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ACTA FACULTATIS RERUM NATURALIUM UNIVERSITATIS COMENIANAE 

MATIIEMATICA XVII - 1067 

ON THE TRANSFORMATION OF LINEAR HOMOGENEOUS 
DIFFERENTIAL EQUATIONS OF THE n™ ORDER 

Z. HusTtf, Brno 

We call the equation of the following form 

(0.1) J (?) at(x) y^'Hx) = 0, ate C0(Ix)y i = 0, 1, . . . , n, a0^k 0 in Il9 

i-=0 

a general homogeneous linear differential equation of the nth order. Instead 
of ~*'homogeneous linear diflFerential equation" we shall call it simply 
"equation". 

The equation (0.1) is normal (semi-canonical) [canonical] if a0 = 1 (ax s 0) 
\ax = a2 = 0], If at/a0 e C0vA)> i = 1, 2, . . . , n, then we call the equation 

(0.2) yW + | (?) (aija0)y^i) = 0 

the normal form of the equation (0.1). 
We call two equations quasi-identical if they have the identical range of 

definition and the same fundamental system of solution. We denote the 
quasi-identical equations by the sign = . F.i. (0.1) = (0.2). 

1. Perturbated equations. 

Let us have the equation 

(a) yW(x) + 2 (?) ««(*) Vl*-*><x) = 0, at e Cn-Ah), i = h 2, . . . , n 

Let u(x) be an arbitrary solution of the equation 

(u) u" + - ^ y (a2 - ai - a?) it = 0. 

We call the equation (u) the accompanying equation to the equation (a). 
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By (n -- 1) fold iteration of the equation of the first order 

(1.1) Px(y) = uy + [ap* - (n - 1) uu'] y = 0 

we obtain an equation of the nth order 

(1.2) Pn(y) = P.lPn-M] = u*n £ (?) /?(*!> «i) 2/(W"° = 
t-=0 

= u2nIn(y; al9 a2) = 0, 
where the function 

(1.3) ft(*i,<h)> t = 0, 1, . . . , n 

is for the given w a polynomial of the elements al9 a2oi the dimension i, which 
we obtain as a solution of a certain difference equation of the first order — 
see [1; pp. 39—48]. For instance there is 

fo(aV a2) = 1> fl(aV a2) = aV fl(aV <h) = a2> 

3 1 
f£(aV a2) = Y a2 — Y ^ + 3ai®2 ~~ 3 a^ a i _ 2(**' 

We call the polynomial fi(al9 a2) the iterated polynomial of the dimension i, 
the equation (1.2) we call an iterated equation. Let us note yet, that we take 
for an iterated equation every equation, which is quasi-identical with the 
equation (1.2). 

Put 

(1.4) < = at - /?(«!, a2), i = 3, 4, . . . , n. 

With the aid of (1.4) we can write this in the form 

(co) into; av a2) + f ( ? ) w « ^(n~° = °' 
i = 3 

where 7n(2/; %> #2) = 0 is the normal form of the equation (1.2). We call 
the function co™ the coefficient of perturbation of the dimension i of the 
equation (a), the equation (co) we call the perturbated form of the equation 
(a) or the perturbated equation of the equation (a,), briefly the perturbated 
equation. 

The following can be proved — see [1; pp.50] 

Theorem 1. The equation (a) is iterated just then when its fundamental system 
is the function 

•J— Jaids\' (1.5) t^-friT*-1 exp \—ja1 d8[, x0 e Il9 k = 1, 2, . . . , ra, 

where u and v are linearly independent solutions of the equation (u). 
The perturbated equation (co) comes in handy for the study of the asymptotic 
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and oscillatory properties of the equation (a). We give at least two examples 
on the understanding that the equation (a) is semi-canonical in the interval Ix ss 

3 
= \#o> °°)> i-e- «i = 0 in Iv Let us put for the sake of simplicity A = — — a2. 

n -\" l 
E x a m p l e 1. Let the following assumptions hold: 

(1.6) AW = 0(1), r = 0, 1, . . . , n - 5, 

í 
Ł5, 

x-u\Ax* + ec2| dæ < oo, c > 0, « < — , (c, s є Bx), e = ± 1 , 

j x^^+i-^loiH dx < oo, fc = 3, 4, . . . , » ; i = 0, 2, 3, ...,n — k. 

