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Abstract. The article presents basic numerical analysis of equations
in the phase-field model which is performed using a FDM semi-discrete
scheme. The compactness technique allows to prove convergence of the
scheme. Simultaneously, existence and uniqueness of weak solution to
the original system is shown. Additionally, the asymptotical behaviour
of the solution with respect to the small parameter ξ is studied. Both
temperature and phase fields converge in certain sense if ξ → 0. The
phase field gives rise to a step-wise function indicating the presence of
different phases.
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1 Introduction

The paper contains several remarks concerning basic analysis of the standard
form of phase-field model. The system of equations in question reads as follows:

∂u

∂t
= ∇2u+ L

∂p

∂t
,

αξ2 ∂p

∂t
= ξ2∇2p+ f0(p)− βuξ ,

(1.ben)

with initial conditions

u |t=0= u0 , p |t=0= p0 ,

and with boundary conditions of Dirichlet type

u |∂Ω= uΩ , p |∂Ω= pΩ ,

where L, α, β, ξ are positive constants, Ω is a bounded domain in Rn and f0

derivative of a quartic potential. For the sake of simplicity, we will consider rect-
angular form of Ω in 2D, f0(p) = ap(1− p)(p− 1

2 ) with a > 0 and homogeneous
boundary conditions.

This is the final form of the paper.

http://kmdec.fjfi.cvut.cz/~benes
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Such a system of equations has been studied by many authors throughout
last decade (see, e.g. [5], [5], [1], [8], [16], [13], [10]). In the physical context,
the system (1.ben) is treated as a regularization of the modified Stefan problem
describing microstructure formation in solidification of a pure substance if ξ → 0,
see [7], [2]:

∂u

∂t
= ∇2u in Ωs and Ωl , (2.ben)

u |∂Ω= uΩ , (3.ben)
u |t=0= u0 , (4.ben)

∂u

∂n
|s −

∂u

∂n
|l= −LvΓ , (5.ben)

6

√
2
a
βu = −κ+ αvΓ , (6.ben)

Ωs(t) |t=0= Ωso , (7.ben)

where Ωs, Ωl are solid and liquid phases, respectively, L is latent heat per unit
volume, melting point is 0, u temperature field. Discontinuity of heat flux on
Γ (t) is described by the Stefan condition (5.ben), the formula (6.ben) is the Gibbs-
Thompson relation on Γ (t). The parameter α is the coefficient of attachment
kinetics. Following [2], the relation of (1.ben) and (2.ben)–(7.ben) is studied using asymp-
totical analysis. The article presents the following results: convergence of the
semi-discrete scheme, existence and uniqueness of the original system of equa-
tions, and convergence towards the sharp-interface state.

2 Interpolation theory for grid functions

The analysis of the system (1.ben) concerning the existence and uniqueness of the
weak solution is performed using a semi-discrete scheme based on finite differ-
ences. The following notations are introduced (see [15]):

h = (h1, h2) , h1 =
L1

N1
, h2 =

L2

N2
, xij = [x1

ij , x
2
ij ], uij = u(xij), (8.ben)

ωh = {[ih1, jh2] | i = 1, . . . , N1 − 1; j = 1, . . . , N2 − 1} , (9.ben)

ω̄h = {[ih1, jh2] | i = 0, . . . , N1; j = 0, . . . , N2} , (10.ben)

γh = ω̄h − ωh , (11.ben)

ux̄1,ij =
uij − ui−1,j

h1
, ux1,ij =

ui+1,j − uij
h1

, (12.ben)

ux̄2,ij =
uij − ui,j−1

h2
, ux2,ij =

ui,j+1 − uij
h2

, (13.ben)

ux̄1x1,ij =
1
h2

1

(ui+1,j − 2uij + ui−1,j) , (14.ben)
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and

∇̄hu = [ux̄1 , ux̄2 ], ∇hu = [ux1 , ux2 ], ∆hu = ux̄1x1 + ux̄2x2 , (15.ben)

If Hh = {f | f : ω̄h → R} is a set of grid functions, the following notations will
be used (f, g ∈ Hh) :

‖f‖ph =

(
N1−1,N2−1∑

i,j=1

h1h2|fij |p
) 1
p

for p > 1 , (16.ben)

(f, g)h =
N1−1,N2−1∑

i,j=1

h1h2fijgij , ‖f‖2h = (f, f)h , (17.ben)

(f1, g1c =
N1,N2−1∑
i=1,j=1

h1h2f
1
ijg

1
ij , ‖f1c|2 = (f1, f1c , (18.ben)

(f2, g2e =
N1−1,N2∑
i=1,j=1

h1h2f
2
ijg

2
ij , ‖f2e|2 = (f2, f2e , (19.ben)

(f ,g] = (f1, g1c+ (f2, g2e , ‖f ]|2 = (f , f ] , (20.ben)

where f = [f1, f2] and g = [g1, g2].
Referring to [2], we recall the following formulas

– Green formulas

(f, gx̄1x1)h = −(fx̄1 , gx̄1c+
N2−1∑
j=1

(fgx̄1 |N1,j −fgx1 |0,j)h2, (21.ben)

and

(f, gx̄2x2)h = −(fx̄2 , gx̄2e+
N1−1∑
i=1

(fgx̄2 |i,N2 −fgx2 |i,0)h1, (22.ben)

