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Abstract. The system of zero-pressure gas dynamics conservation laws
describes the dynamics of free particles sticking under collision while mass
and momentum are conserved. The existence of such solutions was estab-
lished some time ago. Here we report a uniqueness result that uses the
Oleinik entropy condition and a cohesion condition. Both conditions are
automatically satisfied by solutions obtained in previous existence results.
Important tools in the uniqueness proof are regularizations, generalized
characteristics and flow maps. The solutions may contain vacuum states
as well as singular measures.
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1 Introduction

Let us consider a particle mass density ρ and a velocity field u depending on
one space variable x and time t. The hyperbolic system of conservation laws for
zero-pressure gas dynamics is

ρt + (ρu)x = 0,

(ρu)t + (ρu2)x = 0.
(1)
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We consider it together with the initial data

(ρ, u)(0, x) = (ρ0, u0)(x). (2)

This system is related to the sticky particle model of Shandarin and Zeldovich
[SZe] describing the motion of free particles sticking under collision while mass
and momentum are conserved. For physical interpretations of this model in several
space dimensions, we refer to Kofman et al. [KPS]. Formally, the model can be
obtained from the compressible Euler equations by taking the pressure to zero or
the Boltzmann equation by letting the temperature go to zero, see Bouchut [B].
A rigorous proof of the reduction from the Euler equations to the system (1) taking
account of the structure of solutions can be found in Li [L]. The systems (1) was
also related to scalar conservation laws and even to Hamilton-Jacobi equations in
Brenier and Grenier [BG]. In a class of fractional step method for gas dynamics one
splits evolution operators. For instance one may split the system of compressible
Euler equations into the zero–pressure model, we are considering here, and the
pressure gradient flow, see Agarwal and Halt [AH] or Li and Cao [LC].

The system (1) is non-strictly hyperbolic with the velocity u as double eigen-
value. For smooth solutions it is easily seen that the system decouples in the
following manner. Using the first equation, the second equation becomes the well

understood Burgers equation ut +
(
u2

2

)
x

= 0. Solving it first and then using the

known velocity u, the first equation for the non-negative mass density ρ is then
solved as a scalar equation too.

The density may develop into a singular measure, even when the initial data are
regular. The weak solution in the sense of distributions is not a function, possibly
discontinuous, anymore but must be considered in the sense of signed measures.
These will be a measure m for the density ρ and a signed measure I for the mo-
mentum ρu, which is the other conserved dependent variable. We also allow the
mass density to vanish. This is the vacuum state. A velocity makes physical sense
only wherever mass is present. Therefore the momentum will be assumed to be
absolutely continuous with respect to the mass measure.

Definition 1. We denote by B the σ-algebra of Borel measurable subsets of R and
by M(R) the space of signed Borel measures on R. Take m, I ∈ L∞(R+,M(R)),
i.e. we assume that (m, I)(t, ·) are signed Borel measures on R for any t ∈ [0,∞[.
By (m, I)(t,∆) we denote the signed measure of the Borel measurable set ∆ ∈ B
at time t ∈ R+ = [0,∞[.

Further, let the measure I(t, ·) for the momentum be absolutely continuous
with respect to the measure for the particle mass density m(t, ·). Then a velocity
u(t, x) can be defined using the Radon-Nikodym Theorem as the density function
given by

u(t, x) =
dI

dm
, i.e.

∫
∆

dI =
∫
∆

u dm. (3)

For clarity we also use the notation m(t, dx) := dm and I(t, dx) := dI. We say
that the pair of signed measures (m, I) is a measure solution of the system (1)
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for the initial data (2) if and only if the equations∫ ∫
R+×R

[φtm(t, dx) + φxI(t, dx)]dt+
∫ ∞

−∞
φ(0, x)m(0, dx) = 0,∫ ∫

R+×R

[(φt + φxu(t, x))I(t, dx)]dt +
∫ ∞

−∞
φ(0, x)I(0, dx) = 0,

(4)

are satisfied for all φ ∈ C∞(R+ × R).

Based on this definition, the Cauchy problem was solved in Cheng et al. [CLZ].
For an alternative proof E et al. [ERS]. One may consider for the initial data
either locally finite measures or one needs a boundedness condition in case the
initial mass does not have a compact support, see [CLZ].