Hence the equation (a) has in the case of e = 1 the fundamental system 

exp {0(n - 2v + 1) a1--*} [1 + o(l)], v = 1, 2, . . . , n, 

in the case e = —1 

[sin (|8.r---»)]»-*[oos (fa1-**)]"-1 + o(l), v = 1, 2, . . . , n, 

where jS = see [2; pp. 184]. 
x ~~— &s 

For s = 0 we obtain the following statement: 
Let the following hold: formula (1.6), 

oo oo 

j \A + ec2\ dx < oo, f |a>2| da; < OO, fc = 3, 4, . . . , n. 
xO 2*0 

Then the equation (a) has in the case e = 1 the fundamental system 

ec{n-2v+i)z[i + o ( 1 ) ] ) v = l , 2 , ...,n, 

and in the case of e = — 1 

[sin cx\n-*[coa cx]v-x + o(l), v = 1, 2, . . . , w. 

E x a m p l e 2. Let o>J£ ^ 0. If the equation (u) is oscillatory, then every 
solution of the equation 

(1.7) Infa 0, a2) + co%f = 0, 

which has at least one zero point oscillates, too. If n is even, then the equation 
(1.7) is strictly oscillatory. 

We note yet that M. GREGUS dealt in his paper with the properties of the 
integrals of the equation 

(1.8) In(y; 0, 0) + nco^y' + co»y = 0 

— see [21]. 
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2. Transformat ion 

We denote by the symbol m(Ilx) where 0 z£llx<z / i the set of the elements 
which are defined as follows: The ordered pair of functions {T(x), u(x)} is an 
element of the set m(Ilx) if 

T(x) e Cn^(Ilx), u(x) e Cn(Ilx), T'(x). u(x) ^ 0 in Ilx. 

Let us choose an arbitrary element {T(x)9 u(x)} em(IlX). If we put into 
the equation (a) 

y(x)=.u(x)Z(x), t = T(x), 
we have the equation 

(a) u(x) [T'(x)]n[zW(t) + f (?) oi(Q «(»-0(*)] = 0, tel2t = T(IIX), 
£-=-1 

where we put x = T~x(t) [T-X(t) is the inverse function to the function T(x)], 
z(t) = Z[T~x(t)]. We call the equation (a) the image\of the equation (a) in the 
interval Ilx with the coordinates}T(x), u(x) and we denote it by the sign (a) 
{T(x), u(x)}. I t can be proved that in the interval I2t the following relations 
hold 

5iW = lT'(z)Y* J (i) **(*) «fcifo(*). «*)], * = 5T-i(0, i = 0,l, ...,n, 
k=o 

where ?? = T"\T'9 £ = w'/^ a r e *^e transformed coordinates of the image 
(a) {T(x), u(x)} and 

*£Ul> 0 = 2 (£» 9#7 fa) »-*(£). 

see [3; 3,1.10], The function yjr/resp. /J-A, is the polynomial of the element 
r\ resp. £ of the dimension i — j resp. j — £. We obtain both functions 
as a solution of certain linear difference equations of the first order — see 
[3; (2,1.6), (2,2.3)]. The difference equation which satisfies the polynomial % 
is specially simple and therefore wTe Avrite it here: 

»(f) = f**-i(f) + fot-i(f)],' Zo(f) = 1. 
From this follows f.i. yA(0 = f, #2(f) = f- + f', and so on. 

We introduce yet some explicit polynomials: <PQ(I]) = 1, 

m, . m—1 „ . . rri — 2 l3m —5 , , A 
VT(»7) = —g—»7 . ??(»?)= — 3 — ^ J i . 2 + > ? ] , 

<W»7. f) = 1. *?''(».. f) = - ^ 1? + f, 

tfj-'fo. f) = (» ~ »*) p r e - ^ + % 2 + ^.^ + ^fJ+ fi + f'. 
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By the symbol oa(IlX) [pa(Ilx)] {ka(lix)} we denote the set of all images 
[semi-canonical images] {canonical images} of the equation (a) in the interval 

If we choose 
l - n r x \ 

(2.1) U(x) = c\T(x)\ 2 e x p j — / ^ d a k 0^ceEt, 

then the image (a) {T(x), U(x)} e oa(Ilx) is semicanonic. As the semicanonicai 
image is following (2.1) determined by the coordinate T(x) we write instead 
of (a) {T(x), U(x)} epa(Ilx) in a shorter way (a) {T(x)} epa(lix). 

We call the image (A) {x} epa(It) the fundamental semicanonic image or 
also the semi-canonical fundamental form of the equation (a). 