In a natural way, we define the space

lp(ωh) = {Hh | ‖ · ‖ph} . (23.ben)

– Poincaré inequality. Let u ∈ l2(ωh) and u |γh= 0. Then

‖u‖2h ≤ C(Ω)[ ‖ux̄1c|2 + ‖ux̄2e|2 ] . (24.ben)

We continue by introducing an extension of grid functions, so that they are
defined almost everywhere on Ω. Such extensions are studied by the usual tech-
nique of Lp and Hk spaces. The approach of [14] is adopted for the equations
in question. The limiting process requires a refinement of the FDM grid ω̄h, if
h → 0. For this purpose, a proper metric should be chosen. If we intent to use
the compactness technique, a mapping converting a grid function fh : ω̄h → R
into a function f : Ω → R is needed. Then, the norm of Lp spaces will serve as
a metric for convergence of the numerical scheme.
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Definition 1. Be ω̄h an uniform rectangular grid imposed on a domain Ω ⊂ R2.
Let h = [h1, h2] is the mesh size. Then, the dual grid is a set

ω̄∗h =
{
Σij ⊂ Ω̄ | Σij =(

x1
i −

h1

2
, x1
i +

h1

2

)
×
(
x2
j −

h2

2
, x2
j +

h2

2

)
∩ Ω̄ for [x1

i , x
2
j ] ∈ ω̄h

}
.

The dual simplicial grid is a set

ω̄∗sh = ω̄∗/h ∪ ω̄∗.h , (25.ben)

with

ω̄∗/h = {Σ/
ij ⊂ Ω̄ | Σ/

ij = [xi,j , xi−1,j , xi,j−1]κ ∩ Ω̄ for [x1
i , x

2
j ] ∈ ω̄h} ,

ω̄∗.h = {Σ.
ij ⊂ Ω̄ | Σ.

ij = [xi−1,j−1, xi−1,j , xi,j−1]κ ∩ Ω̄ for [x1
i , x

2
j ] ∈ ω̄h} ,

where [ ]κ denotes the convex hull.

Remark 2. Consequently,
⋃
Σ∈ω̄∗

h
Σ = Ω̄ - the system ω̄∗h covers the domain Ω.

Each (rectangular) set Σ ∈ ω̄∗h has the point [x1
i , x

2
j ] in its center. Similarly, the

system ω̄∗sh also covers Ω̄.

Definition 3. Let Hh be a set of grid functions on ω̄h. Define the following
mappings:

– Qh : Hh → C(Ω̄) such that for each u ∈ Hh

(Qhu)(x1, x2) = ui−1,j−1 +∇huh,i−1,j−1 · [x1 − x1
i−1,j−1, x

2 − x2
i−1,j−1] ,

if [x1, x2] ∈ Σ.
ij , Σ

.
ij ∈ ω̄∗.h ;

(Qhu)(x1, x2) = uij + ∇̄huij · [x1 − x1
ij , x

2 − x2
ij ] ,

if [x1, x2] ∈ Σ/
ij , Σ

/
ij ∈ ω̄∗/h .

– Sh : Hh → L1(Ω) such that for each u ∈ Hh

(Shu)(x1, x2) = uij ,

if [x1, x2] ∈ Σij , Σij ∈ ω̄∗h;
– Ph : C(Ω̄)→ Hh such that for each u ∈ C(Ω̄)

(Phu)ij = u(xij) ,

if xij ∈ ω̄h.

Remark 4. The operator Ph is linear and continuous from C(Ω̄) to Hh, and can
be extended to H1(Ω) via density argument.Qhu is a continuous piecewise linear
function, ∇(Qhu) exists a.e. in Ω. We proceed by determining basic properties
of the above defined maps as proven in [2]:
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1. If u, v |γh= 0 the scalar product coincides with the scalar product in l2(ωh)∫
Ω

ShuShvdx = (u, v)h . (26.ben)

2. Let ωh is a grid on the domain Ω with the mesh h, let u, v ∈ Hh is such that
u, v |γh= 0. Then

(∇(Qhu),∇(Qhv)) = (∇̄hu, ∇̄hv] . (27.ben)

3. Let ωh is a grid on the domain Ω with the mesh h, let u ∈ Hh. Then

‖Qhu‖L2(Ω) ≤ ‖Shu‖L2(Ω) . (28.ben)

4. Let ωh is a grid on the domain Ω with the mesh h, let u ∈ Hh, u |γh= 0.
Then ∫

Ω

|Qhu− Shu|2dx ≤
|h|2

6
‖∇̄hu]|2 , (29.ben)

if u |γh= 0.
5. Let p ∈ C0,ν(Ω), ν ∈ (0, 1). Then,

Sh(Php)→ p in Ls(Ω), if h→ 0 , (30.ben)

for s > 1.
6. Let u ∈ H1

0(Ω) ∩H2(Ω). Then

Qh(Phu)→ u (31.ben)

in H1(Ω), if h→ 0.
7. Let p ∈ C2(Ω) and p |∂Ω= 0. Then

∇(Qh(Php))→ ∇p , (32.ben)

in L2(Ω), if h→ 0.

