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ACTA FACULTATIS RERU3I NATURALIU3I UN1VERSITATIS COMEMANAE 

MATHE3IATICA XVII - 19G7 

STRUCTURE OF GREEN'S OPERATORS AND ESTIMATES 
FOR THE CORRESPONDING EIGENVALUES. <*> 

G. FICHERA, Roma 

It is well-known that one of the most difficult problems which mathematical 
physics poses to quantitative analysis is the rigorous approximation of the 
eigenvalues of certain boundary value problems which arise in applied 
mathematics. By rigorous approximation we mean giving lower and upper 
bounds for any particular eigenvalue such that these bounds approach this 
eigenvalue to any prescribed degree of accuracy. I t is convenient to consider 
these problems in an abstract Hilbert space setting. To this end we consider 
a complex separable Hilbert space S and a linear operator T which maps S 
into itself. We suppose that T is a positive compact operator (PCO), i.e., 
T is such that (Tu, ^l) > 0 for ?t -^ 0 [(.,.) is the scalar product in S] and T 
maps weakly convergent sequences onto strongly convergent sequences. It is 
well-known (and very easy to prove) that positiveness implies that T is 
hermitian [i.e., (Tu, v) = (u, Tv) for any u and v in S] and compactness 
implies that T is bounded. 

Let us consider the eigenvalue problem 

(1) Tu - nu = 0. 

A fundamental theorem in Hilbert space theory states that the eigenvalues 
of problem (1) constitute a sequence of positive real numbers converging to 
zero if — as we shall suppose —- S is infinite dimensional. Each eigenvalue 
has finite multiplicity, i.e., the kernel of the linear operator T/t = T — fil 
has finite dimension (multiplicity of /i). Let 

j-h > //2 > . •. > m .> - •. 

be the sequence of the eigenvalues of T, each repeated as many times as its 
multiplicity. From now on when we mention the sequence of eigenvalues of 

<*> This research has been sponsored by the Aerospace Research Laboratories under 
Grant AF EOAR 66—48 through the European Office of Aerospace Research (OAR), 
United States Air Force. 
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n PCO, it shall be understood that this sequence is ordered according to the 

criterion just specified; thus the statement: /x is the k-th eigenvalue of a certain 

PCO is precise. 

The problem of the rigorous approximation of the eigenvalues of T is the 

following. 

For any given k ^ve want to constnict two seq^^ences {/u%} and {o<p }. v = 1,2,. . . , 

such that: 

(2) ЃЎ<.WÍ), (3) lim / iф = fik 
V-^oc 

<4) «т<P S <r<£+1>, (б) lim orф = [ik 
V-*oo 

The sequence {pty} (called lower bounds) can be constructed in a rather 

simple way by means of the classical Rayleigh-Ritz method. Let {wt} be 

a sequence of linearly independent vectors complete in the space S. Let us 

denote by 

(6) /4<i> >^$ > ... >^<;:> 

the roots of the determinantal equation 

(7) det {(Tivu Wj) — /i(wu wj)} = 0, (i. j = 1, . . . , v). 

The following theorem, which-goes back to Plancherel [11], states that {fity} 

is a sequence of the lower bounds. 

Theorem 1. The sequence {/tity} obtained through the Rayleigh-Ritz method 

satisfies conditions (2), (3). 

I t is of interest to remark, in view of applications to partial differential 

equations, that, instead of using Eq. (7), we may obtain the Rayleigh-Ritz 

approximations from the equation 

(8) det {(Twu Tivj) - p(Twu tvj)} = 0, (t, j = 1, . . . , v). 

Theorem I. still holds if we substitute Eq. (8) for Eq. (7). 

The construction of the sequence {oty} (called ^lpper bo^lnds) is a much 

more difficult problem. The first approach to this problem is due to A. Wein-

stein [16], who considered the eigenvalue problems connected with the classical 

boundary value problems of elastic plates. The Weinstein method, known 

now as the method of intermediate problems, was later reformulated in terms 

of a PCO in a Hilbert space and deeply investigated (and generalized) by 

Aronszajn (see [1], [2] and [10]). Further important results have been obtained 

by the Weinstein school, especially by Weinberger [15], Bazley [3] and 

Bazley—Fox [4]. 

I t has been proved (see [6], [7]) that the Weinstein method can be included 

in the following formulation of the theory of intermediate problems, due to 
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Aronszajn. Let T0 be a PCO such that T0 > T. Assume that the seqvience 
of eigenvalues {/*(%)} of T0 and the corresponding seqitence of eigenvectors are 
knovcn. T0 is called a base operator. Then it is possible to construct a sequence 
{TJofPCO's such that 

i) T0>TV> Tv+1 > T; 

ii) T0 — Tv is a degenerate operator, i.e., its range is finite dimensional; 
iii) Tv converges uniformly to T for i»-->oo, i.e. lim \\TV — T\\ = 0. If 

wre let oty be the fc-th eigenvalue of Tv, conditions i), iii) assure that aty satisfies 
conditions (4), (5). Of course the problem of the actual computation of oty must 
still be solved. To this end one takes advantage of condition ii) and, by using 
standard techniques of finite rank perturbation theory, it is possible to find 
eigenvalues of Tv as zeros of certain meromorphic functions, which Weinstein 
introduced for the first time. One then uses two different procedures: one for 
the eigenvalues of Tv which are not eigenvalues of the base operator; and 
another for the eigenvalues which are eigenvalues both for T0 and Tr. The 
main numerical difficulty occurs in finding the zeros of the above mentioned 
meromorphic functions. Some procedures have been given by Weinstein, 
Weinberger, Bazley and Fox in order to avoid this difficulty. As a matter 
of fact in many important applications the eigenvalues of Tv can be found 
as zeros of very simple functions. 

