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Abstract. We consider the steady state of the thermistor problem, a cou-
pled set of nonlinear elliptic equations governing the temperature and the
electric potential. We study the existence of weak solutions under the as-
sumption that the two diffusion coefficients are not bounded below far from
zero, arising to a degenerate system.
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1 Introduction

The heat produced by an electrical current passing through a conductor device is
governed by the so-called thermistor problem. This problem consists of a system of
nonlinear parabolic-elliptic system describing the temperature, u, and the electric
potential ϕ ([1,7]). Here, we consider the steady state case, resulting in a coupled
nonlinear elliptic system. Let J be the current density, Q the heat flux and E =
−∇ϕ the electric field; then by Ohm’s and Fourier’s law we have

J = σ(u)E , Q = −a(u)∇u,
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where a(u) and σ(u) are, respectively, the thermal and electric conductivities. Also,
from the usual conservation laws ∇ · J = 0, ∇ · Q = E · J we obtain

−∇ · (a(u)∇u) =∇ · (σ(u)ϕ∇ϕ) en Ω,
∇ · (σ(u)∇ϕ) =0 en Ω,

u =0 sobre ∂Ω,
ϕ =ϕ0 sobre ∂Ω,

(1)

where Ω is an open, bounded and smooth enough set in RN , N ≥ 1. Usually, the
right hand side of the equation for the temperature is written as σ(u)|∇ϕ|2, which
is equal to ∇ · (σ(u)ϕ∇ϕ) thanks to the equation verified by ϕ; this is true, for
instance, if ϕ ∈ H1(Ω).

The steady state themistor problem has been studied by several authors along
the last two decades. Among them, we refer to Cimatti ([3,4,5,6]) and Cimatti–
Prodi [8]. In these papers, the authors have obtained some existence results of
weak solutions in both, two and three dimensions, using the so-called Diesselhorst
transformation, and under the conditions u = u0 on ∂Ω, and u0 being a constant
value, or u = u0 ≥ um > 0 on ∂Ω, together with the hypothesis 0 < am ≤ a(u),
or a(u) = a0 constant, or even under the Wiedemann–Franz law (that is, a(s) =
Lsσ(s), L > 0 a constant value) with metallic conduction, and certain assumptions
on σ(u). We notice that in all these papers is assumed that a(s) ≥ a0 > 0, for
all s.

In the present work we show an existence result of a weak solution to the steady
state thermistor problem in divergence form (1) under the general assumption that
both a(s) and σ(s) are not bounded below far from zero. In this way, system (1)
becomes doubly degenerate; in particular, we cannot expect the regularity ϕ ∈
H1(Ω) ∩ L∞(Ω), or that u belongs to some Sobolev space. We point out that
the technique we use here is not based en the derivation of L∞-estimates for the
temperature.

2 Setting of the problem

We consider the steady state thermistor problem in divergence form (1) under the
following hypotheses on data:

(H.1) σ ∈ C(R) and 0 < σ(s) ≤ σ̄, for all s ∈ R.

(H.2) a ∈ C(R) ∩ L∞(R),
∫ +∞
0

a(s) ds = +∞, and A(r) =
∫ r
0
a(s) ds is a strictly

increasing function.

(H.3) ϕ0 ∈ H1(Ω).
(H.4) There exist an integer M > 1 and a function α : [M,+∞) → R such that

α(s) > 0, for all s ≥M , α is non-increasing and σ(s) ≥ α(s) > 0.
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(H.5) Let p ∈
(

2N
N+2 , 2

)
if N ≥ 2, p ∈ (1, 2) if N = 1 and p′ = 2− p, then

∫ +∞

M

ds
α(s)p/p′A(s− 1)q̄/2

< +∞, with


q̄ = 2∗ if N ≥ 3,
q̄ ∈ [2,+∞) if N = 2,
q̄ ∈ [1,+∞) if N = 1.