3 Main result

In this section, we give a proof of existence and uniqueness of the solution to
(1.ben) regardless on values of coefficients. Compared to [5], we get a more general
result. Similar procedure has been presented in [3].

Definition 5. Consider a bounded domain Ω ⊂ R2, T > 0. The classical solu-
tion of the system of phase-field equations is a couple of functions

[u, p] : 〈0, T 〉 × Ω̄ → R2 ,
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satisfying the equations

∂u

∂t
= ∇2u+ L

∂p

∂t
in (0, T )×Ω

u |∂Ω = 0 , t ∈ (0, T ) ,

u |t=0 = u0 in Ω ,

αξ2 ∂p

∂t
= ξ2∇2p+ f0(p)− βξu in (0, T )×Ω ,

p |∂Ω = 0 , t ∈ (0, T ) ,

p |t=0 = p0 in Ω .

(33.ben)

Remark 6. The form of the phase-field equations is referred to [5]. For the sake
of simplicity, we consider a 2-D rectangular domain and homogeneous boundary
condition. Obviously, the extension to higher dimensions, and to other boundary
conditions is possible. Let [u, p] is a classical solution such that u, p ∈ C2(〈0, T 〉×
Ω̄) and let v, q ∈ D(Ω). Multiplying the first one of equations (1.ben) by v and the
second one by q (scalar product in L2(Ω)), and using the Green formula, we get

d

dt
(u, v) + (∇u,∇v) = L

d

dt
(p, v) a.e. in (0, T ) ,

u(0) = u0 ,

αξ2 d

dt
(p, q) + ξ2(∇p,∇q) = (f0(p), q)− βξ(u, q) a.e. in (0, T ) ,

p(0) = p0 .

(34.ben)

This leads to the next definition:

Definition 7. Weak solution of the boundary-value problem for the phase-field
equations is a couple of functions [u, p] from (0, T ) to [H1

0(Ω)]2 such that it
satisfies (34.ben) for each q, v ∈ H1

0(Ω).

The term f0(p) requires that p ∈ L4(Ω) for almost all t ∈ (0, T ). As Ω ⊂ R2,
it suffices to take p ∈ H1

0(Ω) for almost all t ∈ (0, T ) due to the continuous
imbedding into Lq(Ω) for each q ∈ (1,+∞). If

[u, p] ∈ [L∞(0, T ; H1
0(Ω))]2 ,

[u, p] is continuous mapping from 〈0, T 〉 to H−1(Ω), as shown in [11]).
Next statement gives an information about the existence and uniqueness

of the solution to (34.ben); the proof by its virtue contains the investigation of
convergence of a semi-discrete scheme based on method of lines.

Theorem 8. Consider the problem (34.ben) in a rectangular domain Ω = (0, L1)×
(0, L2), where

u0, p0 ∈ H2(Ω) ∩H1
0(Ω) .
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Then, there is a unique solution of the problem (34.ben) satisfying

u, p ∈ L∞(0, T ; H1
0(Ω) ∩ H2(Ω)) ,

∂tu, ∂tp ∈ L2(0, T ; L2(Ω)) .

Proof. The proof is constructive. Cover Ω by an uniform grid with the mesh
h = [h1, h2], use the previously introduced notations. Consider the semi-discrete
scheme

u̇h = ∆hu
h + Lṗh on (0, T )× ωh ,

uh |γh = 0 ,

uh |t=0 = Phu0 on ω̄h ,

αξ2ṗh = ξ2∆hp
h + f0(ph)− βξuh in (0, T )× ωh ,

ph |γh = 0 ,

ph |t=0 = Php0 on ω̄h .

(35.ben)

where dot denotes the time derivative. In the proof, the major role is played by
the a priori estimate for both equations in question. Multiply the first one of
equations (35.ben) by u̇h, and the second one by ṗh; sum over ωh.

‖u̇h‖2h +
1
2
d

dt
‖∇̄huh]|2 = L(ṗh, u̇h)h ,

αξ2‖ṗh‖2h + ξ2 1
2
d

dt
‖∇̄hph]|2 = (f0(ph), ṗh)h − βξ(uh, ṗh)h .

(36.ben)

Using Schwarz and Young inequalities, we get
1
2
‖u̇h‖2h +

1
2
d

dt
‖∇̄huh]|2 ≤ 1

2
L2‖ṗh‖2h ,

1
2
αξ2‖ṗh‖2h + ξ2 1

2
d

dt
‖∇̄hph]|2 ≤ − d

dt
(w0(ph), 1)h +

β2

2α
‖uh‖2h .

