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1 Definitions

1.1 Carnot Groups

We recall the definition of Carnot group of step 2 and some of its properties (see
[5], [15], [12] and [16]). Let G be a connected, simply connected nilpotent Lie group
whose Lie algebra g admits a step 2 stratification, i.e. there exist linear subspaces
V1, V2 such that

g = V1 ⊕ V2, [V1, V1] = V2, [V1, V2] = 0, (1.1)

where [V1, Vi] is the subspace of g generated by the commutators [X,Y ] with
X ∈ V1 and Y ∈ Vi. A base e1, . . . , en of g is adapted to the stratification if
e1, . . . , em is a base of V1 and em+1, . . . , en is a base of V2. Let X = {X1, . . . , Xn}
be the family of left invariant vector fields such that Xi(0) = ei. Given (1.1), the
vector fields X1, . . . , Xm together with their commutators of length 2 generate all
g; we will refer to X1, . . . , Xm as a family of generating vector fields of the group.

The exponential map exp is a one to one map from g to G. Hence any p ∈ G can
be written, in a unique way, as p = exp(p1X1+· · ·+pnXn). Using these exponential
coordinates, we identify p with the n-tuple (p1, . . . , pn) ∈ Rn and we identify G

with (Rn, ·), where the new product in Rn is such that exp(p · q) = exp(p) exp(q).
The identification G 4 (Rn, ·) is used from now on, without being mentioned
anymore.
The n-dimensional Lebesgue measure Ln, is the Haar measure of the group G.

As a consequence of the stratification (1.1), a natural family of automorphisms
of G are the so called intrinsic dilations. For any x ∈ G and λ > 0, the dilation
δλ : G → G, is defined as

δλ(x1, ..., xn) = (λx1, ..., λxm, λ
2xm+1, . . . , λ

2xn). (1.2)

The subbundle, of the tangent bundle TG, spanned by the first m vector fields
X1, . . . , Xm is called the horizontal bundle HG; the fibers of HG are

HGx = span {X1(x), . . . , Xm(x)}, x ∈ G.

Sections of HG are called horizontal sections and vectors of HGx are horizontal
vectors. Each horizontal section φ is identified by its coordinates (φ1, . . . , φm)
with respect to the moving frame X1(x), . . . , Xm(x). That is horizontal sections
are functions Rn → Rm.

A subriemannian structure is defined on G, endowing each fiber of HG with a
scalar product making the basis X1(x), . . . , Xm(x) an orthonormal basis. That is
if v = (v1, . . . , vm) and w = (w1, . . . , wm) are in HGx, 〈v, w〉x :=

∑m
j=1 vjwj and

|v|2x := 〈v, v〉x. It will simplify our notations to extend the scalar product 〈v, w〉x
also to v, w ∈ TGx, keeping the same definition: 〈v, w〉x :=

∑m
j=1 vjwj .

Given a sub-riemannian structure there is standard procedure to introduce
a natural distance, i.e. the Carnot-Carathéodory distance, on G (see e.g. [11]).
Consider the family of the so-called sub-unit curves in G: an absolutely continuous
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curve γ : [0, T ] → G is a sub-unit curve with respect to X1, . . . , Xm if for a.e.
t ∈ [0, T ],

γ̇(t) ∈ HGγ(t), and |γ̇(t)|γ(t) ≤ 1.

Definition 1.1 (Carnot-Carathéodory distance). If p, q ∈ G, their cc-distan-
ce is defined by

dc(p, q) = inf {T > 0 : γ : [0, T ] → G is sub-unit γ(0) = p, γ(T ) = q} .

It is a classical result in control theory, usually known as Chow’s theorem, that,
under assumption (1.1), the set of sub-unit curves joining p and q is not empty.
Hence dc(p, q) is never infinity and dc is a distance on G inducing the same topology
as the standard Euclidean distance.
The Carnot-Carathéodory distance is usually difficult to compute and sometimes
it is more convenient to deal with distances, equivalent with dc, but that can be
explicitly evaluated. Several ones have been used in the literature, here we choose
the following

d∞(x, y) = d∞(y−1 · x, 0),

where
d∞(p, 0) = max{|p1|, . . . , |pm|, ε|pm+1|1/2, . . . , ε|pn|1/2}. (1.3)

Here ε ∈ (0, 1) is a suitable positive constant.
Finally, we denote Uc(p, r) and U∞(p, r) the open balls associated, respectively,
with dc and d∞.

