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ACTA FACÜŁTATIS KERUM NATURALIШI UMVERSITATIS COMEMANAE 

MATHEMATICA XVII - 1967 

STABILITY OF NUMERICAL PROCESSES 

M. PBAGER and E. VITASEK, Praha 

The high speed of modern computers and the corresponding employment 
of ever increasing number of arithmetic operations have brought to the 
foreground in recent years the importance of the problems of numerical 
stability. What does it mean numerical stability? It is the sensitivity of 
a computation on the errors, which are during the computation on the com­
puter necessarily performed. The source of these errors are the round-off 
errors in single arithmetic operations, substitution of general analytic expres­
sions by rational ones, etc. This problem and the necessity to solve it is now 
generally accepted. There are different ways of treatment of the problem. 
In the first place it is the estimation of the accumulated round-off error, 
which is e.g. done in the well known books of WILKINSON [1] and HENBICI 

[2, 3], further the method of closure of processes suggested by SOBOLEV [4], 
recently the techniques of the interval arithmetic by R. MOORE [5] or simply 
the intuitive use of multiple arithmetic. 

In this paper we will consider the problem of the numerical stability for 
problems of mathematical analysis, particularly for some problems for dif­
ferential equations. A characteristic feature of such problems is that the 
arithmetical operations predominate over the logical ones (the influence of 
the lasts will be therefore neglected in what follows) and that numerical 
methods for solution of these problems involve always a certain parameter 
(e.g. the step of the mesh, the number of approximating functions) and the 
exact solution of the given problem is then obtained by passing to the limit 
with this parameter. 

This paper is a development of problems of numerical stability for initial-
value problems for differential equations which was reported by the Authors 
on the first Equadiff conference [6]. The introducing of the ^-solution of 
the sequence of numerical processes will here be essentially new and will 
be utilized for the study of numerical stability of some other problems. The 
main results are published in the book [7]. 
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Now we can pass on the exact formulation of concepts and results. The basic 
concept is the concept of a numerical process. The numerical process (it is 
possible to say the computing algorithm, too) is a sequence of arithmetic 
operations, which transforms the set of the initial data in the set of results. 
I t has been just mentioned that in problems of mathematical analysis we 
have always a sequence of such processes. We introduce consequently. 

Definition 1. Let there be given a sequence of normed vector spaces 

X«\X?,...,X%, j = l , 2 , . . . 
and a sequence of continuous operators 

Af, *' = 0,1, . . . , i Y , . - l ; j = l , 2 , . . . , 
v)hich map the Cartesian product X{$ X . . . X XW into Xi+1. 

Then the sequence of equations 

(1) * & = Af{x$, ..., xf), i = 0, 1, . . . , N< - 1, 

where a$} € X$} is given and xf € X& is called a numerical process. 
The sequence of elements xf is called the solution of the numerical process 

with the initial value x$\ 
Thus, by Definition 1 we have introduced the sequence of numerical processes y 

the results of which converge for j -» oo (j is the parameter of the sequence) 
in some or other sense to the exact solution of the given problem. In practical 
computations, wre have obviously XfeB^ i = 1, 2, . . . and Xff — Snt 

where Rn is the w-dimensional Euclidean space and A^ are the operators 
of elementary arithmetic operations. However, in order to simplify the study 
in many cases, it is convenient to introduce more general objects such as 
vectors, matrices or others. 

The numerical process has an algorithmic, i.e., explicit character. For 
example, Euler's method for the solution of an initial-value problem for the 
differential equation y' = f(x, y), i.e., the formula 

ifo+i = yn + hf(xn, yn), 

where y0 is given, represents a sequence of numerical processes in dependence 
of the number of subintervals as parameter. On the contrary, the method of 
finite differences for solution of the boundary-value problem y" = / , y(0) = 
= y(l) = 0 i.e. 

ijn+i — tyn + yn-i = h% 
with y(0) = y(l) = 0 is not a sequence of numerical processes since it is not 
indicated any method for solution of the obtained system of algebraic 
equations. If we add that this system will be solved, e.g., by elimination, 
then we have defined a sequence of numerical processes. In detail, it will 
be shown later. 
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Numerical process (in sense of Def. 1) cannot be in any case realized exactly 
on the computer because of the errors resulting of the finite character of the 
work of the computer. We introduce therefore 

Definition 2. Let X[j} and A{J} satisfy assumptions of Definition 1, let d(?}€ 
e X(f and let there be given an initial element x$}. Then the sequence of equations 

(2) *& = A?(3f,.. ..m + *#i. • = 0, 1, . . . , AT, - 1 

with x$} = -?</' + &o} will be called the perturbed numerical process (1). 
The behaviour of the solution of the numerical process (1) with respect 

to numerical stability will be tested on the basis of comparison with perturbed 
numerical processes. 

