions on the largeness of $\zeta$.

The method that we want to present here is based on a "natural" linearization of the problem, followed by a fixed point argument. The viscosity coefficients are only required to satisfy the thermodynamic restrictions $\mu>0, \zeta \geqq 0$.


## 2. The linear problem (L).

Since we are searching for a solution in a neighbourhood of the equilibrium solution $\tilde{\rho}=\bar{\rho}, \tilde{v}=0$, it is useful to introduce the new unknown $\sigma=\rho-\bar{\rho}$.

The equations of motion in the stationary case thus become

where it is assumed that $p_{1} \equiv \mathrm{p}^{\prime}(\vec{\rho})>0$.
It is easily verified that a solution of (S) exists if we find a fixed point of the map

$$
\Phi:(v, \sigma) \longrightarrow(w, \eta)
$$

defined by means of the solutions of the following linear problem

3. A-priori estimates for the solution of (L).

We want to obtain a-priori estimates in Sobolev spaces of sufficiently large order, in such a way that we can control the behaviour of the nonlinear terms which appear in $F$. We shall prove that a solution ( $w, \eta$ ) of (L) satisfies

$$
\begin{equation*}
\|w\|_{3}+\|n\|_{2} \leqq c_{1}\|F\|_{1} \tag{3.1}
\end{equation*}
$$

for $v_{\mid \partial \Omega}=0$ and $\|v\|_{3} \leqq A$ small enough. Here $\|\cdot\|_{k}$ is the norm in the Sobolev space $H^{k}(\Omega)$, and $c_{1}$ dependsin a continuous way on $\mu, \zeta$ and A (but it is independent of $v$ ).
(a) At first, from well-known results on Stokes problem we get

$$
\begin{equation*}
\|w\|_{3}+\|n\|_{2} \leqq c\left(\|F\|_{1}+\|\operatorname{div} w\|_{2}\right) \tag{3.2}
\end{equation*}
$$

Hence our aim is to estimate $\|$ div $w \|_{\underline{2}}$.
(b) Multiplying (L) by $w$ and $(L)_{2}$ by $\left(p_{1} / \bar{\rho}\right) \eta$ and integrating in $\Omega$ one has
(3.3)

$$
\|\mathrm{w}\|_{1}+\|\operatorname{div} w\|_{0} \leqq c\left(\|\mathrm{~F}\|_{-1}+\|v\|_{3}^{1 / 2}\|n\|_{0}\right)
$$

The same argument can be used for estimating all the successive derivatives in the interior of $\Omega$, and the tangential derivative $D_{\tau}$ div w near the boundary $\partial \Omega$, obtaining in this way (in local coordinates near $\partial \Omega)$

$$
\begin{equation*}
\left\|D_{\tau} w\right\|_{1}+\left\|D_{\tau} \operatorname{div} w\right\|_{0} \leqq c\left(\|F\|_{0}+\|v\|_{3}^{1 / 2}\|\eta\|_{1}\right) \tag{3.4}
\end{equation*}
$$

(c) The estimate for the normal derivative $D_{n}$ div $w$ is obtained by observing that on $\partial \Omega$

$$
\Delta \mathrm{w} \cdot \mathrm{n} \cong \nabla \operatorname{div} \mathrm{w} \cdot \mathrm{n},
$$

in the sense that their difference does not contain $D_{n}^{2} w$.

Hence by taking the normal derivative of (L) ${ }_{2}$, multiplied by $(\bar{\rho})^{-1}$. $(\zeta+4 \mu / 3)$, and adding it to the normal component of (L) ${ }_{1}$ we get (in local coordinates near $\partial \Omega$ )

$$
\begin{equation*}
\mathrm{p}_{1} \mathrm{D}_{\mathrm{n}} \eta+(\zeta+4 \mu / 3) / \bar{\rho} \mathrm{D}_{\mathrm{n}} \operatorname{div}(\mathrm{v} n) \cong \mathrm{F} \cdot \mathrm{n} . \tag{3.5}
\end{equation*}
$$

From this equation one easily gets

$$
\begin{equation*}
\left\|D_{n} n\right\|_{0} \leqslant c\left(\|F\|_{0^{+}}\|v\|_{3}^{1 / 2}\|n\|_{1}\right) . \tag{3.6}
\end{equation*}
$$

Moreover, going back to (L) ${ }_{1}$, one has

$$
\begin{aligned}
p_{1} D_{n} n=\mu \Delta w \cdot n+(\zeta+\mu / 3) \nabla d i v \mathrm{w} \cdot \mathrm{n}+\mathrm{F} \cdot \mathrm{n} & \cong(\zeta+4 \mu / 3) D_{\mathrm{n}} \mathrm{div} \mathrm{w}+ \\
& +\mathrm{F} \cdot \mathrm{n},
\end{aligned}
$$

hence from (3.6)

$$
\begin{equation*}
\left\|D_{n} \operatorname{div} w\right\|_{0} \leqq c\left(\|F\|_{0}+\|v\|_{3}^{1 / 2}\|n\|_{1}\right) . \tag{3.7}
\end{equation*}
$$

By repeating the same argument for the second order derivatives one gets

$$
\begin{equation*}
\| \text { div } w \|_{2} \leqq c\left(\|F\|_{1}+\|v\|_{3}^{1 / 2}\|n\|_{2}\right), \tag{3.8}
\end{equation*}
$$

hence (3.1) holds if $\|v\|_{3} \leqq$ A small enough.