(37.ben)

Combining these estimates, we have

1
4
αξ2‖ṗh‖2h +

αξ2

4L2
‖u̇h‖2h +

αξ2

4L2

d

dt
‖∇̄huh]|2 + ξ2 1

2
d

dt
‖∇̄hph]|2 +

+
d

dt
(w0(ph), 1)h ≤

β2

2α
‖uh‖2h . (38.ben)

Using the discrete Poincaré inequality (24.ben)

‖uh‖2h ≤ C(Ω)‖∇̄huh]|2 ,

and adding non-negative terms on the right-hand side,

1
4
αξ2‖ṗh‖2h +

αξ2

4L2
‖u̇h‖2h +

αξ2

4L2

d

dt
‖∇̄huh]|2 +

+ ξ2 1
2
d

dt
‖∇̄hph]|2 +

d

dt
(w0(ph), 1)h ≤

≤ 2β2L2

α2ξ2
C(Ω)

{αξ2

4L2
‖∇̄huh]|2 + ξ2 1

2
‖∇̄hph]|2 + (w0(ph), 1)h

}
. (39.ben)
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Integrating over (0, t), we have{αξ2

4L2
‖∇̄huh]|2 + ξ2 1

2
‖∇̄hph]|2 + (w0(ph), 1)h

}
(t) ≤{αξ2

4L
‖∇̄huh]|2 + ξ2 1

2
‖∇̄hph]|2 + (w0(ph), 1)h

}
(0) exp

{2β2L2

α2ξ2
C(Ω)t

}
,

(40.ben)

which implies
∇̄huh, ∇̄hph ∈ L∞(0, T ; l2(ωh)) ,

ph ∈ L∞(0, T ; l4(ωh)) .

Integrating the preceding result over (0, T ) again, we get∫ T

0

{αξ2

4L2
‖∇̄huh]|2 + ξ2 1

2
‖∇̄hph]|2 + (w0(ph), 1)h

}
(t)dt ≤

≤
{αξ2

4L
‖∇̄huh]|2 + ξ2 1

2
‖∇̄hph]|2 +

+ (w0(ph), 1)h
}

(0)
1

2β2L2

α2ξ2 C(Ω)

{
exp
(2β2L2

α2ξ2
C(Ω)T

)
− 1
}

, (41.ben)

which implies
∇̄huh, ∇̄hph ∈ L2(0, T ; l2(ωh)) ,

ph ∈ L2(0, T ; l4(ωh)) .

Extending these results into the continuum of Ω, we see that ∇Qh(Php0) and
∇Qh(Phu0) are bounded in L2(Ω) (by (31.ben)), and Sh(Php0) is bounded in L4(Ω)
(by (30.ben)). Therefore

∇Qhuh,∇Qhph ∈ L∞(0, T ; L2(Ω)) ,

Shph ∈ L∞(0, T ; L4(Ω)) ,

from which,
∇Qhuh,∇Qhph ∈ L2(0, T ; L2(Ω)) ,

Shph ∈ L2(0, T ; L4(Ω)) ,

are bounded independently on h. Moreover, we obtain that

Shu̇h,Shṗh ∈ L2(0, T ; L2(Ω)) ,

are bounded independently on h as follows from (39.ben). We conclude that

Qhuh,Qhph ∈ L∞(0, T ; H1
0(Ω)) ,

Qhuh,Qhph ∈ L2(0, T ; H1
0(Ω)) ,

are bounded independently on h. According to (28.ben),

Qhu̇h,Qhṗh ∈ L2(0, T ; L2(Ω)) .

Passing to a subsequence, we have
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– Qhnuhn ,Qhnphn ⇀∗ u, p in L∞(0, T ; H1
0(Ω));

– Qhnuhn ,Qhnphn ⇀ u, p in L2(0, T ; H1
0(Ω));

– Shn ṗhn ,Qhn ṗhn ⇀ ∂tu, ∂tp in L2(0, T ; H−1(Ω));
– Shn u̇hn ,Qhn u̇hn ⇀ ∂tu, ∂tp in L2(0, T ; H−1(Ω));
– Shnuhn ,Shnphn ⇀ u, p in L2(0, T ; L2(Ω)).

The non-linear terms in the equation (1.ben) require stronger convergence result.
Using the lemma on the compact imbedding, we conclude that Qhnphn converges
strongly in L2(0, T ; L2(Ω)). Relation (29.ben) implies the same result for Shnphn .
Denote their common limit as p and the weak limit of Shn ṗhn in L2(0, T ; L2(Ω))
as q1. The estimate

‖f0(Shph)‖L4/3(Ω) ≤

≤ a
[1

2
‖Shph‖L4/3(Ω) +

3
2
‖(Shph)2‖L4/3(Ω) + ‖(Shph)3‖L4/3(Ω)

]
=

= a
[1

2
‖Shph‖L4/3(Ω) +

3
2
‖Shph‖2L8/3(Ω) + ‖Shph‖3L4(Ω)

]
, (42.ben)

justifies the existence of weak limit of f0(Shnphn) in L2(0, T ; L4/3(Ω)) denoted
by q2 (dual space).

These limits exist as a consequence of the a priori estimate and of (29.ben), (28.ben).
We prove that q1 = ∂tp, q2 = f0(p). First relation is implied by the uniqueness
of the limit in D′(0, T ), as∫ T

0

(Shn ṗhn −Qhn ṗhn , q)ψ(t)dt = −
∫ T

0

(Shnphn −Qhnphn , q)ψ̇(t)dt ,

where q ∈ D(Ω), ψ ∈ D(0, T ). The remaining equality is proven in the following
lemma.

Lemma 9. If p denotes the weak limit of Shnphn in L2(0, T ; L2(Ω)), then

f0(Shnphn)→ f0(p) weakly in L 4
3
(0, T ; L 4

3
(Ω)) .