The method of intermediate problems has led to the solution of many 
interesting eigenvalue problems since Weinstein published his important 
paper [16] on 1937. Let us mention, among all these, the outstanding result 
obtained on 1961 by Bazley [3], who was able to give remarkable lower bounds 
for the first two eigenvalues of the helium atom. 

However, one of the theoretical restriction in the method of the intermediate 
problems is the assumption that a base operator T0 must be known. For 
example, if we consider the very simple and classical eigenvalue problem in 
the space S == L2(0, 1), for the Fredholm operator 

l 

Tu = / K(x, y) u(y) dy, 

(K(x, y) continuous and K(x, y) — K(y, x)), we do not know, in general, 
how to construct a base operator. 

Therefore in the last two years a different method has been developed by 
the author. This new method applies to a class of operators smaller than 
those considered in the theory of intermediate problems, but its application 
requires less (e.g., base operator) information. The resulting application of 
this method to eigenvalue problems for elliptic linear differential systems has 
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led to new investigations in the theory of those systems, which, in the opinion 
of the author, are of interest on their own. 

In the present paper we wish to expose the main results of this new method, 
together with some numerical applications which have been carried out at 
the Computing Center of the Faculty of Sciences at the University of Rome. 
For these numerical calculations the author wishes to express his sincere 
thanks to L. do Vito, director of the Computing Center, and to A. Fusciardi, 
F. Scarpini and M. Schaerf. A complete account of the theory of orthogonal 
invariants and their applications to partial differential equations can be found 
in [6] or in [7]. 

1. Method of orthogonal invariants. 

'Let T be the above considered PCO. Let us denote by rW(wl9 . . . , ws) 
the Gram determinant of s given vectors wl9 . . . , ws in the space S9 with respect 
to the scalar product (THi9 v); i.e., r(wl9 . . . , ics) = det {(Tnwi9 Wj)}9 (i9 j = 
= 1, . . . , s). Let {vjc} (k = 1, 2, . . . ) be an orthonormal complete system in 
the space S. We set 

<&\(T) = 1 
and, for s > 0, 

(9) &»(T) = ± 2 r<*Hvkv ..., tfc.). 

The summation 2 must be understood to be over any set of s positive 

integers. Since the multiple series on the right hand side of (9) has non-
negative terms, its sum — finite or not —- is independent of the summation 
procedure. I t is evident that 

&%(Tm) = &»m(T). 
The following theorems hold. 
Theorem II. ^(T) is independent of the particular orthonormal complete 

system used in its definition, i.e., ^(T) is an orthogonal invariant for the 
operator T. 

The index s will be called the order of the orthogonal invariant ^(T) and 
the index n the degree of this invariant. 

Theorem III. We have <BI*(T) < +oo if and only if ®\(T) < +oo. 
We denote by G> the class of all the PCO's such that &1(T) < +oo. We then 

hfvve £m c £« if m < w. There exists PCO's such that they do not belong to any 
G>. However PCO's which are encountered in mathematical physics generally 
belong to some (£n for n large enough. 
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Theorem IV. The sequence %/n(T), (s = 1, 2, ...) is a complete system of 
invariants for unitary equivalence of two operators of the class dn. 

This means that if T, ReGn, we have T = U^RU, with U an unitary 
operator, if and only if <&n(T) = 3*(P), $ = = 1 , 2 , . . . 

Theorem V. / / T2 > Tv (Tt e G>, i = 1, 2), then <&n(T2) ^ <8f»(Tt). 

Theorem VI. If Tk converges uniformly to T, (Tk, T e G>), then ^ &n(Tk) = 
= ®n(T). 

Let {wt} be the above introduced complete sequence of linearly independent 
vectors. Let Wl be the y-dimensional subspace spanned by the vectors wl9 ..., 
cov and Pv the orthogonal projector which maps S onto Wv. Let us consider 
the positive eigenvalues of the operator PvTPr, that is to say, the roots (6) 
of the equation (7). Let a>Vk) (k <, v) be an eigenvector corresponding to the 

eigenvalue pty of PVTPV. We denote by Wk the one-dimensional subspace 

spanned by c5$. Let P<$ be the orthogonal projector of S onto Wv © Wk. 
Let us remark that PVTPV and PtyTPfy are PCO's when considered in the spaces 
Wv and Wv © Wk respectively. 

Theorem VII. Let T e <£n. Given s > 0, for v >s let 

nn nn l®m-®n(PvTPv) \i 
(10) aV = | ^(PWTPV) + [/Xk>] J • 

Then the sequence {oty} satisfies conditions (4), (5).<2> 
The two orthogonal invariants <3/n(PvTPv) and W^PtyTPfy) must be 

considered as numerically known since they are expressed as follows through 
the Rayleigh-Ritz approximations > 

<&1{PVTPV) = ^"f [ < > . . . ftffr, 
hx< . . .< /* , 

1 r<*> 

9*^{PQTPty) = 2 MP • • • ^ i . 1 * . i i 
&!< . . . < n,-! 

l , . . . . r ( f c ) 

The symbol 2 means that the indices h± ... hs-x are always chosen 
ht< . . . < & . - ! 

among the integers 1, . . . , k — 1, k + 1, . . . , v. 
Theorem VII solves the problem of the upper approximation of fik, provided 

that one of the orthogonal invariants &n(T) of T is known. 
Theoretically, because of the definition (9), Wn(T) can be considered as 

known. However from the numerical point of view, we can only obtain 
a lower bound for &n(T) since it is expressed as a sum of a series with lion-
negative terms. On the other hand, formula (10) requires an upper bound 
for ^n(T) if we wish a<P to be an upper bound for [ik. In concliision, we are 
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allowed to use formula (10) for giving an upper bound for [Xk if we are able 
to estimate the remainder of the series which defines ^(T), or if we can compute 
this invariant by some different procedure. We shall see in the following 
how to overcome this difficulty. <2) We believe that theorem VII must be 
considered as a remarkable advance in the problem of obtaining upper 
approximations for the fijc's, since the problem of finding upper bounds for a 
sequence of numbers /ilf /JL2, . . . , /**, . . . has been reduced to the problem of giving 
an upper bo^md to a single number: one of the orthogonal invariants of T. 