If we put 

(2.2) M = 2 (&) am-k(~ai)> t = 2, 3, . . . , n, x e Iv 
k-=o 

then we can write the semicanonicai image in the form 

(A) U±(x) \zW(x) + I (?) Ai(x) Z(»-*>(*)1 = 0, 
L i»2 J 

where Ux(x) = c . exp j — /a x dsk 0 ^ ceEv 

We call the function (2.2) the fundamental coefficients of the equation (a). 
Let us put 

(2.3) ft(At) =/P(0, A2), i = 0, 1, . . . , n, 

(2.4) In(Z; A2) = I (?) /?(42) £<«-*>, 
i=0 

Ol = At-ft(A%)9 t = 3,4, . . . , n . 
There is for instance 

ft(At) = 1, A ^ 2 ) = 0, /2-(42) = 4 t f 

(2.5) fS(A2) = - | ^ , /s(4 t) = ~A;+ *j£+^ ^ . 

Let us introduce yet the formula (2.4) for n = 3, 4: , 

(2.6) 7,(y; A2) = y'" + 3A^' + - | A& 

(2.7) J4(y; A2) = yW + 6A2*," + 6A^ ' + - | (A"2 + | - At) *,. 

Then we can write the normal form of the equation (A) in the perturbated 
form 
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(Q) In(Z;A2)+ 2(")*-?2<»-i> = 0. 
1 = 3 

We call the function f$(A2) resp. Of the fundamental iterated polynomial — 
briefly the fundamental polynomial — resp. the ftmda?nental semiinvariant of 
the dimension i of the equation (a). We call the equation (Q) the perturbated 
fundamental semicanonical form of the equation (a) or briefly the perturbated 
fundamental equation. 

We introduce the perturbated fundamental equations of the order 3 and 4 
3 

in their most often occurring.arrangements. If we put A = — A2, co3 = 
3 

= (o% = A z A2 we obtain with the aid of (2.5), (2.6) the perturbated 
fundamental equation of the 3d order in the form 

y'" + 2Aj,' + {A* + <x*)y = 0. 

3 / 3 , \ 
If we put A — -r- A2, co3 = 4(o% = 4 N 3 — A2 I, o>4 = o>J = -44 — 

9 / 9 \ 
—™ \A2 + — A\ I, we obtain with the aid of (2.5), (2.7) a perturbated 

fundamental equation of the 4'* order in the form 

yW + lOAy" + (1QA' + co3) y' + [3(A" + 3A*) + oij y = 0, 

see f.i. [17; pp. 511-3-26, pp. 528-4-11], [20], [11], [7]. 
Between the functions (2.3) and (1.3) resp. (2.5) and (1.4) hold the following 

relations: 

ft(At) = 2 (l)/2(«i, <h) *.-*(-«i) , » = 3, 4, . . . , n, 
&-o 

O? = 2 (*) <Xi-k(-«i), i = 3, 4, . . . , n, 
fc=0 

see [6; (2.5)]. 
The seniicanonic image (A) {T(x)} epa(lix) can be written in the form 

(A) U(x) [T'(x)n~Jn)(t) + 2 (?) At(t) s(»-«)(0] = 0, a; = T - ^ ) , where 

(2.8) Ai(t) = [-"'(a?)]-1 2 té) -^(«J 0 H M > * = ^ i W - » = 2, 3, . . . , n, 
A=0 

where the functions Ajc, k = 2, 3, . . . , n are the fundamental coefficients of 

the equation (a), A0 = 1, A2 == 0, 0&(w) = « ^ U - - - ^ i 17) and (2.1) 

holds, see [3; 3, 2.15]. 
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If the function T(x) is in the interval I1X the solution of the equation 
{T, x} = (3jn + 1) A2 [the symbol {T, x} stands for the SCIIWARZ derivative 
of the function T(x)]9 then the image (A) {T(x)} epa(lix) is canonical and it 
can be written in the form (A) where (2.1), (2.8), A2 == 0 hold and 

— see [3; 3, 3.5]. The function Ff **** is the polynomial of the element A2 of 
the dimension g, which is defined like the polynomial 0£4 — see [3; 2, 3.4]. 

If the equation (a) is canonical, i.e. if ax = a2 = 0, then the canonical image 
(a) {-T(a;)} e £a(-Ji#) is of the form 

(a) E72(z) [T'(aO]n*w(0 + f (? (5«(t) »<*-«>(*)] = 0, a; = 2^(0, 
i - 3 

where 

<72(tf) = c\T(x)\ * , 0 * c e El9 . 
* - 3 

(2.10) 5,(0 = [-T'(a;)]^y [>,(*)]* ( — } ) ' (J) (*?) v! at-r{x)9 

v = 0 

* = 3, 4, . . . , », a; = T-^t). 

The function Tfsc) is in the interval I1X the solution of the equation {T, x} = 0, 
see [3; 3, 3.6]. 

We shall introduce yet the perturbated forms of the images of the equation 
(a). 