Related with these distances, different Hausdorff measures can be constructed,
following Carathéodory’s construction as in [4], Section 2.10.2.

Definition 1.2. For α > 0 denote by Hα the α-dimensional Hausdorff measure
obtained from the Euclidean distance in Rn 4 G, by Hα

c the one obtained from dc
in G, and by Hα

∞ the one obtained from d∞ in G. Analogously, Sα, Sα
c , and Sα

∞
denote the corresponding spherical Hausdorff measures.

The homogeneous dimension of G is the integer Q := dimV1 + 2dimV2 =
m+2(n−m) that is the Hausdorff dimension of G with respect to the cc-distance
dc (see [14]).

1.2 G-regular functions and surfaces

The following definitions and result about intrinsic differentiability are due to
Pansu ([16]), or are inspired by his ideas.
A map L : G → R is G-linear if it is a homomorphism from G ≡ (Rn, ·) to (R,+)
and if it is positively homogeneous of degree 1 with respect to the dilations of G,
that is L(δλx) = λLx for λ > 0 and x ∈ G. It is easy to see that L is G-linear if
and only if there is a ∈ Rm such that Lx =

∑m
j=1 ajvj , for all x ∈ G.
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Given f : G → R such that X1f, . . . , Xmf exist, we denote by ∇Gf the horizontal
section defined as

∇Gf :=
m∑
i=1

(Xif)Xi.

whose coordinates are (X1f, ..., Xmf). Moreover, if φ = (φ1, . . . , φm) is an hori-
zontal section such that Xjφj exist for j = 1, . . . ,m, we define divG φ as the real
valued function

divG (φ) :=
m∑
j=1

Xjφj .

Definition 1.3. f : G → R is Pansu-differentiable or G-differentiable (see [16]
and [13]) at x0 if there is a G-linear map dGfx0 such that

lim
x→x0

f(x)− f(x0)− dGfx0(x
−1
0 · x)

dc(x, x0)
= 0.

Notice that if f is G-differentiable in x0 then Xjf(x0) exist for j = 1, . . . ,m and

dGfx0(v) = 〈∇Gf, v〉x0 =
m∑
j=1

vjXjf(x0).

Conversely, if, for j = 1, . . . ,m all of Xjf(x) are continuous in an open set Ω, then
f is differentiable in each point ofΩ. We denote by C1

G
(Ω) the set of continuous real

functions in Ω such that Xjf(x) are continuous in Ω for j = 1, . . . ,m. Moreover,
we shall denote by C1

G
(Ω,HG) the set of all sections φ of HG all whose canonical

coordinates φj ∈ C1
G
(Ω). The corresponding spaces of Euclidean differentiable

functions are denoted as C1(Ω), C1(Ω,HG); C1
0(Ω,HG) is the space of smooth,

compactly supported sections of HG.

Remark 1.4. We recall that C1(Ω) ⊂ C1
G
(Ω) and that the inclusion may be strict,

indeed functions in C1
G
(Ω) are, a priori, only Hölder continuous functions with

respect to the Euclidean metric. An example is provided in Remark 6 of [7].

Following [8], we define G-regular hypersurfaces in a Carnot group G as non
critical level sets of functions in C1

G
(G).

Definition 1.5 (G-regular hypersurfaces). S ⊂ G is a G-regular hypersurface
if for every x ∈ S there exist a neighborhood U of x and f ∈ C1

G
(U) such that

S ∩ U = {y ∈ U : f(y) = 0}; (i)

∇Gf(y) != 0 for y ∈ U . (ii)

Notice that the dc, Hausdorff dimension of a G-regular hypersurface, is always
Q− 1 (see [8]).
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Definition 1.6 (Tangent group). If S = {x ∈ G : f(x) = 0} is a G-regular
hypersurface, the tangent group T g

G
S(x0) to S at x0 is

T g
G
S(x0) := {v ∈ G : dGfx0(v) = 0}.

