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A DESCRIPTION OF BLOW-UP 
FOR THE SOLID FUEL IGNITION MODEL 
J. W. BEBERNES 
Department of Mathematics, University Colorado 
Boulder, CO 80309, U.S.A. 

The nondimensional ignition model for a supercritical high acti­

vation energy thermal explosion of a solid fuel in a bounded container 

ft can be described by 

(1) u - Au = e 

(2) u(x,0) = <J)(x) __ 0, x £ ft, u(x,t) = 0, x € 9ft, t > 0 

where ft = (x £ HR : |x| <_ R> and <j> is radially decreasing, i.e., 

<}>(x) :L <i> (y) > 0 whenever |x| <_ |y| <_ R and A<|) + e^ __ 0 on ft. 

Assume R > 0 is such that the radially symmetric solution u(x,t) 

blows up in finite time T > 0. Then by the maximum principle u(«,t) 

is radially decreasing for t £ [0,T) and u (x,t) __ 0 for all 

(x,t) € r = ft x [0,T) . 

Friedman and McLeod [4] recently proved that blow-up occurs only 

at the origin x = 0 and in addition that u(x,t) satisfies the fol-
2 

lowing estimates: I) u(x,t) <_ - — in | x | + c for all a < 1 and 

(x,t) 6 r; II) there exists t < T such that |Vu(x,t)| < 2 e u ( 0 ' t ) / / 2 , 

t 6 [t,T), |x| <_ R; III) there exists 6 > 0 such that u (x,t) __ 

6 eu(x,t)^ t ^ [| , T ) , x € [- | , | ] ; and iv) -£n(T-t) < u(0,t) < 

-£n(T-t) - £nS, t € [| , T ) , 6 > 0. 

Since u(x,t) is radially symmetric, the initial boundary value 

problem (l)-(2) can be reduced to a problem in one spatial dimension. 

Let D = { ( r , t ) : 0 < _ t < _ T , 0 < _ r < _ R } . Then if r = | x | , v ( r , t ) = 

u(x,t) satisfies: 

/^ , n-1 , v (3) v. = v + v + e t rr r r 

(4) v(r,0) = (t)(r), vr(0) = 0, v(R,t) = 0. 

To study the asymptotic behavior of v as t -*• T, consider the fol-
-1/2 

lowing change of variables: T = -£n(T-t), n = r(T-t) ' , 6 = v + 
-T -T/2 £n(T-t) = v - T whose inverse is t = T - e , r = ne , v = 8 -

T /? 
Jln(T-T). The domain D transforms to D' = {(TI,T): 0<_r) <_ Re ' , 

T > -£nT} and 0 ( n , T ) = v - T solves 
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(5) 9 = 9 + ?2li - B e + e 6 - 1 
v ' t nn [n 2} n 
(6) 9(n,-£nT) = <|)(nT1//2) + £nT 

9 (0,T) = 0 , 9 (ReT//2,T) = -T 

The following theorem is similar to a result proven by Giga-Kohn [ 5 l. 

Theorem 1. As T ->• + °°, the solution 9(n,T) tends uniformly to a 

function y(n) on compact subsets of JR where y(n) is a solution 

of the problem: 

(7) y" + [ ^ - ajy + e
y - 1 = 0 

(8) y'(0) = 0, y(0) = a > 0 

which is globally Lipschitz continuous and nonincreasing in n• 

Thus, to describe how the blow-up occurs at (T,0) for (l)-(2), 

we need to analyze the solutions of the steady-state equation (7)-(8) 

which are globally Lipschitz and are nonincreasing on [O,00). 

Theorem 2. For n = 1 or 2, the only solution of (7)-(8) which is 

globally Lipschitz continuous and nonincreasing in r\ is y(n) = 0. 

Proof. For n = 1, this result was first proven by Bebernes-Troy [2l . 

The following proof is essentially due to D.Eberly. For n > 2, the 

proof fails. Let 

g(n) = ^ y ' ( n ) + 1 

and h ( n ) = y " ( n ) + — y ' ( n ) 
n 

where y ( n ) is a solution of ( 7 ) - ( 8 ) . 

Then g ( n ) satisfies 

, g " + {%-^-± - | ) g ' + (ey - l ) g = 0 

(9 ) I 
[ g ( 0 ) = 1, g ' ( 0 ) = 0 

and h ( n ) satisfies 

f h " + (̂ ----i - ^ ) h ' + (ey - l ) h < 0 
n 2 

(10 ) 

[ h ( o ) = 1 - e a , h ' ( o ) 

I t i s c l e a r t h a t g ( n ) > 0 on I = [ 0 , x j where x e (0,°°] 

S e t W(n) = g h ' - g ' h , t h e n W(n) s a t i s f i e s 

rW ' + {2—-± - | ) w = - e y ( y ' ) 2 g ( n ) < 0 

( l l ) 
l,W(0) = 0 
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on I. This implies W(n) < 0 on I and hence h(n)/g(n) < h(0)/g(0) = 

= 1 - ea on I. Thus, we have 

(12) h(n) < (1 - ea)g(n) on I. 

We now must consider two cases. We assume now that n = 1 or 2. 

a) If XQ < °°, then g(xQ) = 0 and g'- -?-g = - §e
y < 0 implies 

g(n) < 0 for all n > nQ. Thus (ny')' = ng(n) - ney < 0 and y(n) is 

not globally Lipschitz on [ 0 ,°°) . 

b) If xQ = + °° and g(n) > e > 0 for all n > 0, then (ny' )' < 0 

by (12) and again y" (n) < 0. If lim inf g(n) = 0 as n - °° with 

g(n) > 0, we observe that (11) can be solved for h(n) to give 

(13) h ( n ) = ( l - e a ) g ( n ) -
2 

( x r11 1 e s / 4 , f
s - u 2 / 4 y . , N 2 . . , , . 

- g ( n ) / ~5 ( / ue ' e J (y ) g ( u ) d u ) d s 
0 gZ(s) s 0 

By analyzing (13), we can show that h ( n ) - " - 0 0 a s n - + 00. Once again 

we have that y''(n) < 0 for n large and y(n) cannot be globally 

Lipschitz on [ 0 , ° ° ) . This completes the proof in dimensions 1 and 2. 

As an immediate consequence of theorems 1 and 2, we have 

Theorem 3. Let n = 1 or 2. As t - T~, v(r,t) - ln(T - t)" - 0 
l j 2 uniformly on 0 < r < c(T - t) 

These results will appear in [ 3l . 

Several open questions remain. What can be said for n > 3? What 
1/2 -

happens outside the parabolic domain r < c(T-t) as t - T ? 
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