Proof. According to the compact imbedding, we have that Shnphn converges
strongly in L2(0, T ; L2(Ω)) and it can be considered to converge a.e. in this space
(see [9]). Furthermore, we observe that as Shnphn was bounded in L∞(0,T ;L4(Ω))
(see (42.ben), f0(Shnphn) is bounded in L∞(0, T ; L 4

3
(Ω)). These two facts together

with the Aubin lemma [2] give the final result. ut

Before proceeding in the proof, we show more about regularity of p.

Lemma 10. Under the assumptions of the theorem, the function p belongs to
H1

0(Ω) ∩H2(Ω).

Proof. Multiply the equation of phase by a function Phnq, where q ∈ D(Ω).

αξ2(ṗhn ,Phnq)h + ξ2(∇̄hnphn , ∇̄hnPhnq] =

= (f0(phn),Phnq)h − βξ(uhn ,Phnq)h . (43.ben)
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In terms of L2(Ω), this means that

αξ2(Shn ṗhn ,Shn(Phnq)) + ξ2(∇(Qhnphn),∇Qhn(Phnq)) =

= (f0(Shnphn),Shn(Phnq))− βξ(Shnuhn ,ShnPhnq) . (44.ben)

According to (32.ben), we realize that Qhn(Phnq)
n→∞→ q in H1

0(Ω), and similarly
Shn(Phnq)

n→∞→ q in L2(Ω) (see (30.ben)). We can pass to the limit in the sense of
D′(0, T ) obtaining

αξ2(∂tp, q) + ξ2(∇p,∇q) = (q2, q)− βξ(u, q) . (45.ben)

Consequently, the function p is continuous from 〈0, T 〉 into L2(Ω). We rewrite
the previous equality in the sense of D′(Ω),

αξ2∂tp = ξ2∆p + q2 − βξu . (46.ben)

Note that q2 = f0(p) and p ∈ L∞(0, T,Ls(Ω)) for any s > 1. Consequently,
q2 ∈ L2(0, T,L2(Ω)). As ∂tp, q2 belong to L2(Ω), this means that ∆p ∈ L2(Ω)
for each t ∈ (0, T ). Consequently, we find that p must be in the domain of ∆ —
see [11], [2]:

p(t) ∈ D(∆) = H2(Ω) ∩H1
0(Ω) for t ∈ (0, T ) .

ut

Next statement investigates the convergence of gradient.

Lemma 11. The sequence ∇Qhnphn converges strongly to ∇p in L2((0, T )×Ω).

Proof. Following the technique of [12], the statement of the lemma is shown.
Multiply the equation of phase in (35.ben) by phn − Phnp and sum over ωh.

αξ2(ṗhn , phn − Phnp)h + ξ2(∇̄hnphn , ∇̄hn(phn − Phnp)] =

= (f0(phn), phn − Phnp)h − βξ(uhn , phn − Phnp)h . (47.ben)

Rewrite this equality in terms of L2(Ω), and integrate over (0, T ).

αξ2

∫ T

0

(Shn ṗhn ,Shn(phn − Phnp))dt+

+ ξ2

∫ T

0

(∇(Qhnphn),∇Qhn(phn − Phnp))dt =

=
∫ T

0

(f0(Shnphn),Shn(phn − Phnp))dt−

− βξ
∫ T

0

(uhn ,Shn(phn − Phnp))dt. (48.ben)
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As we have shown that p ∈ L2(0, T ; H2(Ω)) satisfies (45.ben), it means that p(t) ∈
C0,1(Ω), t ∈ (0, T ), and consequently, Shn(Phnp) → p, and ∇Qhn(Phnp) → ∇p
in L2(0, T ; L2(Ω)) (see (30.ben), (31.ben)). We add and subtract a term

ξ2

∫ T

0

(∇(Qhn(Phnp)),∇Qhn(phn − Phnp))dt

to the equality (48.ben) knowing that it tends to 0 as

∇Qhn(phn − Phnp)→ 0 ,

weakly in L2(0, T ; L2(Ω)), if n→∞. Then, we have

ξ2

∫ T

0

(∇(Qhnphn − Phnp),∇Qhn(phn − Phnp))dt =

=− αξ2

∫ T

0

(Shn ṗhn ,Shn(phn − Phnp))dt+

+
∫ T

0

(f0(Shnphn),Shn(phn − Phnp))dt+

− βξ
∫ T

0

(uhn ,Shn(phn − Phnp))dt+

+ ξ2

∫ T

0

(∇(Qhn(Phnp)),∇Qhn(phn − Phnp))dt . (49.ben)

As all terms in the right hand side tend to 0 if n→∞, we see that ∇(Qhn(phn−
Phnp))→ 0 in L2(0, T ; L2(Ω)), which together with (32.ben) gives the desired result.

ut

Passage to the limit. Take the system of (35.ben) into the consideration, mul-
tiply by test functions Phnw, Phnq where w, q ∈ D(Ω). Integrate it over ωh.
Then, we have, in terms of L2(Ω),