## 4. Existence of the solution of (L).

Though problem (L) is linear, and we know that the a-priori estimate (3.1) holds, the existence of a solution $w \in H^{3}(\Omega), n \in H^{2}(\Omega)$ is not obvious.

In fact, the usual elliptic approximation cannot work in this case. More precisely, if we add $-\varepsilon \Delta \eta_{\varepsilon}$ to (L) ${ }_{2}$, we must also require a boundary condition (say, Dirichlet or Neumann) on $\eta_{\varepsilon}$. But the limit function $\eta$ is free on $\partial \Omega$. Hence the sequence $\eta_{\varepsilon}$ can only converge in $\mathrm{L}^{2}(\Omega)$ (Dirichlet condition), or in $\mathrm{H}^{1}(\Omega)$ (Neumann condition), and cannot converge in $H^{2}(\Omega)$ :

Moreover, if $\mathrm{v} \neq 0$ ( L ) is not an elliptic system in the sense of Ag-mon-Douglis-Nirenberg (if $v=0$ (L) is the Stokes system). Hence the usual regularization procedures do not work.

One can proceed in the following way. By adapting the method of Pa-
dula [2] to problem (L), one defines
(4.1)

$$
\pi \equiv\left(p_{1} / \mu\right) \eta-(\zeta / \mu+1 / 3) d i v \mathrm{w}
$$

and (L) is transformed into
( $L^{\prime}$ ) $\quad \begin{cases}-\Delta w+\nabla \pi=F / \mu & \text { in } \Omega, \\ \operatorname{div} w=(\zeta / \mu+1 / 3)^{-1}\left(p_{1} \eta / \mu-\pi\right) & \text { in } \Omega, \\ { }^{2} \mid \partial \Omega=0 & \text { on } \partial \Omega,\end{cases}$
(L") $\left\{\begin{array}{l}\bar{\rho}(\zeta / \mu+1 / 3)^{-1} p_{1} \eta / \mu+\operatorname{div}(v \eta)=\bar{\rho}(\zeta / \mu+1 / 3)^{-1} \pi \quad \text { in } \Omega, \\ \int \eta=0 \\ \Omega\end{array}\right.$
These equations can be solved via a fixed point argument if $\zeta \gg \mu$. Hence the a-priori estimates (3.1) and the continuity method give the result for any pair of viscosity coefficients satisfying $\mu>0$ and $\zeta \geqq 0$.
5. Existence of a solution of (S).

We prove at last the existence of a fixed point for the map

$$
\Phi:(v, \sigma) \longrightarrow(w, \eta) .
$$

Taking

$$
\mathrm{K} \equiv\left\{(\mathrm{v}, \sigma) \in \mathrm{H}^{3}(\Omega) \times \mathrm{H}^{2}(\Omega)\left|\quad{ }^{\mathrm{v}}\right| \partial \Omega=0, \int_{\Omega} \sigma=0,\|\mathrm{v}\|_{3}+\|\sigma\|_{2} \leqq \mathrm{~A}\right\},
$$

by using (3.1) one sees that

$$
\begin{aligned}
\|w\|_{3}+\|n\|_{2} & \leqq c_{1}\|F\|_{1} \leqq c\left[\left(\|\sigma\|_{2}+1\right)\left(\|f\|_{1}+\|v\|_{2}^{2}\right)+\right. \\
& \left.+\|\sigma\|_{2}^{2}\right] \leqq c(A+1)\left(\|f\|_{1}+A^{2}\right) .
\end{aligned}
$$

Choosing $A^{2} \equiv\|f\|_{1} \ll 1$, one has

$$
\|w\|_{3}+\|n\|_{2} \leqq A
$$

hence $\Phi(K) \subset K$. The set $K$ is convex and compact in $X \equiv H^{2}(\Omega) \times H^{1}(\Omega)$, and it is easily seen that the map $\Phi$ is continuous in $X$. The existence of $a$ fixed point is now a consequence of Schauder's theorem.

## References.

[1] A. Matsumura - T. Nishida, Initial boundary value problems for the equations of motion of general fluids, in "Computing methods in applied sciences and engineering, V", ed. R. Glowinski - J.L. Lions, North-Holland Publishing Company, Amsterdam-New York-Oxford, 1982. (See also Preprint University of Wisconsin, MRC Technical Summary Report $\mathrm{n}^{\circ} 2237$ (1981)).
[2] M. Padula, Existence and uniqueness for viscous steady compressible motions, Arch. Rational Mech. Anal., to appear.
[3] A. Valli, Periodic and stationary solutions for compressible Na-vier-Stokes equations via a stability method, Ann. Scuola Norm. Sup. Pisa, (4) 10 (1983), 607-647.