Let us now consider a measure space with a non-negative measure /A, and 
let A be a measurable set in -this space. Denote by L2(^4, /u) the Hilbert space 
of complex valued functions u(x) on A, with |M(#)|2 summable on A with 
respect to the measure p. The scalar product in !L2(A, [i) is the following 

(u, v) = f it(x) r(x) d/xx. 
A 

Suppose that S is Hilbert-isomorphic to !L2(A, p). It is well-known that it 
is always possible to choose the measure-space, fi and A in such a way that 
this is true. For instance, we may take as A any bounded open set of an 
euclidean space and [x the classical Lebesgue measure. 

Theorem VIII. Let T belong to dn. Then there exists a kernel KW(x, y) 
belonging to L2(_4 x A,/* X fi) such that Tn admits the following representation 
in the space L2 (̂ 4, /i) 

(11) ! N = / Z W ( j : , i f ) t t ( ! f ) ^ . 
A 

From this theorem we can deduce the following one which provides an 
integral representation for the orthogonal invariants of T e (£n. 

Theorem IX. Consider the function 

KM(xl9 xx) KW(xx, xs) 

f(xľ, . . . , xs) — 
*<»>(*„ xг) *<«>(*„ xв) 

It is summable on the cartesian product A X A x . . . X A with respect to the 
1 2 s 

product-measure f.'Xl X /uX2 X . . . X {xx%. For T e (£w we have 

(12) 9J(T)=~j....j f(xl9 ...9xs)d^Xl...dMx8. 
A A 

Representation (12) solves the problem of the computation o£<3/%(T) when 

<2) o{*} obviously depends on s and n. However we don't want to indicate this depen­
dence explicitly* since we assume s and n fixed and wTish to avoid cumbersome notation. 
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the kernel KW(x9 y) corresponding to the operator Tn is known. I t follows 
that (10) furnishes a double sequence of formulas, each of them (for any 
fixed s and n) solving the problem of upper approximation of eigenvalues for 
Fredholm (hermitian) integral operators. We would like to observe that using 
the integral representation (12) of &%(T) and letting n == 2 and s = 1 in the 
general formula (10), we arrive a t a particular formula already known to 
Trefftz [14]. 

2. S t r u c t u r e of Green ' s o p e r a t o r s . 

If we wish to use representation (12) for eigenvalue problems for differential 
equations, we must face the main difficulty consisting in the actual knowledge 
of the Green's function for the associated boundary value problem. I t is 
well-known tha t only in a very few cases — especially for partial differential 
equations — is the Green's function explicitly known. 

We now want to show to overcome this difficulty for linear elliptic differential 
systems by means of a new approach to boundary value problems for these 
systems; the latter will lead us to an explicit construction of the Green's 
operator. This construction is particularly suitable for using formula (10) or 
the slight generalization of this formula, given by the following theorem. 

Theorem X. Let {T0} be a decreasing sequence of PCO's uniformly converging-
to T. Let TQ, T belong to <£» K Set 

of . > = « 
\<&Ï(T0)-У*(PVTPV) , г. 
1 ^-x(P(

v

k)TPf>) **•W 

oř"> ^ <4S,") M Q<,~Q, V 

l i m (7<?.*> -- (ik. 
Q-+OO 
v->oo 

WЃ*]-}". 

Then <•''> ^ a<?>"> for Q <, o, v <, v, 
and 

Let Xr be the r-dimensional real cartesian space; we denote by x === (xl9 ... r 

xr) a variable point in Xr. If u and v are w-vectors with complex components, 
their scalar product uti't will be denoted by uv. If a = {ay} is an I x I matrix 
with complex entries, the Z-vector whose components are ayUj (i = 1, . . . , l)r 

will be indicated by au9 the adjoint matrix of a9 i.e., the matrix {oc#} with 
cuij = dji will be indicated by a. 

Let i b e a bounded domain (connected open set) of Xr. We suppose that 
A is a properly regular domain <3). Let us consider the following linear dif­
ferential matrix-operator of order 2m 

L(x9 D) SEE DPapq(x) D*9 (0 ^ p <> m9 0 ^ q < m)9 
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where apq(x) are I X I matrices, which — for simplicity — we assume to be 
of class C™ in the whole space Xr; if p is the multi-index (pv . . . , pr), DP 
denotes — as usual — the partial derivative 

DP = U # 

dxxPx... dxf 
We make the following hypotheses. 

1) L(x, D) is elliptic for every x € Xr, i. e., we have for any real non-zero 
^-vector f 

det apq(x) &>& ^ 0 (\p\ = \q\ = m) 

(& = # - . . . er% ff1 = 1 if 6i=pt = 0); 

2) L(x, D) is formally self-adjoint, i.e., 
apq(x)^(-\)\P\+mqv(x); 

3) The bilinear integro-differential form 

B(u, v) = % (-1)W / (opqD*u) DPv dx 
PQ A 

is such that for any function*4)^ of class (700 in Xr, we have 

(—\)™B(u, u)>c 2 / \DPu\2 dx, 
\p\ —m A 

where c is a positive constant independent of u. 
4) There exists a linear operator B which enjoys the following properties: 

i) B is a bounded operator with domain \L2(A') (A' is a domain such that 
A' -=> A) and range in the Hilbert space Hm(A') of functions with weak 
derivatives of order <,m belonging to ~L2(A'); ii) B is hermitian on \L2(A'); 
iii) for any / e \L2(A') we have LBf = f. 

Hypothesis 4) is satisfied when there exists a fundamental solution for 
the operator B. Hypotheses 1), 2), 3), 4) are satisfied by the classical differential 
operators encountered in eigenvalue theory. 