2 Uniqueness

For weak solutions to conservation laws it is well-known that some additional
entropy condition is needed in order to obtain the uniqueness of solutions. It
selects the physically relevant solution for given initial data. From the existence
proof in [CLZ], [ERS] one may see: The solutions constructed there automatically
satisfy the classical Oleinik Condition: There exists a constant E > 0 such that

u(t, x+ a)− u(t, x)
a

≤ E

t
(5)

for all x ∈ R, a > 0 and t ∈]0,∞[.
This condition is sufficient to prove uniqueness for the case of the Burgers

equation, see Smoller [S]. For the system (1) the following simple counterexample
shows that some additional condition must be imposed. Take δ0 to be the Dirac
point measure with unit mass at zero and u to be any constant. Let (2) be the
simple initial state (m0, I0)(x) = (δ0, uδ0). Basically, the initial data for the veloc-
ity are u at x = 0 and completely arbitrary elsewhere because the mass density
vanishes. We can construct an infinite family of solutions in the follwing manner

m(t, ·) := ρ1δ(x−a1t) + ρ2δ(x−a2t), u(t, x) :=


a1, x = a1t,
a2, x = a2t,
0, everywhere else.

(6)

We choose the constants a1 < a2, as well as ρ1, ρ2 ≥ 0 in order to have conser-
vation of mass by taking ρ1 + ρ2 = 1 and to have conservation of momentum by
setting ρ1a1 + ρ2a2 = u. These solutions all satisfy Definition 1 and the Oleinik
condition. The Oleinik condition is satisfied in the sense that the function u(t, ·)
in (6) may be replaced equivalently almost everywhere with respect to m(t, ·) by
a linear interpolant between the values 0, a1, a2, 0 that has a maximal slope E/t
for an appropriate constant E, since the values of u on the set where the mass
density vanishes may be chosen arbitrarily. Note that this extension of the Oleinik
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condition to vacuum states prevents any further such splitting of the mass from
occuring at times t > 0. The slope of any interpolant must become infinite in that
case. The factor 1/t in the Oleinik condition allows this to occur only at t = 0.

But, the Oleinik condition does not reflect the fact that massive particles rep-
resented by a singular measure should never separate, not even initially. The above
example motivates the following condition suggested by the first author.
Cohesion Condition: For x0 ∈ R, if m0({x0}) > 0, then writing t→ 0+ for the
limit from above, i.e. using t > 0, we require that

lim
t→0+

m

(
t,
{
x ∈ R;

∣∣∣x− x0

t
− u0(x0)

∣∣∣ ≤ ε}) = m0({x0}) (7)

for all ε > 0.
The Oleinik and the cohesion conditions together form an entropy condition

for measure solutions of the zero-pressure gas dynamics initial value problem (1)
and (2). We point out that the solutions constructed in [CLZ] satisfy this condition
too. Note further that the cohesion condition prevents the splitting up of singular
masses at time t = 0. But both the cohesion and Oleinik’s condition together
do not prevent singular masses from separating from pieces of regular mass at
time t = 0. Similarily one may have also u0(x−) < u0(x+) for some x ∈ R in
the regular part. Here u0(x±) denotes the limits obtained by approaching x from
above and below respectively. In all allowed cases of initial separation of velocity a
vacuum is created due to conservation of mass. This is different from the creation
of rarefaction waves for the Burgers equation using the same initial data u0. At
later times any separation of mass at all is prevented by the Oleinik condition.

In this paper we will highlight the main elements of the uniqueness proof of
these solutions to the system (1) with the initial condition (2) under the restric-
tion of the above entropy condition. The full details may be found in [LW]. The
uniqueness theorem is stated as follows.

Theorem 2 (Uniqueness). Measure solutions to the system (1) under the initial
condition (2) satisfying the entropy condition are unique in the following sense.
Assume that (mi, Ii) for i = 1, 2 are two measure solutions of (1) and (2) satisfying
Definition 1 and the Oleinik condition (5) as well as the cohesion condition (7).
Then they are equal, i.e. the equations∫ ∫

R+×R

φm1(t, dx)dt =
∫ ∫

R+×R

φm2(t, dx)dt,∫ ∫
R+×R

φI1(t, dx)dt =
∫ ∫

R+×R

φI2(t, dx)dt,
(8)

hold for all bounded test functions φ ∈ C∞(R+ × R).