T g
G
S(x0) is a proper subgroup of G. We define the tangent plane to S at x0 as

TGS(x0) := x0 · T g
G
S(x0).

The above definition is a good one: indeed the tangent group does not depend on
the particular function f defining the surface S because of point (iii) of Implicit
Function Theorem below that yields

T g
G
S(x) = {v ∈ G : 〈νE(x), v〉x = 0}

where νE , the inward unit normal is defined in (1.7) and depends only on the set
S.

Remark 1.7. The class of G-regular hypersurfaces is strongly different from the
class of Euclidean C1 embedded surfaces in Rn. From one side, Euclidean C1-
surfaces are not G-regular at points x where the Euclidean tangent space TxS ⊃
HGx. On the other side, as one can guess from Remark 1.4, G-regular surfaces
can be very irregular as subsets of Euclidean Rn. It is less obvious that they could
even have Euclidean Hausdorff dimension larger than n − 1. It is rather amazing
that, even for such surfaces, the notion of tangent plane and related properties are
utterly natural.

1.3 BVG-functions and finite perimeter sets

The definition of BV functions in a group follows closely the one in Euclidean Rn;
simply the horizontal vector fields Xj, j = 1, . . . ,m take the place of the partial
derivatives ∂

∂xi
, for i = 1, . . . , n (see e.g. [10]).

If Ω is an open subset of G, the space BVG(Ω) is the set of, functions f ∈ L1(Ω)
such that

||∇Gf ||(Ω) := sup
{∫

Ω

f(x)divG φ(x) dx : φ ∈ C1
0(Ω,HG), |φ| ≤ 1

}
<∞. (1.4)

The space BVG,loc(Ω) is the set of functions belonging to BVG(U) for each open
set U ⊂⊂ Ω.

By the Riesz representation theorem we have

Theorem 1.8 (Structure of BVG functions). If f ∈ BVG,loc(Ω) then ||∇Gf ||
is a Radon measure on Ω, there exists a ||∇Gf ||-measurable horizontal section σf :
Ω → HG such that |σf (x)| = 1 for ||∇Gf ||-a.e. x ∈ Ω, and, for all φ ∈ C1

0(Ω,HG),∫
Ω

f(x)divG φ(x) dLn =
∫
Ω

〈φ, σf 〉 d||∇Gf ||. (1.5)
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Following De Giorgi, we define sets with finite perimeter as

Definition 1.9 (G-Caccioppoli sets). A measurable set E ⊂ G is of finite G-
perimeter (respectively of locally finite G-perimeter or a G-Caccioppoli set) in
Ω if the characteristic function 1E ∈ BV (Ω) (respectively 1E ∈ BVG,loc(Ω)). We
call perimeter of E the measure

|∂E|G := ||∇G1E || (1.6)

and (generalized inward) G-normal to ∂E the horizontal vector

νE(x) := −σ1E (x). (1.7)

It is interesting to observe that (1.5), when applied to the characteristic function
of a finite perimeter set E, reads as an abstract divergence theorem∫

E

div Gφ dLn = −
∫

G

〈φ(x), νE(x)〉x d|∂E|G, (1.8)

giving more geometric substance to (1.8) is one of the main results here presented.
Notice that for G-Caccioppoli sets whose boundary is an Euclidean regular

surface, the perimeter measure coincides with the natural definition of surface
area in Carnot groups.

Proposition 1.10. If E is a G-Caccioppoli set with Euclidean C1 boundary, then
there is an explicit representation of the G-perimeter in terms of the Euclidean
(n− 1)-dimensional Hausdorff measure Hn−1

|∂E|G(Ω) =
∫
∂E∩Ω

( m∑
j=1

〈Xj , n〉2Rn

)1/2

dHn−1,

where n = n(x) is the Euclidean unit outward normal to ∂E.