Let us consider the space O00^) of O00 functions in A and the finite dimen­
sional manifold F of all the functions w such that B(w, w) = 0. Let us denote 
by Jtf'(A) the Hilbert space obtained through functional completion from the 
quotient space C00 (A) jr by means of the norm introduced by the scalar product 

((u9v)) = (-l)nB(u,v). 

(3) For the precise definition of properly regular domain see [6] p. 21. Roughly speaking, 
a properly regular domain is a domain with a piece-wise regular boundary such that 
dA = 8A and which satisfies a cone-hypothesis. 

(*) The term "function" must be understood as "vector-valued function", since the 
values of the function are Z-vectors with complex components. 
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Let (.,.)A, denote the scalar product in the space L2(A'). Let R* be the 
bounded linear operator with domain Jf(A) and range, in L2(A'), defined by 
the equations 

((*/. 9)) = (/> &*9)A, [feL*(A'), g e J#>(A)]. 

Let P be the orthogonal projector ofJf(A) onto its subspace Q(A) determined 
by the solution of the homogeneous equations Lu = 0. 

Theorem XI. Let U(A) be the class of all functions belonging to Hm(A) O 
n Hm(A0) for every domain A0 such that AQ^ A. Then for every feh2(A) 
there exists in the class U(A) one and only one solution u of the boundary value 
problem 

§ J&tt = ( - l )w/ in A 
(13) { Dvu = 0 (0 < \p\ ^ m - 1) on 8A. 
Set 

G = R*R - R*PR. 

Then the solution u of problem (13) is given by u = Gf. Thus G is the Green 
operator for the boundary value problem (13). 

Let {o)]c} be a complete system in the space Q(A) and QQ(A) be the g-
dimensional manifold spanned by col9 . . . , coQ. Let PQ be the orthogonal 
projector of J^(A) onto QQ(A). 

Theorem XII. Set GQ = R*R — R*PQR. Then both operators G and GQ, as 
operators on the Hilbert space Tu2(A), belong to Cn for any n > rj2m. Moreover 
H m | | G - G y | = 0 and GQ>GQ+V 
<J-*CO 

The following eigenvalue problem, considered in the space U(A) 
J Lu— (—\)™hi = 0 in A, 

*14^ j Dvu = 0 (0 <p ^ m — 1) on 8A 

has only positive eigenvalues. Letting A"1 = ft, problem (14) is equivalent 
to the following one in the space IJ2(A): 

(15) Gu — fiu = 0. 
For the upper approximation of the eigenvalues of (15) [i.e., the lower 

approximation of the eigenvalues of (14)] we can apply theorem X with 
T = G and TQ = GQ. This is possible by theorem XII. For the computation 
of Is(GQ) we may use theorem IX if an integral representation of R is known; 
i.e., if a fundamental solution of L is available. 

On some other cases the explicit representation of GQ, which we have given, 
can be used in order to give upper bounds to the remainder of the series 
which defines I%(GQ). 

In the following sections we shall consider as examples some classical 
eigenvalue problems of mathematical physics. 
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3. Two or three —dimensional elasticity-

Let us consider the differential operator of classical elasticity, which we 

shall write as follows in the space Xr (r = 2, 3): 

Ltu = utihh + *uh/ih, (i = 1, . . . , r); 

a is a given real constant (depending on the elastic material) such that 
a > - l . 

From now on we shall consider only vector-valued functions with real 
components. 

Let us consider the eigenvalue problem 

Lu + Ы = 0 in A 
( 1 6 ) t u - 0 on ЄA. { 
We can use the following bilinear form 

B(u, v) — — / (unhVqh + v-UiiiVhih) dx. 
A 

Set 

f —log*-1 forr = 2 
V (t) I _«-- forr_3 

x, / , _ " Wx-y\2<p(\x-y\) di} 

Fu(x-y)- M 1 + a ) - - - - Jwa*\*-y\y> 

Vtj(x, y)= - I {Facing ~ 0 Fmn(t — y) + «Fim(x - t) Fjhih(t - y)} dt. 
A 

Let {tas} be a complete system of solutions of the homogeneous equations 
Lu = 0, such that — B(a>s, a)1) = ^<5>. Set 

<?!(*) = / {Fiklh(x - f) tol,h(t) + *Fiklk(x - f) o>J/fc(«)} dt. 
A 

Let {it4} be any system of linearly independent functions such that w* = 0 
on BA and such that {Lwt} be complete in the space JJ2(A). Let /*<i> ;> 
> . . . __ /^^ > • • • > /*(^ be the roots of the determinantal equation 

d e t {/ wiwi dx + fif w\Lhwi dx} = 0 (i,j = 1, . . . , v) 
A A 

(Rayleigh-Ritz approximations). Set 

<5> For the construction of a complete system of solutions for Lu -= 0 see [8] chap. III. 
The orthonormality condition — B(cos, wl) = d8i is assumed here only for the sake of 
simplicity. It is not necessary in numerical applications. 
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l .r l.'U) 

T(P - { 2 [1 f ly«(*. J/)l2 dxdtj+Zf Qi(x) Q\(X) dx f $(x) Q){X) dx -
i,i A A 8,1 A A 

1," l.*<*> _ i 

-^2 f f mix, y) Q\(X) Q%y) dx dy] - 2 L>(,.>]2} , 
s A A i 

1." 

with the usual meaning for the symbol 2 • Let Ax <_; ^2 <. • • • <_ Ajt . 

be the eigenvalues of problem (16). Then we have 

(17) T^k^-J -v , (&<». 
and 

(18) Km r<;:> = lim -i> = 4 . 