Definition 3. We shall say that the solution of the numerical process (1) 
corresponding to the initial value x^} is a p8-8olutionf if 

lim sup -T- sup sup \\if — x^W <> Cf 

where C is a constant independent of j . We say that the given solution is a BSo-
solution if s0 = inf 8. 

The subscript s in the concept of aiVsolution indicates the character of the 
stability of the given numerical process. I t is useful to note here that in 
accordance with practical experience the constant C in Definition 3 depends 
on the type of computer used whereas the constant s is independent on the 
special type of computer and therefore, it is a universal characterization of 
the given numerical process. I t is quite obvious from Def. 3 that such numerical 
processes which have J3,s-solutions with smallest possible s are most favourable 
from the point of view of numerical stability. 

After this short survey of the general theory of numerical stability we shall 
pay our attention to concrete examples. 

Let us investigate the numerical stability of the method of finite differences 
for a boundary-value problem for a second-order ordinary differential equation. 
In this connection, we shall also utilize the method of closure of processes. 

Thus, let there be given the differential equation 

y"-qy=f 
with the boundary conditions y'(a) = a, y'(b) = /S. All what will be said 
holds also for general self-adjoint equation and other types of boundary 
conditions and can be used even for fourth-order equations. For the sake of 
simplicity, we restrict us to this very simple case. By utilizing of the most 
simple method of finite differences, we obtain for the unknown approximate 
values yn the following system of equations, written in matrix form 
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1, - 1 , 0, . . 

(3) 

-1, 2 + h*qv - I , 

. . . , 0 , - 1 , 1 

Уo 

УN 

,—aЛ 

ßh 

where qi = q(x{) etc, N is the number of subintervals and h = (b — a)/N. 
We have already mentioned t h a t this system is not a numerical process 

until we indicate some method for its solution. Thus, we shall connect it 
here with the elimination method. 

This method leads in our case of tridiagonal matrix to three recurrence 
relations: 

(4) 

(5) 

dł+1 = 2 + hгqi+1 

d0 = 1, dN = 1 

di 

ířдr-x 

CІ+1 = —hгfi+1 + 

c, 

ct 
di ' 

—«h, CN = ßh + 

for г = 0, 1, . . . , Ar — 2, 

for » = 0, 1, . . . , N - 2, 

CN-г 

dN-i 

The backward substitution for computing the unknown yn yields 

(6) 2 / í -
Cţ + Уi+x 

đi 
% = N—1,...,0, УN cN 

dN 

Before investigate these reccurence relations, we shall demonstrate their 
connection with the factorization method by the method of closure of processes. 
Thus, let there be <pi and Z{ defined by the following relations 

(7) d(= 1 + htpi, Ci = —hzi. 

Then, for the quantities <pi and zt we obtain 

(8) (Pi+i = q>i + h ( д - т т | h qi+i) , i = 0, 1, . . ., N — 2, 

<p0 = 0, 

(9) Zi+г = Zi + h ( — ү н+i 

Ч = <*•> 

Ziфi 

+ h<pi + fi Wi) , i = 0,l9...,N-2, 

and, after an analogical arrangement, for the y% 
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»-**--CsW)- «-»-• "• 
2/AT = • 

<PN-x 
From here it is seen that formulae (8) to (10) represent an approximate method 
for solution of following initial-value problems 

<P' + 9* = <7> 9(a) = °» 

z' + <pz = /, 2(a) = a, 

/» - 2(6) ť — VУ = z> Î/Ф) = 
<pФ) 

The last equation is solved from right to left. I t can be easily shown that the 
solution of the last equation is the solution of the original equation with 
corresponding boundary conditions. Thus we have obtained the so-called 
factorization method which represents a transformation of the boundary-
value problem into numerically stable initial-value problems. 

From here it is obvious that the quantities <pt and z% are bounded inde­
pendently of h, that consequently di is also bounded and that the quantity 
Gf is of order h. Analysis of equations (4) to (6) yields then easily that the 
finite-difference method in connection with the elimination method gives 
/?2-solution of numerical processes in dependence on the number of subintervals 
used. Obviously, it is also 52-solution. 