(Shn u̇hn ,ShnPhnw) + (∇Qhnuhn ,∇QhnPhnw) = L(Shn ṗhn ,ShnPhnw) ,

αξ2(Shn ṗhn ,ShnPhnq) + ξ2(∇Qhnphn ,∇QhnPhnq) =

= (f0(Shnphn),ShnPhnq)− βξ(Shnuhn ,ShnPhnq) . (50.ben)

Knowing that

1. Shn ṗhn , Shn u̇hn converge weakly in L2(0, T ; L2(Ω)) to ∂tp, ∂tu;
2. ∇Qhnphn , ∇Qhnuhn converge strongly in L2(0, T ; L2(Ω)) to ∇p, ∇u;
3. ShnPhnp0, ShnPhnu0 converges strongly to p0, u0 in H1

0(Ω),

multiply (50.ben) by a scalar function ψ(t) ∈ C1〈0, T 〉, for which ψ(T ) = 0. We
integrate by parts. Taking into account all previous results, the fact that

Shnphn(0) = ShnPhnp0, Shnuhn(0) = ShnPhnu0
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and the Lebesgue theorem, we are able to pass to the limit.

(u0 − Lp0, w)ψ(0) −
∫ T

0

(u− Lp,w)ψ̇dt+
∫ T

0

ψ[(∇u,∇w) = 0 ,

αξ2(p0, q)ψ(0)−
∫ T

0

αξ2(p, q)ψ̇dt+
∫ T

0

ψ[ξ2(∇p,∇q)−

− (f0(p), q) + βξ(u, q)]dt = 0 . (51.ben)

If ψ ∈ D(0, T ), we have

d

dt
(u − Lp,w) + (∇u,∇w) = 0 ,

αξ2 d

dt
(p, q) + ξ2(∇p,∇q) = (f0(p), q)− βξ(u, q) .

(52.ben)

It remains to show that the weak solution satisfies the initial condition. Mul-
tiplying (51.ben) by a scalar function ψ(t) ∈ C1〈0, T 〉, for which ψ(T ) = 0, and
integrating by parts, we obtain

(u(0)− Lp(0), w)ψ(0)−
∫ T

0

(u− Lp,w)ψ̇dt+
∫ T

0

ψ[(∇u,∇w) = 0 ,

αξ2(p(0), q)ψ(0)−
∫ T

0

αξ2(p, q)ψ̇dt+

+
∫ T

0

ψ[ξ2(∇p,∇q)− (f0(p), q) + βξ(u, q)]dt = 0 . (53.ben)

Subtracting this equation from (51.ben), we get

(u0 − Lp0 − u(0) + Lp(0), w)ψ(0) = 0, (p0 − p(0), q)ψ(0) = 0 .

From this we see that u(0) = u0, p(0) = p0 in L2(Ω). To prove uniqueness, con-
sider two solutions of the problem (34.ben), denoted as [u, p] and [v, q]. Subtracting
two systems of equations and denoting [w, r] = [u − v, p − q], multiplying the
first equation by w and the second equation by ṙ via the semi-discrete scheme,
we have

1
2
d

dt
‖w‖2 + (∇w,∇w) = (ṙ, w) in (0, T ) , (54.ben)

w(0) = 0 ,

αξ2‖ṙ‖2 + ξ2 1
2
d

dt
(∇r,∇r) = (f0(p)− f0(q), ṙ)− βξ(w, ṙ) in (0, T ) ,

r(0) = 0 . (55.ben)

Denote Ψ(p, q) = − 1
2a+ 3

2a(p+q)−a(p2+pq+q2). The existence proof guarantees
that there is a constant C̃ such that

‖Ψ(p, q)‖L4(Ω) ≤ C̃ ,
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(as implied by the continuous imbedding H1
0(Ω) ⊂> Lq(Ω) for q ∈< 0,+∞)).

Therefore, we have

|(Ψ(p, q)r, ṙ)| ≤ ‖Ψ(p, q)‖L4(Ω)‖r‖L4(Ω)‖ṙ‖L2(Ω) ≤ C̃‖r‖L4(Ω)‖ṙ‖L2(Ω) .

Using the Poincaré and Schwarz inequalities, we get

1
2
d

dt
‖w‖2 ≤ C(Ω)

4
‖ṙ‖2

αξ2‖ṙ‖2 + ξ2 1
2
d

dt
‖∇r‖2 ≤ C̃‖r‖L4(Ω)‖ṙ‖L2(Ω)+

+
1
2
αξ2‖ṙ‖2 +

β

2αξ
‖w‖2 , (56.ben)

or, considering the fact, that there is a constant C4 > 0 such that

‖r‖L4(Ω) ≤ C4‖∇r‖ ,

we obtain

1
2
d

dt
‖w‖2 ≤ C(Ω)

4
‖ṙ‖2

αξ2‖ṙ‖2 + ξ2 1
2
d

dt
‖∇r‖2 ≤ 1

4
αξ2‖ṙ‖2 +

C̃2

αξ2
C2

4‖∇r‖2+

+
1
2
αξ2‖ṙ‖2 +

β

2αξ
‖w‖2 . (57.ben)

Combining these inequalities, we have

1
C(Ω)

αξ2 1
2
d

dt
‖w‖2 + ξ2 1

2
d

dt
‖∇r‖2 ≤ C̃2

αξ2
C2

4‖∇r‖2 +
β

2αξ
‖w‖2 .