4. Vibrat ions of a clamped plate. 

We assume r = 2. The eigenvalue problem is the following 
A2A2w — Xu = 0 in ^4, 

^ = — = 0 on 8A. 
8n 

(A2 = Laplace operator, — = differentiation along the normal); u is a real 

valued function. .The [ity are now the roots of the equations 

dst j / Wi wj d% — p I A2 ivi A2 wj dx \ = 0, (i9j=l9 v), 
A A 

where the sequence {w^ satiesfies the usual completeness condition and wi 

= -7T̂  = 0 on 8A. Inequalities (17) and the limit relations (18) hold also in 

this case with 

T ( & ) ={ iL-J j\l°S\^-y\\2dxdy-
A A 

l , v l,»<fc) 

~ i 2 f [ f ̂ iog ix ~ti dt\dx ~ 2 1̂ ; 
% A A i 

({coi} is a complete system of harmonic functions (harmonic polynomials if A 
is simply connected) orthonormalised in L2(_4). 
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5. Buckling of a clamped plate. 

The eigenvalue problem is now the following 

A2A2u + XA2u = 0 in A, 

du u = — = 0 on dA. 
dn 

In this case the lower bounds for Xjc are given by 

T ( * ) = = I A [ I I\tog\x-y\\%dxdy-22 HI <ot(t) log \x-t\dt]*dx + 
l̂ tt" I A A * i A A 

+ I ( / / l o g \x - y\ coh(x) a*3(y) dx dy)2] - 2(k) WW*] '• 
h,i A A J i J 

The upper bounds t/̂ jj?]""1 are obtained from the equation 

det { / WiA2Wj dx + [x f A2Wi A2wj dx} = 0, (*, j = 1, . . . , v). 
A A 

The systems {<*>#} and {w$} are the same as in the preceding example. 

6. Numerical examples. 

We have included in this paper numerical results concerning eigenvalue 
problems for elastic plates. The upper bounds (i.e., the inverses of the lower 
bounds for the eigenvalues of the Green operator) have been obtained by the 
Rayleigh-Ritz method, wherein we have used systems of polynomials. The 
lower bounds have been obtained by the method of orthogonal invariants 
and the representation, of the Green operator described in the paper. 

For numerical examples concerning ordinary differential equations see [9], 
[1-]. [13]. 

I) Square plate clamped along its boundary. 

\ ( 6 ) 

A2A2u — Xu = 0 in A = I — — < xx < —, — — < x2 < — 

S u n QA 

u = — = 0 on dA. 
on 

Let n be the #$-axis (i = 1, 2). Let r3 be the line xx = x2. By .ff(a-aa), 
(a i = 0, 1) we denote the subspace of L2(A) consisting of all functions which 
are symmetric with respect to n if a* = 0, anti-symmetric if af = 1. By 
H<aia*a*), (af = 0,1), we denote the subspace of .ff(a-a-) of all functions belonging 
to H(a-a-) which are symmetric (anti-symmetric) with respect to r3 if a3 = 0 
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(a3 = 1 ) . The space h2(A) can then be decomposed into subspaces (which are 
invariant for the given problem) as follows: 

h2(A) = ff(ooo>(^) @H(°Q1)(A) ®m^)(A) 0 # < m ) ( J ) ®H(°V(A) ® Wl*)(A). 

000 001 

lower boшкl upper bound loлver bound upper bound 

K 13.29376 13.29378 177.7193 177.7401 

* . 179.408 179.431 976.13 979.59 

A, 496.55 497.03 1569 1584 

Һ 977.64 981.25 3158 3282 

Һ 1577 1593 4038 4306 

K 3120 3244 5865 6791 
A, 3155 3284 6774 8330 

Һ 4037 4317 7555 9931 

Һ 5853 6817 • 
*!• 6701 8276 

<6> For the analytical and numerical investigation of this problem see [5]. 
concerning numerical work on the same problem can be found in [5]. 

References 

110 111 

lower bound upper bound lower bound npper bound 

K 120.2143 120.2143 601.488 601.983 

я a 
605.792 606.920 2133.1 2155.6 

A3 
1401.5 1415.7 3398 3491 

я* 2111.8 2161.2 5429 5834 

h 3306 3506 6970 7894 

K 5037 5842 9366 12071 

Ъ 5412 6451 

h 6200 7931 
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01-10 

lower bound upper bound 

к 55.2982 55.2994 

h 279.35 279.50 

K 454.37 454.99 

h 890.8 901.6 

h .. 1180 1191 

к 1833 1875 

к 2171 2242 

к 2560 2677 

к 3371 3652 

^10 4154 4716 

Kx 4556 5329 

Я
12 

4582 5372 

II) Circular plate clamped along its boundary. 

Д2Д2м — Ы — 0 in A -s {x\ + x\< 1}, u 
cu 
ën 

= 0 on г,4.<7> 

The space h2(A) can be decomposed into the direct sum of a sequence of 
subspaces (which are invariant for the problem) as follows: 

L V ) = #(0) e# ( 1 ) e . . . e#<*> e.. ., 
where HW is the subspace spanned by all functions of the type /(g) cos k& 
and g(g) sin k& where xx = Q COS &, x2 = Q sin #, k is a non-negative integer 
and / and g are arbitrary functions. Each subspace HW (for k > 0) is itself 
decomposable into two invariant subspaces 

#<*) = (/(g) cos fcfl}, J5T<*> = {g(Q) sin kd}. 

I t is obvious that the eigenvalues in _ff<i> coincide with those of 7/<|>. 
Therefore the eigenvalues included in the tables with index k > 0 must be 
considered as double eigenvalues. 

<7> Application of the general method to this problem is due to M. SCHAERF and will 
appear in a forthcoming paper. The numerical results exhibited in the present paper 
are due to this author. 