The topological boundary of a finite perimeter set can be really bad, and it
can even have positive Ln-measure. One of the main achievements of De Giorgi’s
theory is proving the existence of a subset of the topological boundary, the so called
reduced boundary, that carries all the perimeter measure (the |∂E|G measure in
our case) and that is reasonably regular: i.e. it is a rectifiable set. So, following
once more De Giorgi, we define the reduced boundary ∂∗

G
E of a G-Caccioppoli set

E ⊂ G as

Definition 1.11 (Reduced boundary). Let E be a G-Caccioppoli set; we say
that x ∈ ∂∗

G
E if

|∂E|G(Uc(x, r)) > 0 for any r > 0; (i)

there exists lim
r→0

∫
Uc(x,r)

νE d|∂E|G; (ii)∣∣∣∣ lim
r→0

∫
Uc(x,r)

νE d|∂E|G
∣∣∣∣
Rm1

= 1. (iii)

The limits in Definition 1.11 should be understood as a convergence of the averages
of the coordinates of νE .
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2 Main Results

The main results of the present paper are

1. At each point of the reduced boundary of a G-Caccioppoli set there is a (gen-
eralized) tangent group;

2. The reduced boundary is a (Q− 1)-dimensional G-rectifiable sets;
3. |∂E|G = cSQ−1

∞ ∂∗E, i.e. the perimeter measure equals a constant times
the spherical (Q− 1)-dimensional Hausdorff measure restricted to the reduced
boundary.

4. An intrinsic divergence theorem holds for C1
G
(G, HG) vector fields in G-Cac-

cioppoli sets.

We discuss now briefly each of these points.
First of all we recall a result of independent interest. An Implicit Function

Theorem holds in G, stating that any G-regular hypersurface S = {y ∈ G : f(y) =
0} is locally the graph, along the integral curves of an horizontal vector field,
of a function of n − 1 variables. Moreover, the G-perimeter of E can be written
explicitly in terms of the associated parameterization and of ∇Gf .

Theorem 2.1 (Implicit Function Theorem). Let Ω be an open set in Rn,
0 ∈ Ω, and let f ∈ C1

G
(Ω) be such that f(0) = 0 and X1f(0) > 0. Define E =

{x ∈ Ω : f(x) < 0}, S = {x ∈ Ω : f(x) = 0}, and, for δ > 0, h > 0, Iδ =
{ξ = (ξ2, . . . , ξn) ∈ Rn−1, |ξj | ≤ δ}, Jh = [−h, h]. If ξ = (ξ2, . . . , ξn) ∈ Rn−1 and
t ∈ Jh, denote by γ(t, ξ) the integral curve of the vector field X1 at the time t
issued from (0, ξ) = (0, ξ2, . . . , ξn) ∈ R

n, i.e.

γ(t, ξ) = exp(tX1)(0, ξ).

Then there exist δ, h > 0 such that the map (t, ξ) → γ(t, ξ) is a homeomorphism of
a neighborhood of Jh×Iδ onto an open subset of Rn, and, if we denote by U ⊂⊂ Ω
the image of Int(Jh × Iδ) through this map, we have

E has finite G-perimeter in U ; (i)

∂E ∩Ω = S ∩ U ; (ii)

νE(x) = − ∇Gf(x)
|∇Gf(x)|x

for all x ∈ S ∩Ω, (iii)

where νE is the generalized inner unit normal defined by (1.7). Moreover, there
exists a unique continuous function φ = φ(ξ) : Iδ → Jh such that the following
parameterization holds: if ξ ∈ Iδ, put Φ(ξ) = γ(φ(ξ), ξ), then

S ∩ Ω̃ = {x ∈ Ũ : x = Φ(ξ), ξ ∈ Iδ}; (iv)

the G-perimeter has an integral representation

|∂E|G(Ũ) =
∫
Iδ

( m∑
j=1

|Xjf(Φ(ξ))|2
)1/2(

X1f(Φ(ξ))
)−1

dξ. (v)
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2.1 The generalized tangent plane

For any set E ⊂ G, x0 ∈ G and r > 0 we consider the translated and dilated sets
Er,x0 defined as

Er,x0 = {x : x0 · δr(x) ∈ E} = δ 1
r
(x−1

0 · E).

If v ∈ HGx0 the halfspace S+
G

(v) is {x : 〈x, v〉0 ≥ 0}, and its topological boundary
is the subgroup T g

G
(v) of G defined as {x : 〈x, v〉0 = 0}. We say that E has a

generalized tangent plane at a point x0 if the sets Er,x0 converge to S+
G

(νE(x0))
as r → 0 in L1

loc(G). The following blow-up theorem states that at each point of
∂∗

G
E there is a generalized tangent plane. Besides its intrinsic interest, it provides

one of the key tools for our structure theorem.