This result completes the program of giving an existence and uniqueness theory
for the initial value problem (1) and (2).
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We would like to point out that independently Huang and Wang [HW] re-
-proved the existence result and gave a uniqueness result for solutions to (1) us-
ing a different entropy condition. They utilized the Lebesgue–Stieltjes integral to
equivalently define weak solutions to (1) in terms of the distribution functions
of the measures. Then they proved uniqueness of solutions using quite different
techniques from those outlined here. They studied the adjoint problem and needed
a new existence as well as uniqueness theorem for a linear equation with discontin-
uous cooefficients. Their entropy condition consists of the Oleinik condition and
an energy condition that states that the energy should be weakly continuous ini-
tially. It must be pointed out that the sticky particles in this model loose energy
immediately under collision as time evolves, see [B], and so one cannot guarantee
that the energy is continuous in the solution. Therefore, their condition does not
reflect a natural property of the model. Here we use instead the initial cohesion
condition which reflects the physical fact that massive particles never split, not
even initially.

3 Generalized Characteristics and Flow Maps

The method of proof for Theorem 2 is basically a method of characteristics for the
entropy solutions given by the existence theory. One has to overcome two main
difficulties in extending the concept of generalized characteristics to the system
(1). One is the possible presence of vacuum states in the solutions, where no ve-
locity is specified. The other is the irregularity of the solution, i.e. the solutions are
not necessarily functions of bounded variation but may contain singular measures.
For this purpose, we first regularize the entropy solutions so that the generalized
characteristics, see Dafermos [D], for the regularized solutions are well-defined in
the usual sense. Then generalized characteristics for the irregular problem are ob-
tained in the limit of vanishing regularization parameter. An important tool in the
analysis are the characteristic maps which are flow maps of the flow generated by
the generalized characteristics. It is shown that they naturally satisfy the proper-
ties of conservation of mass and momentum, which is to be expected. Further, the
dynamic behaviour of the center of mass of sets, subjected to the characteristic
maps in time, is studied. The results thus obtained finally lead to our uniqueness
proof. As a by–product, we also verify the Generalized Variational Principle used
in [ERS].

The regularization procedure is rather technical. First note that the mass m
is always a nonnegative measure. Using the Galilean invariance of the system, i.e.
going to a reference frame moving with the largest negative velocity, one may as-
sume all velocities to be nonnegative. This implies that the momentum I may also
be assumed to be nonnegative. It means that some proofs concerning properties of
I are identical to those for m. The distribution functions of the measures for mass
m and momentum I are regularized by suitable space-time averaging. It can be
shown that the limit of taking the regularization parameter to zero gives a measure
equivalent to the original measure, for details see [LW].
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The generalized characteristics are Lipschitz curves that are generalized so-
lutions to the ordinary differential equation dx

dt = u(t, x) for the double eigen-
value u. If u is a smooth function, they are just the forward in time solution
curves of this ordinary differential equation through the point (t0, x0) denoted by
x = x0(s; t0, x0), s ≥ t0. Here these notions are not only extended to the well
known case where u has jumps, see Dafermos [D], but also to the case of charac-
teristics near a vacuum state or a singular measure. For this purpose the velocity
function u has to be extended into the vacuum by linear interpolation or exten-
sion and then regularized. This has to be done in a manner compatible with the
Oleinik condition. As a result one may determine the generalized characteristics in
the regularized situation. The extended generalized characteristics needed here are
then obtained by taking uniform limits for vanishing regularization parameter, see
[LW]. For all τ > 0 and x0 ∈ R, these extended generalized characteristic curves
x = x0(t) = x0(t; τ, x0) with x0(τ) = x0 again satisfy the differential equation
dx0(t)
dt+ = u(t, x0(t)) almost everywhere with respect to m(t, ·). The derivative d

dt+

denotes the one-sided derivative from above in time.
The generalized characteristic curves x = x0(s; t0, x0), s ≥ t0, once defined,

allow the introduction of the family of characteristic or flow maps

x = ht0,s(x0) = x0(s; t0, x0), s ≥ t0. (9)

Also needed are the inverse maps h−1
t0,s which are not always proper inverses as point

mappings, because mass can accumulate. But they may be set valued mappings,
i.e. the image h−1

t0,s(x) may be a set. Due to this property one may prefer to think of
characteristic maps as maps between subsets of R from the outset. If the solution
contains vacuum states the set h−1

t0,s(x) may have gaps. In this case we add these
gaps to h−1

t0,s(x) so that the set will always be an interval. Important properties of
the flow maps proved in [LW] are the following

Lemma 3. The maps ht0,t : R → R are non-decreasing and continuous. Further-
more, they satisfy

ht1,t3(x) = ht2,t3
(
ht1,t2(x)

)
(10)

for all τ ≤ t1 ≤ t2 ≤ t3 ≤ T .