Such inequality implies, together with the initial conditions, that

r(t) = w(t) = 0 ∀t ∈ (0, T ) in L2(Ω) .

ut

4 Convergence towards the sharp interface model

This paragraph deals with the relation of the phase-field model to a sharp-
interface formulation of the Stefan problem. It uses estimates derived above to
show certain compactness statements leading to the existence of a step function
defining the position of solid domain in time. Consider the weak formulation of
the standard phase-field model.

d

dt
(u, v) + (∇u,∇v) = L

d

dt
(p, v) in (0, T ) , (58.ben)

u(0) = u0 ,

αξ2 d

dt
(p, q) + ξ2(∇p,∇q) = (f0(p), q)− βξ(u, q) in (0, T ) ,

p(0) = p0 . (59.ben)
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Main purpose of next investigation will be the dependence on ξ. Consider the
solution of the semidiscrete scheme (35.ben). We multiply the first equation by uh

and the second one by ṗh.

1
2
d

dt
‖uh‖2h + ‖∇̄huh]|2 = L(ṗh, uh)h , (60.ben)

αξ2‖ṗh‖2h + ξ2 1
2
d

dt
‖∇̄hph]|2 = − d

dt
(w0(ph), 1)h − βξ(uh, ṗh)h . (61.ben)

Combining previous equalities, we get

αξ2‖ṗh‖2h + ξ2 1
2
d

dt
‖∇̄hph]|2 =

= − d

dt
(w0(ph), 1)h −

βξ

L

{1
2
d

dt
‖uh‖2h + ‖∇̄huh]|2

}
, (62.ben)

or

αξ2‖ṗh‖2h + ξ2 1
2
d

dt
‖∇̄hph]|2 +

d

dt
(w0(ph), 1)h +

βξ

L

1
2
d

dt
‖uh‖2h = 0.

We integrate over (0, t), which gives

{
ξ2 1

2
‖∇̄hph]|2 + (w0(ph), 1)h +

βξ

L

1
2
‖uh‖2h

}
(t) ≤

≤
{
ξ2 1

2
‖∇̄hph]|2 + (w0(ph), 1)h +

βξ

L

1
2
‖uh‖2h

}
(0) . (63.ben)

Passing to the limit, if h→ 0, which is justified by the proof of the Theorem 8,
we get

1
2
β

L
‖uξ(t)‖2 + Eξ[pξ](t) ≤

1
2
β

L
‖uξ(0)‖2 + Eξ[pξ](0) t ∈ (0, T ) , (64.ben)

where we denoted (ph h→0−−−→ pξ),

Eξ[pξ](t) =
∫
Ω

[ξ
1
2
|∇pξ|2E +

1
ξ
w0(pξ)]dx .

Additionally, there is an estimate for the time derivative, if we integrate (62.ben)
over (0, T ) and pass to the limit for h→ 0.

αξ

∫ T

0

‖∂tpξ‖2dt+ Eξ[pξ](T )− Eξ[pξ](0) +
β

2L
(‖u(T )‖2 − ‖u(0)‖2) = 0 (65.ben)

Consequently, there is a constant C1 such that

1
2
αξ

∫ T

0

‖∂tp‖2hdt+ Eξ[pξ](T ) ≤ Eξ[pξ](0) + C1 . (66.ben)
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These estimates allow to use the method proposed by [4] and used in [2]. Define
the following monotone function

G(s) =
∫ s

0

|1− (1− 2r)2|dr . (67.ben)

We prove next lemma

Lemma 12. Be pξ the solution of (34.ben) where Eξ[pξ](0) ≤M0 independently on
ξ. Then there are constants M > 0 and M1 > 0 such that

sup{
∫
Ω

|∇G(pξ)|dx | t ∈ 〈0, T 〉} ≤M (68.ben)

and, for 0 ≤ t1 < t2,∫ t2

t1

∫
Ω

|∂tG(pξ)|dxdt ≤M1(t2 − t1)0.5 . (69.ben)

Proof. We have shown that

Eξ[pξ](t) ≤M0 + C1 ,

on 〈0, T 〉. We write

Eξ[p](t) =
∫
Ω

[ξ
1
2
|∇p|2E +

1
ξ
w0(p)]dx ≥

≥
∫
Ω

√
2|∇pξ|

√
w0(pξ)dx =

√
2
∫
Ω

|∇G(pξ)|Edx , (70.ben)

which shows (68.ben) by setting M = 1√
2
(M0 + C1). Furthermore, if

∫ t2

t1

dt

∫
Ω

dx|∂tG(pξ)| =
∫ t2

t1

dt

∫
Ω

dx|ṗξ||G′(pξ)| ≤

≤
(∫ t2

t1

dt

∫
Ω

dx|ṗξ|2
) 1

2
(∫ t2

t1

dt

∫
Ω

dx|G′(pξ)|2
) 1

2

≤

≤ (
2
α

(C1 +M0)2)
1
2 (t2 − t1)

1
2 , (71.ben)

then (69.ben) is shown, if setting M1 =
√

2
α (C1 +M0). ut

The previous statement leads to the existence of a step function as expected.