Theorem 2.2 (Blow-up Theorem). If E is a G-Caccioppoli set, x0 ∈ ∂∗GE and
νE(x0) ∈ HGx0 is the inward normal as defined in (1.7) then

lim
r→0

1Er,x0
= 1S+

G
(νE(x0))

in L1
loc(G) (2.3)

and for all R > 0

lim
r→0

|∂Er,x0 |G(Uc(0, R)) = |∂S+
G

(νE(x0))|G(Uc(0, R))

= Hn−1(T g
G
(νE(0)) ∩ Uc(0, R)).

The proof of the above theorem relies on careful asymptotic estimates, and on
the following lemma, that is far from being trivial as the corresponding statement
in the Euclidean space, and relies on the structure of step 2 groups.

Lemma 2.3. Let G be a step 2 group and let Y1, . . . , Ym be left invariant or-
thonormal (horizontal) sections of HG. Assume that g : G → R satisfies

Y1g ≥ 0 and Yj(g) = 0 if j = 2, . . . ,m. (2.4)

Then the level lines of g are “vertical hyperplanes orthogonal to Y1” that is sets
that are group translations of

S(Y1) := {p : 〈p, Y1〉0 = 0}.

Notice that for more complicated groups, as are groups of step 3 or larger, the
above statement is false and also Theorem 2.2 fails; indeed there are examples
of point of the reduced boundary where no tangent group exists, even in our
generalized sense.

The existence of a generalized tangent at each point of the reduced boundary,
together with a suitable Whitney type extention theorem, yields, through a fairly
standard procedure in geometric measure theory, the rectifiability of the reduced
boundary as stated in the following structure theorem.
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2.2 Structure of G-Caccioppoli sets and Divergence Theorem

The following differentiation lemma plays a key role in the present paper, showing
that in fact the perimeter measure is concentrated on the reduced boundary. In the
Euclidean setting it is a simple consequence of Lebesgue-Besicovitch differentiation
lemma, while in Carnot groups (where such Lemma fails to hold: see [13], [17]) it
relies on a deep asymptotic estimate proved by Ambrosio in [1].

Lemma 2.4. Assume E is a G-Caccioppoli set, then

lim
r→0

∫
Uc(x,r)

νE d|∂E|G = νE(x), for |∂E|G-a.e. x,

that is |∂E|G-a.e. x ∈ G belongs to the reduced boundary ∂∗
G
E.

We can state now our main results.

Theorem 2.5 (Structure of G-Caccioppoli sets). If E ⊆ G is a G-Cacciop-
poli set, then

∂∗GE is (Q− 1)-dimensional G-rectifiable, (i)

that is ∂∗
G
E = N ∪

⋃∞
h=1Kh, where HQ−1

c (N) = 0 and Kh is a compact subset of
a G-regular hypersurface Sh;

νE(p) is G-normal to Sh at p, for all p ∈ Kh, (ii)

that is νE(p) ∈ HGp and 〈νE(p), v〉p = 0 for all v ∈ TGSh(p);

|∂E|G = θcSQ−1
c ∂∗GE,where θc(x) = Hn−1(∂S+

G
(νE(x)) ∩ Uc(0, 1)). (iii)

If we replace the Hc-measure by the H∞-measure, the corresponding density θ∞
turns out to be a constant. More precisely

|∂E|G = θ∞ SQ−1
∞ ∂∗GE, (iv)

where (ε is the one in (1.3)) θ∞ = ωm−1ωn−mε2(m−n)

ωQ−1
. Notice ωm−1ωn−mε

2(m−n) =
Hn−1(∂S+

G
(νE(0)) ∩ U∞(0, 1)) is independent of νE(0).

Theorem 2.6 (Divergence Theorem). If E is a G-Caccioppoli set, then

|∂E|G = θ∞ SQ−1
∞ ∂∗GE, (i)

and the following version of the divergence theorem holds

−
∫
E

div Gφ dLn = θ∞

∫
∂∗

G
E

〈νE , φ〉 dSQ−1
∞ , ∀φ ∈ C1

0(G, HG). (ii)
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