The equation 

(co) uT'*[In(z; av a2) + f (f) wf(t) *<»-«>(«)] = 0, 
i = 3 

where , 
«x = ( T r W ' 1 ^ 0 + aj, 

«2 =- (T')-2[^'2(»?» C) + 2^»2(»?, f) a. + o j , 

I«(z; %, a2) = 2 (?)/? («i, «2) z{n-{), 
i = 0 

^(a., a2) = (2")~« 2 ( M K , a2) 0&fa, f), .' = 0, 1, . . . , n, 
k=0 

S? = (T')-f 2 (i) ajtf&fa, f), i = 3, 4, . . . , n, 
Jfc-3 

is the perturbated form of the image (a) {T(x), u(x)} e oa(/ia;). The equation 
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(--)"' UT'n[In{z; Az) + 2 (?)-0?~(»-*> = 0, 
t = 3 

where 

4-<H-±-(-ì--.-''M 
Iя(2; Ą) = Z(«> + | (J)/f(Ą) -0.-0, 

ѓ=-.2 

ЛЧ-í2)=TП-<І/î.(A2)Ф?4(>г), k=0 

й> = (TГ<Iй)ß2Ф£Ш, 
k = 3 

is the perturbated form of the image (A) {T(x)} epa(I\x)-

If the function T(x) is the solution of the equation {T, x} = —^--r A2J 
Tb -j— 1 

then the equation (Q) is the perturbated form of the canonical image 
(a) {T(x)} e ka(lix), where we put A2 == 0, In(z; 0) = z&), 

i i-k 

flfr = i\{n - •)! (T')-< ^ ^(n-jb). °- 2 ^^^'^ &)• 
k-=3 e ==o 

Between the polynomials (2.3) and F^^(A2) hold the relations 
V 

2 k\{n-k)\fl{Ai) F^A^ = °' » = 0, 1, ..., i, t = 3, 4, ..., n. 
k = 0 

3. Equivalence 

The notion of equivalence is an important notion in the theory of linear 
differential equations. " "* 

Let us have the equation 
n 

(b) «<»>(*) + 2 (T)6i(0 s<«-f)(«) = 0, 6i e o„-f(/2), i -= 1, 2, . . . , n 
t = l 

and let Ob(I2t) be the set of the images of the equation (b) in the interval 
0 -^ I2t c= 72. 

We say that the sets o a(/ l i r), o&(/2f) are quasi-identical denoted by the sign 

(3.1) oa(Ilx) = ob(I2t), 

if every element of the set oa(Ilx) is quasi-identical with one of the elements 
of the set 0&(/2t)- The relation (3.1) is reflexive, symmetrical and transitive 
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and holds just when at least one element of the set oa(Ilx) is quasi-identical 
with some of the elements of the set Ob(I2t). 

If (3.1) holds, then we say that the equations (a), (b) are in the intervals 
1\x'i I it equivalent and we denote it by 

{K)Ilx~{b)Itt{T(z)}, 

where T(x) is the first coordinate of the image (a) e oa(Ilx), which is in the 
interval I2t quasi-identical with the equation (b) so that T(I1X) = I2t holds. 
We call the function T(x) the carrier of the equivalence of the equation (b) 
to the equation (a). 

The second coordinate u(x) of the image (a) is given by the formula 
1 — n x 

u(x) = c\T'\~exp {S(bjT(8)] T'(s) - ax(s) ) ds}. 

With the aid of the relations (2.10) the necessary and sufficient conditions 
for the equivalence of the canonical equations can be proved. 

n 

(<x) yi*)(x) + 2 (?) «.(*) y{n~Hx) = 0, one o«-f(/i), i = 3, 4, . . . , n, 

(P) z(B)(0 + I (?) W) z(n-l)(t) = 0, Pi 6 Cn-{(I2), i = 3, 4 n. 
1 = 3 

Let us denote 
# 3 ( a 3 / = a 3 

i 
(3.2) 0,(a8f . . . , at) = 2 ( - l ^ C j a r t f - i l , t = 4, 5, . . . , n, 
where 

r == 3, 4, <« --=CT-T2)(:)/(f-3#). 
The formula (3.2) is quoted in the literature as the formula of BRIOSCHI, 

see [16; p. 197], [18; p. 35], [5; 3.7]. Then holds 

Theorem 2. (a) I1X ~ (/?) I2t{T(x)} o 0i{PJLT(z)], . . . , Pi[T(x)]} [T'(x)V = 
— ^(^3- • • - • v.i), i = 3, 4, . . . , n, x e I1X, where T(x) is the solution of the 
equation {T, x} = 0. See [5; 2.1]. 