Theorem 13. Let uξ, pξ is the solution of the problem (34.ben) with the initial data
satisfying Eξ[pξ](0) < M0 and uξ, pξ ∈ H2(Ω) ∩ H1(Ω), and let∫

Ω

|pξ(0,x)− v0(x)|dx→ 0, ‖uξ(0)‖L2(Ω) ≤ C2 ,
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as ξ → 0, for a function v0 ∈ L1(Ω). Then for any sequence tending to 0 there
is a subsequence ξn′ such that

lim
ξn′→0

pξn′ (t,x) = v(t,x), uξ′n(t,x) ⇀ u(t,x) in L2((0, T )×Ω),

and u, v are defined a.e. in (0, T )× Ω. The function v reaches values 0 and 1,
and satisfies ∫

Ω

|v(t1,x)− v(t2,x)|dx ≤ C|t2 − t1|
1
2 ,

where C > 0 is a constant, and

sup
t∈〈0,T 〉

∫
Ω

|∇v|Edx ≤ C1 ,

in the sense of BV (Ω), where C1 > 0 is a constant. The initial condition is

lim
t→0

v(t,x) = v0(x) ,

a.e.

Proof. The proof follows steps presented in [4]. We find that

G(s) = 2s2 − 4
3
s3 for s ∈ 〈0, 1〉 ,

G(s) =
4
3
s3 − 2s2 +

4
3

for s ∈ (1,+∞) .

Consequently, a direct computation justifies that

|G(s)| ≤ 4
3

+ [1− (1− 2s)2]2 .

Then, we are able to obtain the upper bounds for the function G and its spa-
tiotemporal gradient. According to (64.ben), we have∫ T

0

∫
Ω

w0(p)dxdt ≤M2ξ . (72.ben)

Putting (72.ben), (68.ben) and (69.ben) together, we conclude, thatG(pξ) is in BV ((0, T )×Ω)
regardless the value ξ > 0. Following [6],

BV ((0, T )×Ω) ⊂>⊂> L1((0, T )×Ω) .

Consequently, there is a sequence G(pξn) converging to an element G∗ in the
space L1((0, T ) × Ω). According to [9], there is a further subsequence G(pξn′ )
converging to G∗ almost everywhere in (0, T )×Ω.

The function G :< 0,+∞)→< 0,+∞) is monotone, which implies existence
of the unique function v such that

G∗ = G(v) ,



Phase-Field equations 33

and
pξn′ → v a.e. in (0, T )×Ω

According to (72.ben) and by the Fatou lemma, we obtain∫ T

0

∫
Ω

w0(v)dxdt = 0 , (73.ben)

from which follows that the function p takes only the values 0, 1.
Now, we prove that G is Hölder-continuous in the time variable. The function

pξn′ satisfies

|G(pξn′ (t1,x))−G(pξn′ (t2,x))| ≤
∫ t2

t1

|∂tG(pξn′ (t,x))dt ,

for 0 ≤ t1 ≤ t2 ≤ T . Integrating over Ω,∫
Ω

|G(pξn′ (t1,x))−G(pξn′ (t2,x))|dx ≤M1|t1 − t2|0.5 , (74.ben)

according to the Lemma 12. Passing to the limit for n′ →∞, we find∫
Ω

|G∗(t1,x)−G∗(t2,x)|dx ≤M1|t1 − t2|0.5 ,

for almost all t1, t2 ∈ (0, T ). The statement of theorem is obtained by the fact
that

|G∗(t1,x)−G∗(t2,x)| = (G(1) −G(0))|v(t1,x)− v(t2,x)| .

The a.e. argument makes from the function v a continuous map from 〈0, T 〉 to
L1(Ω). Taking t1 = 0 in (74.ben) and according to the assumption∫

Ω

|pξ(0,x)− v0(x)|dx→ 0 ,

as ξ → 0, (similarly for G-valued function) we have∫
Ω

|G(v0(x)) −G(v(t2,x))|dx ≤M1t
0.5
2 ,

from which ∫
Ω

|v0(x) − v(t2,x)|dx ≤ M1

G(1)−G(0)
t0.52 .

This concludes the proof. It remains to show the boundedness of the total varia-
tion of v ([6]). The lower semicontinuity of the total variation in L1-space together
with the Lemma 12 yields

ess sup
0<t<T

∫
Ω×{t}

|∇G∗|dx ≤M0 ,
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and by the continuity of v in time, we have

sup
0<t<T

∫
Ω×{t}

|∇v|dx ≤ M0

G(1)−G(0)
.

It remains to show the convergence of uξ. The relation (64.ben) implies that uξ is
bounded in L2((0, T )×Ω). Then, using the subsequence argument, uξn′ converges
weakly to an element u ∈ L2((0, T )×Ω). This completes the proof. ut

5 Conclusion

The purpose of the paper was to show the convergence property of the semi-
discrete scheme based on the method of lines. The compactness technique al-
lowed to prove existence and uniqueness of the original weak solution. The phase
function depending on the small parameter ξ is bounded in the BV sense. Con-
sequently, it converges to a step-wise function indicating different phases. The
technique of the recovery of the sharp-interface relation can also be applied to
the presented problem. The presented approach is applicable even in case of
different modifications of the model.
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