262 



fc = o fc = l 

lower bound upper bound lower bound upper bound 

h 104.36311051 104.3631056 452.00448 452.00452 

h 1581.742 1581.745 3700.11 370013 

h 7939.38 7939.55 144418.2 14419.1 

h 25017.2 25022.3 39606.2 39622.3 

h 60939.5 61012.2 88482.2 88661.1 

h 125786 126430 171901 173225 

h 230123 234133 300129 307340 

h 380355 399323 476778 507392 

h 569823 640349 689901 794004 

k = 2 ІЬ = 3 

lower bound upper bound lower bound upper bound 

h 1216.4072 12KK4076 2604.061 2604.065 

h 7154.14 7154.23 12325.4 12325.8 

h 23656.3 23659.1 36207.4 36215.6 

h 58870.7 58913.3 83526.1 83625.1 

h 123047 123437 165470 166244 

h 227594 230089 293711 298098 

h 381914 394063 476150 495553 

x ** 
585981 632954 708346 777466 

h 822673 970669 

k = i Л' = 5 

lower bound upper bound lower bound upper bound 

h 4853.31 4853.33 8233.49 8233.57 

h 19629.1 19630.3 29513.3 29516.3 

h 52658.5 52678.8 73627.7 73673.3 

h 114314 114523 152001 152404 

h 216597 218019 277274 279738 

h 371076 378366 460483 472040 

h 583460 613097 704421 748019 

h 844252 942444 
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fc = 6 & = 7 

lower bound upper bounđ lower bounđ upper bound 

h 13044.2 13044.5 19615.1 19615.8 

h 42457.8 42465.1 58973.7 58989.9 

h 99763.2 99857.0 131741 131922 

h 197374 198104 251235 252489 

h 348349 352407 430663 437070 

h 562700 ' 580302 678459 704371 

h 839575 901677 

& = 8 Ä! = 9 

lower bound upper bound lower bounđ upper bound 

Һ 28304.7 28306.3 39500.6 39504.1 

Һ 79602.4 79635.6 104914 104979 

h 170265 170590 216062 216620 

Һ 314402 316460 387704 390951 

h 525050 534802 632331 646714 

h 808467 845496 

fc = ю fc = l l 

lower bound upper bound lowcr bound upper bound 

h 53618.9 53626.1 71103.5 71117.8 

h 135509 135626 172014 172215 

h 269882 270798 332495 333947 

h 471976 476928 568059 575391 

h 753313 773948 888788 917682 
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fc = 12 fc = 13 

1 i 
I lower bound | upper bounđ lower bounđ upper bounđ 

92426.2 
215080 
404689 
676795 

92452.6 
215414 
406917 
687371 

118085 
265387 
487270 
799027 

118133 
265921 
490593 
813933 

k = li fc-18 

\ \ 
lower bounđ ! upper bound j lower bound upper bound 

h 148607 
323636 
581056 
935594 

148687 
324465 
585887 
956172 

184542
 в 

390553 " 

686877 

184674 

391804 

693747 

л = 16 7; = 17 

lower bound upper bound lower bound | upper bound 

1 

226468 

466883 

805574 

226678 

468724 

815148 

274986 

553390 

937997 

275311 

556044 

951097 

fc = 18 fc = 19 

lower bounđ upper bound lower bound upper bound 

330725 
650861 

331214 
654609 

394333 
760097 

395054 
765295 
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fc=20 

lower Ъound upper Ъound 

h 
466485 
881916 

467526 
889004 

Several text-books exhibit the following numerical table due to H. Carrington 
4 _ 

{London—Edinburgh Phil. Mag., vol. 55 pp. 1261 — 64, 1925), for /.i = \L 
I t was obtained by computing the zeros of a well-known transcendental function 
expressed by means of Bessel functions. 

k = 0 k = l k = 2 k = B 

fh 3.1961 4.6110 5.9056 7.1433 

fҺ 6.3064 7.7993 9.1967 10.537 

Џ% 9.4395 10.958 12.402 13.795 

fh 12.577 14.108 15.579 

fh 15.716 

Dr. Schaerf gets the following results. 

k = i 

lovi r Ъouшl upper Ъound lower bound 
l 

upper Ъound 

fh 
fh 
fh 
fh 
ÍH 

3.19622 
6.30643 
9.43945 
12.5764 
15.7117 

3.19623 
6.30644 
9.43950 
12.5772 
15.7165 

4.61089 
7.79926 
10.9579 
14.1072 
17.2470 

4.61090 
7.79928 
10.9581 
14.1087 
17.2558 

I t is interesting to observe that the numerical application of the methods 
described in this paper proves that some of the classical numerical results 
are incorrect in the fifth digit. On the other hand the numerical application 
of our method is simpler than the numerical solution of the classical above 
mentioned, transcendental equation. 
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fc = 2 fc = 3 

lower bouшl upper bouшl ІOÌVЄГ bouшl upper bouшl 

ľl 
/<2 

^ З 

5.90567 
9.19685 
12.4018 
15.5766 

5.90568 
9.19689 
12.4023 
15.5795 

7.14352 
10.5366 
13.7942 
17.0002 

7.14354 
10.5367 
13.7951 
17.0053 

t 

7. The problem of es t imat ing eigenvalues when est imates for 
i n v a r i a n t subspaces are known. 

Let us consider the linear operator L with domain the linear variety QL 
of the Hilbert space S. Let V be a linear subvariety of Cc^. The following 
hypothesis be satisfied: 

There exists a PCO G of the space S such that: i) the range G(S) of G is 
contained in V; ii) GL = LG = I. 

Let us consider the eigenvalue problem 

(19) Lv — h) = 0, v e V. 

This problem is equivalent to the following one 

(20) Gu — [AU == 0, ueS 

where JLI = )rx. I t follows that all the eigenvalues of (19) constitute a non-
decreasing sequence tending to +°o 

K < h < • • • < h < • • • 

Each eigenvalue appears — as usual — in the above sequence as many times 
as its multiplicity. 

Let us suppose that we can decompose the space S as direct sum of a finite 
or a countable set of mutually orthogonal subspaces, each of them being an 
invariant subspace for G. 

S = HX®H2® . . . 0 J ? , 0 . . . 