Further, one can prove

Theorem 4. For all bounded measurable functions φ : R → R we have the con-
servation of mass ∫ ∞

−∞
φ(x)m(T, dx) =

∫ ∞

−∞
φ(hτ,T (x))m(τ, dx) (11)

for all 0 ≤ τ < T <∞.

This theorem directly leads to the following conservation of mass and momen-
tum property. For all Borel sets A ∈ B and T > τ we have

m(T,A) = m(τ, h−1
τ,T (A)), I(T,A) = I(τ, h−1

τ,T (A)). (12)



On Measure Solutions to the Zero-Pressure Gas Model 221

An important concept for our analysis is the center of mass of a set and its dynamic
behavior. We denote the first moment of mass of a Borel set a ∈ B by

K(t, A) :=
∫
A

ξ m(t, dξ), t ≥ 0. (13)

Then the center of mass of a set A ∈ B with m(t, A) > 0 is defined as

M(t, A) :=
K(t, A)
m(t, A)

. (14)

Consider a point x with the properties that m(t, {x}) = 0 but the measure does
not vanish in any open neigborhood of x, i.e. x does not lie in the the vacuum.
Then we can still define the center of mass for the one point set {x} = A. Note
that by the Lebesgue Theorem one has for a Lebesgue point x that M(t, A) = x
by taking the limit of the center of mass on open neighborhoods of x. This holds
almost everywhere in the sense of Lebesgue measure. We may assume that this
holds everywhere in the complement of the vacuum set.

The following formula gives the shift of the center of mass of a set under the
flow map due to the characteristic velocity. For all A ∈ B, if m(t, A) > 0 and t ≥ τ ,
then

M(t, A) =

∫
h−1

τ,t(A)
(ξ + (t− τ)u(τ, ξ))m(τ, dξ)∫

h−1
τ,t(A)m(τ, dξ)

. (15)

For the shifted center of mass of any Borel set B ∈ B we introduce the notation

C(B; τ, t) :=

∫
B

[ξ + (t− τ)u(τ, ξ)]m(τ, dξ)∫
Bm(τ, dξ)

. (16)

This quantity tells us where the center of mass of the set B considered at time
τ would be at the later time t, if the generalized characteristics originating in B
do not interact with others that start outside B at time τ . Note that the set B
here is not necessarily an image under the map h−1

τ,t as required for the validity of
formula (15). In view of (15) we have M(t, A) = C(h−1

τ,t (A); τ, t).
Let 0 < τ < T < ∞ and y ∈ R, then we set [a, b] := h−1

τ,T (y). Then we have
C([a, b]; τ, T ) = y. One is mostly interested in the case a < b, which means that
generalized characteristics are merging and mass is being accumulated in y. Tak-
ing any x0 ∈ [a, b], one considers the generalized characteristic x0(t) = x0(t;x0, τ)
emerging there. All generalized characteristics originating in the interval [a, b] must
pass through y at time T , i.e. satisfy x0(T ) = y. The following fundamental in-
equalities may be proven

C([a, x0]; τ, T ) ≥ y ≥ C([x0, b]; τ, T ) (17)

for all x0 ∈ [a, b]. The possibility that the strict inequality holds comes from the
fact that the sets [a, x0] and [x0, b] are not images under the map h−1

τ,t unless
a = x0 = b.
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Let [a(t), b(t)] = h−1
t,T ({y}), for all t ∈ [τ, T ] and y ∈ R not in the vacuum set at

time T . Now the uniqueness proof works along the following lines. At time T one
studies the initial intervals [a(0), b(0)] for two solutions to the same initial data
that differ at y. It is then proven via a number of technical results, that the parts
of the intervals that are not in their intersection must have mass zero. Assuming
that this is not the case, the behaviour of the center of mass of the difference of
the intervals is studied and a contradiction can be derived. The complications in
the proof are mainly twofold. One is due to the fact that at a(0) and b(0) there
may be an allowed initial separation of mass occuring. The second comes from the
fact that the interval [a(0), b(0)] may contain vacuum sets.
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