The performed analysis suggests a possibility of a convenient modification 
of the process of elimination, namely so that we replace the recurrence relation 
(4) by (8) and then we use the relation (10). By this we obtain for the process 
even a ^-solution. 

Further, let us consider the stability of the solution of parabolic equation 
by the method of finite differences. For the sake of simplicity, we shall consider 
the equation 

(11) ^=^2-q(x,t)u+f(x,t) 

with the initial condition u(x, 0) = g(x), x e <0, 1> and boundary conditions 
^(0, t) = y°(t), u(l,t) = y\t), t G (0, T) and we shall investigate the stability 
of the Crank-Nicholson formula for the case that the space- and time-steps 
are related by r = coh, where co is a constant. 

The corresponding system will be written in the matrix form 

4«>«<i> = BWtttf-1) + (/<»> +/W-1)), I = 1, 2, . . . , r, 

where the tridiagonal matrices AW and B® are given as follows 
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A<0 = 

2й 
_ + 2 + Ä-ÿьl, co 

- 1 , 

•1, o, 
2A 

Ö) 
+ 2 + Ä2

?2,,, - 1 , 

. , 0 , - 1 , ^ + 2 + Ä-gJ,-ь, 

£<0 = 

Ş - 2 - ,̂,,-,, 

1, 
2Ä • 

1, 

(0 

0, . . . 

2 - A2?2,г-i, 1, • 

2й 
. . . , 0 , 1, — - 2 - Д2?,.-!,,-! 

the vector w(0 is the vector of the unknown solution at the Z-th time level 

and /W is the right-hand side vector 

/«> = {A«/i,. + y°(..), fc2/2,*, • •., A'A-n.! + yM'i)} 

The numerical process by which n<0 is computed consists in the following 

recurrence procedure. Assuming that u^-1) is known we compute 

t>(0 = BWuV-1) + /<*> + /<*~1> 

and then the equation 

(12) 4 « t t W = t;« 

is solved. The method for solution of the last system (not yet indicated) is 
an essential part of the numerical process. 

The perturbed process is given by 

fid) = BWfitf-i) + / ( 0 + / C - 1 ) + 6(0, 

where \6W\ < if (5, (5 is the error of the elementary operation and by the 
solution of the system 

AV>uV> = vK 
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We shall assume that the actual solution of the sjrstem uW fulfils the equation 

4<0ff<0 = £(0 + r(0. 

In order to be able to say something about the stability of the method in 
question, it is not necessary to specify the method for solution (12) completely. 
I t is sufficient to make certain assumptions about the magnitude of the 
residue r^>. We have the theorem 

The numerical process of solution of the equation (11) by the Crank-Nicholson 
formula is a B2A.Q-solution (with respect to the parameter 1/h) under the assumption 
that the method for sohttio?i of (12) is such that the residual vector fulfils the 
estimate 

max|rfr<0|^/f i- . 

This theorem describes the stability of the Crank-Nicholson formula under 
the assumption that for the chosen method the asymptotic behaviour of 
residues arising by solving (12) is known. Analogically, the stability of a general 
parabolic equation with general boundary conditions may be investigated. 

In the case, when for the solution of (12) the elimination method is used, 
one can prove by considering the concrete form of the matrix AW and the 
vector vW that the residue fulfils 

max jr<*>| < Kb, 
k 

where K is independent on h. In this case, we obtain a 2?2-solution for the 
entire process. And this is a rather favourable result. 

We have investigated in some cases the numerical stability by the concept 
of /?s-solution. This assesment of numerical stability is of an asymptotic, 
essentially qualitative character. Our approach, maximalistic in essence, 
shows the trend of accumulated errors rather than their accurate bounds. 
The characterization of methods by /3s-solutions may be utilized in different 
ways. First of all a comparison of different methods will most conveniently 
be based not only on computer time and memory capacity required, but also 
their numerical stability. Another example is in some cases utilized combinat­
ion of methods. I t is no sense in utilizing some, e.g., iterative method in order 
to get a more accurate solution, if its numerical stability is equal or even 
worse than that of the original method. Occasionally, we may use the 
conclusions concerning /^-solutions even in a quantitative way, for example 
by comparison with some simple case, where the error is known. 

Naturally there are many other such possibilities which depend on a person's 
experience, intuition and skill. 
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