Problem (20) is equivalent to the following system of eigenvalue problems: 

(20s) Gu — fi^u = 0, ueH8 

( 8 = 1 , 2 , . . . ) 

Set Vs = G(HS). It is easy to prove that 
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and that problem (19) is equivalent to the following system of eigenvalue 
problems: 

(19s) Lv — ?M)v = 0, veVs 

( s = L 2 , ...) 

Let A<f> <; A(|) <,...<, M$ <. ... be thejsequence of the eigenvalues of 
problem (198). Suppose we have obtained for the first ps > 1 eigenvalues 
of problem (19.) the following table of estimates (ts) 

(ts) . 

We suppose that the upper bounds «(£) have been computed by the Rayleigh-
Ritz method. That means that the £<|> are the roots of the determinantal 
equation 

det {(Lwty, ivty) - tyv(%), w(f))} = 0 (h, k = 1, . . . , ps), 

where w<J>, . . . , w%) are ps linearly independent vectors of Vs. 
The problem now arises. From\estimates of the tables (ts) is it possible 

to deduce estimates for the k-th eigenvalue X^ of problem (19)? 
In solving this problem we shall not make any assumption on the method 

used for computing the lower bounds dty. We only assume — without any 
loss - that d<*> ^ <5<|> :< . . . <, df. 

In order to consider a more concrete situation we shall assume that the 
tables (ts) are given only for s = 1, . . . , q (q > 1). Assuming that is necessary 
if the spaces Ils are infinitely many. For s > q we shall only suppose that we 
know a positive real number cs such that for any eigenvalue of (195) with 
s > q we have )S3j) > cs. Moreover lim cs = + oo, if the Hs are infinitely 

S-»oo 

many. 
For instance, in the case of the example II , considered in section 6 (circular 

clamped plate), it is possible to show that we may assume 
cs = 16(s + 1) (s + 2) (s + 3). 

Let us consider the two sequences {dlf)}, {e^)} (s = 1, . . . , g ; k = 1, 
. . . , ps). We shall denote by {<5̂ }, {eh} (h = 1, ...9m,m=p1+ . . . +pq) 
the sequences obtained from {6(f)} and {e^>}, respectively, by disposing all 
their elements in non-decreasing order. 

I t will be useful to introduce the function I = l(s, k) (s = 1, . . . , q; k = 1, 
. . . , ps), whose range is the set 1, . . . , m such that 

<W) = &$-
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This function is not unique if some of the numbers <5<£.> coincide. However 
we suppose to have chosen, amongst the possible ones, a well determined 
function I = l(s, k). 

Let us first consider the following lemma. 

Lemma XIII. Let h -> 5h and k -> Xk be two real vahied functions, the first 
defined for h = 1, . . . , m and the second for k = 1, . . . , n. Assume that m :> n 
and dx < d2 <, ... <, dm t 

K <> h <£ • • • <> *n. 
Let us suppose that there exists a function k -> qk defined for k = 1, . . . , n s^lch 
that 

I) gk is a positive integer and 1 <, qk < m, 
II) qt = qj for i ^j implies q% ^ n, 

III) h>dQk ( f c = l , . . . , n ) . 
Under the above hypotheses ^ve have 
(21) h > dk. 

Inequality (21) is obvious if qk > k. Let us suppose qk < k. It must exist 
an index s such that 1 < s <; k — 1, qs > k. In fact qs < k for any s ^ 
<k — I implies that there exist two indeces i, j such that i <,k, j <; fc, 
i ^= j , qt = qj < k < n. That contradicts hypothesis II). Existence of qs ;> k 
with s <, k — 1 implies Xk > Xs ;> dQt >. bk. 

Theorem XIV. Let b%) be such that bft :> 6$ for s = 1, . . . , q. We suppose 
that, if the spaces Hs decomposing S are more than q, then cs >. d$ for every 
s > q. Let n be the smallest integer such that dn = 6$. We have the following 
estimates for the first n eigenvectors of problem (19). '* 

dk<> h<,£k (h = 1, ...,n). 
Let us associate to every eigenvalue hk of problem (19) a unit vector vk 

such that 
Lvk — favk = 0, vke V, (vh, vk) = dhk. 

The sequence {vk} may be considered as the union of the subsequences {vlf} 
such that Lv§) - A<f>v<|> = 0, vty € Vs; 

{Mf} is the sequence of the eigenvalues of problem (19$). 
Let us consider for 1 <; k <i n the eigenvalue Xk. Suppose that vk = vty. 

We have Xk = A<£> ̂  dty if 1 ^ s ^ q and i <ps. We have Xk = A<?> .> 6n 

either if 1 <L s < q, % > ps or if s > q. Set 

f = Цв, i) if 1 
qk\=n i f l 

<.q, i<.ps 

<•<!, i >Ps or s > q. 
The functions h->dh, k -> A*, k->qk satisfy hypotheses of lemma XIII. 
I t follows that inequality (21) holds. 
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Let wl9 . . . , wm be the m vectors of V obtained by disposing in a unique 
sequence the vectors of the q sequences {wty} (s = I, . . . , q; i — 1, . . . . pi). 
The m roots of the determinantal equation 

det {(Lwu Wj) — X(wu Wj)} = 0 

(i,j = 1, ...,m) 

are et < e2 < . . . <, eM. From the theory of the Rayleigh-Ritz method it 

follows Ik < Sk (k = 1, . . . , m). 
The following tables show the estimates, which is possible to deduce (for 

the eigenvalues of a square plate and of a circular plate) from the estimates 
already known for invariant subspaces. In both cases the lower bounds and 
the upper bounds have been compared with the asymptotic values given by 
a formula due to R. Courant and A. Pleijel (Comm. on Pure and Applied 
Math. I l l , 1, 1950, p. 1 — 10). These numerical results suggest that the use of 
asymptotic formulas for the numerical evaluation of eigenvalues, even of rat­
her high index, could be misleading. 