The function #j(a3. . . . , a/) is the canonical invariant of the equation (a) of 
the dimension and weight i. As it is a polynomial of the first order it is also 
called the linear invariant. 

With the aid of the theorem 2 and with the aid of the relations (2.8), 
(2.9) the necessary and sufficient conditions for the equivalence of the equations 
(a), (b) can be proved. 
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Let us denote 
i 

(3.4) 0f(A2, ...9At)=2 C*V?'r.i-riA . . . , At), i = 3, 4, . . . , i, 
r = 3 

where the constants Cj; are determined by the formula (3.3) and ¥ff*r-*-f is 
the polynomial of the elements A2, ..., Ai of the dimension i, which satisfies 
a certain linear difference equation of the first order — see [5; (1.6)]. Then 
the theorem 3 holds. 

Theorem 3. (a) I1X ~ (b) I2t{T(x)} o 0?{B2[T(x)], . . . , Bt[T(x)]} . [T'{x)]* = 
= 0f(A2, . . . , Ai), i = 3, 4, . x., n, x e I1X, where Ai resp. Bt, i = 2, 3, . . . , n 
are the ftmdamental coefficients of the eq^lation (a) resp. (b) and the ftmction 
T(x) is the solution of the equation 

{T, x} + - ^ - j B2[T(x)] . [T'(xW = ^ p j A2. 

See [5; 3.3]. 
The function &i(A2, ..., Ai) is the ftmdamental invariant of the eq^catio?l (a) 

of the dimension and voeiqht i. 
The theorem 3 is stated without proof and inexactly in [16; p . 191]. 
Between the functions cof and 0f hold the following relations: 

(3.5.) Of == 0, j = 3 , 4 , . . ,,iocof = 0, j= 3 , 4 , . . . ,i; 
i = 3 9 4 , . . . , n. 

From these relations follows 

Theorem 4. The equation (a) is iterated just then when all its ftmdamental 
invariants are identical to zero. 

In [16; p . 204—205) is quoted without proof the theorem of F . BRIOSCHI 

which is a special case of the theorems 1 and 4: If all the fundamental in
variants of the equation (a) are identical to zero, then the equation (a) has 
a fundamental system of the form (1.5). 

The first non-zero coefficient of the perturbation of the equation (a) is 
a fundamental invariant, which means that if (3.5) holds, then 

0\+x ^ 0 o wJ|+1 ^ 0 ' and a t the same time 0?!+i= <*>lfi-

Theorem 5. Let Ix = I2. The equations (a), (b) are mutually adjoint if and 
only if the relations 

0?(B2, ...,Bt) = (-l)*e?{At, ..., Ai), i = 3, 4, . . . , n. 

See [10; 1.18]. 

Corollary: Let (A) {T(x)} epa(Ilx). The normal form of the equation (A) is 
a self-adjoint eq^lation just ivhen 
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&l,+1(Az, ...,-40 = 0, v = 1, 2, . . . , £------] , * e /,*. 

See [10; 2.9]. 
From the corollary of the theorem 5. follows this statement: If all the 

fundamental invariants with odd indices of the equation 
П 

y{n) _j_ ^ I 1 a i y(n-i) = 0 

are identical to zero, then this equation is self-adjoint. This theorem is 
mentioned without proof in [16; p. 224] and [18; p. 235]. 

It seems that it is convenient to introduce the notion of the genus of homo
geneous linear differential equations. 

Let 2 ^ k g n be a natural number. If 

6f(A2, ...,At) = 0, j = 3, 4, . . . , n + 2 - k, ©£+,-* ̂  0 

(for k = 2 we put 0^+x = 0), we say then that the equation (a) is of the 
genus k. 

The theorem 6 holds. 

Theorem C. The equation (a) is of the same genus k if and only if the equation 
n n 

I«(y;«1«2)+ 2 (?) oi?y<»-«> = 0, to„43_fc^0, 2 = 0 
i=n-r3-k i = tt + l 

is the perturbated form of the equation (a). See [6; (3.1)]. 
We take note that under the assumption coll ̂ k 0 resp. co'J--. ^ 0 is the 

equation (1.6) resp. (1.7) of the genus 3 resp. 4. 
From the theorem 5 (corollary) follows that the self-adjoint equation of the 

nth order can be of the genus not higher than (n — 1). The iterated equations 
are of the genus 2. The equation (a) is not of a higher genus than 3 if its canoni
cal image is a binomial equation. 

Many of the properties which hold for the equations of the second order 
hold also for the equations of the nth order of the genus 2. I t can be expected 
that some of the properties of the kth order will hold also for the equations 
of the nth order of the genus k, i.\. see [8]. 
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