Square plate 

lower upper asymptotic loiver upper asymptotic 
bouшl boшкl тalue bouшl boшиl value 

K 13.29376 13.29378 1.6211 A24 
1833 1875 933.77 

K 55.2982 55.29934 6.4845 ^25 2111.8 2155.6 1013.2 

K 55.2982 55.29934 14.590 Kь 2133.1 2161.2 1095.8 

K 120.2143 120.2232 . 25.938 Kl 2171 2242 1181.8 

'K 177.7113 177.7401 40.528 K 2171 2242 1270.9 

K 179.408 179.431 58.361 ^29 2560 2677 1363.3 

K 279.35 279.50 79.435 *30 2560 2677 1459.0 

K 279.35 279.50 103.75 ^31 3120 3244 1557.9 

K 454.37 454.99 131.31 ^32 3155 3282 1660.0 

KQ 454.37 454.99 162.11 ^зз 3158 3284 1765.4 

Kг 496.55 497.03 196.15 ^34 3306 3491 1874.0 

^12 601.488 601.983 233.44 ^35 3371 3506 1985.8 

^13 605.792 606.920 273.97 ^36 3371 3652 2100.9 

Ki 896.8 901.6 317.74 Kl 3398 3652 2219.3 

Kь 896.8 901.6 364.75 ^38 4037 4306 2340.9 

к% 976.13 979.59 415.01 ^39 4038 4317 2465.7 

!ц 977.64 981.25 468.50 ^40 4154 4716 2593.8 

^18 1180 1191 525.24 Åél 4154 4716 2725.1 

*19 1180 1191 585.23 *42 4556 5329 2859.6 

^20 1401 1415 648.45 ^k43 4556 5329 2997.4 

Kl 1569 1584 714.92 л44 
4582 5372 3138.5 

A22 
1577 1593 784.63 ^45 4582 5372 3282.8 

^23 1833 1875 857.58 
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Circular plate 

lower upper asymptotic lower upper asymptotic 
bound bound value boiшd bound value 

Һ 104.363 104.364 16 л 4 7 58870.7 58913.3 35344 

Һ 452.004 452.005 64 л 4 8 58870.7 58913.3 36864 

Һ 452.004 452.005 144 л 4 9 58973.7 58989.9 38416 

Һ 1216.40 1216.41 256 л 5 0 58973.7 58989.9 40000 

Һ 1216.40 1216.41 400 *51 60939.5 61012.2 41616 
Һ 1581.74 1581.75 576 hг 71103.5 71117.8 43264 
Һ 2604.06 2604.07 784 h* 71103.5 71117.8 44944 ' 

Һ 2604.06 2604.07 1024 h* 73627.7 73673.3 46656 
Һ 3700.11 3700.13 1296 hь 73627.7 73673.3 48400 
л 1 0 3700.11 3700.13 1600 h* 79602.4 79635.6 50176 
hl 4853.31 4853.33 1936 hi 79602.4 79635.6 51984 

hг 4853.31 4953.33 2304 hч 83526.1 83625.1 53824 
Л 1 3 7154.14 7154.23 2704 h* 83526.1 83625.1 55696 
h* 7154.14 7154.23 3136 Л 6 0 88482.2 88661.1 57600 

hь 7939.38 7939.55 3600 '.« S8482.2 88661.1 59536 
Л 1 6 8233.49 8233.57 4096 л 6 2 92426.2 -92452.6 61504 

h-, 8233.49 8233.57 4624 h* 92426.2 92452.6 63504 

h> 12325.4 12325.76 5184 л 6 4 99763.2 99857.0 65536 
Л 1 9 12325.4 12325.76 5776 л 6 5 99763.2 99857.0 67600 
Л 2 0 13044.2 13044.5 6400 h» 104914 104979 69696 
Л 2 1 13044.2 13044.5 7056 hi 104914 104979 71824 
Л 2 2 14418.2 14420.0 7744 hs 114314 114523 73984 
Л 2 3 14418.2 14420.0 8464 Л 6 9 114314 114523 76176 
Л 2 4 19615.1 19615.8 9216 ^70 118085 118113 78400 
Л 2 5 19615.1 19615.8 10000 '•71 118085 118133 80656 
л 2 6 19629.1 19630.3 10816 л 7 2 123047 123437 82944 
л2 7 

19629.1 19630.3 11664 ^ k 73 123047 123437 85264 

^28 23656.3 23659.1 12544 л 7 4 125786 126430 87616 
Л 2 9 23656.3 23659.1 13456 hь 131741 131921 90000 
л 3 0 25017.2 25022.3 14400 Л 7 6 131741 131921 92416 

> , i 28304.7 28306.3 15376 ;.„ 135509 135625 94864 
Л 3 2 28304.7 28306.3 16384 h* 135509 135625 97344 
Л 3 3 29513.3 29516.3 17424 л 7 9 148607 148686 99856 
Л 3 4 < 29513.3 29516.3 18496 л 8 0 148607 148686 102400 
Л 3 5 36207.4 36215.6 19600 ^81 152001 152403 104976 
Л 3 6 36207.4 36215.6 20736 л 8 2 152001 152403 107584 

'•з, 39500.6 39504.1 21904 л 8 3 165470 166243 110224 

' u 3 8 39500.6 39504.1 23104 л 8 4 165470 166243 112896 '• 
Л 3 9 39606.2 39622.3 24336 л 8 5 170265 170589 115600 
л 4 0 39606.2 39622.3 25600 •̂86 170265 170589 118336 

* . l 42457.8 42465.1 26896 h. 171901 172214 121104 
Л 4 2 42457.8 42465.1 28224 л 8 8 171901 172214 123904 
л 4 3 52658.5 52678.8 29584 л 8 9 172014 173224 126736 

Я44 52658.5 52678.8 30976 л 9 0 172014 173224 129600 

A45 53618.9 53626.1 32400 л 9 1 184542 184673 132496 , 
л 4 6 53618.9 53626.1 33856 л 9 2 184542 184673 135424 
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