(2)

The main result of this work now follows

Theorem 1. Under assumptions (H.1)–(H.5), problem

−∆A(u) = ∇ · (σ(u)ϕ∇ϕ) in D′(Ω),
∇ · (σ(u)∇ϕ) = 0 in Ω,

u = 0 on ∂Ω,
ϕ = ϕ0 on ∂Ω,

 (3)

has a weak solution (u, ϕ) in the following sense

∀ q < N

N − 1
if N ≥ 2, q = 2 if N = 1, A(u) ∈W 1,q

0 (Ω), (4)

ϕ− ϕ0 ∈W 1,p
0 (Ω), σ(u)1/2∇ϕ ∈ L2(Ω), (5)∫

Ω

∇A(u)∇ξ = −
∫
Ω

σ(u)ϕ∇ϕ∇ξ, for all ξ ∈ D(Ω), (6)∫
Ω

σ(u)∇ϕ∇φ = 0, for all φ ∈ H1
0 (Ω). (7)

Furthermore, the term ∇ · (σ(u)ϕ∇ϕ) is a Radon measure and u ≥ 0 almost
everywhere in Ω.

2.1 Approximate problems

Let n ∈ N and introduce the functions an(s) = a(s) +
1
n
, σn(s) = σ(s) +

1
n
, then

we set the approximate problem given as follows
−∇ · (an(un)∇un) = σn(un)|∇ϕn|2 in Ω,
∇ · (σn(un)∇ϕn) = 0 in Ω,

un = 0 on ∂Ω,
ϕn = Tn(ϕ0) on ∂Ω.

(8)

where Tn(s) = min(|s|, n) sign s. By virtue of the classical existence results ([1]),
problem (8) has a solution such that un ∈ H1

0 (Ω), ϕn − ϕ0 ∈ H1
0 (Ω) ∩ L∞(Ω).

2.2 Estimates and passing to the limit

Since ∫
Ω

σn(un)∇ϕn∇φ = 0, for all φ ∈ H1
0 (Ω), (9)
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taking φ = ϕn − ϕ0 yield∫
Ω

σn(un)|∇ϕn|2 =
∫
Ω

σn(un)∇ϕn∇ϕ0

≤
(∫

Ω

σn(un)|∇ϕn|2
)1/2(∫

Ω

σn(un)|∇ϕ0|2
)1/2

,

hence ∫
Ω

σn(un)|∇ϕn|2 ≤ σ̃
∫
Ω

|∇ϕ0|2 ≤ σ̃‖ϕ0‖H1(Ω) = C(σ̃, ϕ0) = C1, (10)

therefore, (fn) =
(
σn(un)|∇ϕn|2

)
is bounded in L1(Ω).

Let vn = An(un), An(r) =
∫ r
0
an(s) ds and consider the elliptic problem

−∆vn = fn in Ω,
vn = 0 on ∂Ω.

}
From Boccardo–Gallouët estimates ([2,9]), we deduce that

(vn) is bounded in W 1,q
0 (Ω), for all q <

N

N − 1
if N ≥ 2, q = 2 if N = 1. (11)

In this way, there exist a subsequence (vm) ⊂ (vn) and v ∈ W 1,q
0 (Ω) such that

vm ⇀ v in W 1,q
0 (Ω)-weakly. (12)

Since the embeddingsW 1,q
0 (Ω) ↪→ Lr(Ω), for all r < N

N−2 if N ≥ 2, orW 1,q
0 (Ω) =

H1
0 (Ω) ↪→ C(Ω̄) if N = 1, are compacts, we may also assume that

vm → v in Lr(Ω)-strongly, if N ≥ 2, (13)

vm → v in C(Ω̄)-strongly, if N = 1, (14)

vm → v a.e. in Ω. (15)

Moreover, since fn ≥ 0 in Ω, then vn ≥ 0 in Ω. Since An is strictly increasing,
we also have un ≥ 0 in Ω. Now, we show that (A(un)) ⊂ H1

0 (Ω) is bounded in
W 1,q

0 (Ω). Indeed,

|∇A(un)| = |a(un)∇un| ≤ |an(un)∇un| = |∇An(un)|

and by virtue of (11), (A(un)) is also bounded in W 1,q
0 (Ω); then there exist a

subsequence (A(um)) ⊂ (A(un)) and z ∈ W 1,q
0 (Ω) such that

A(um)⇀ z in W 1,q
0 (Ω)-weakly, (16)

A(um)→ z in Lr(Ω)-strongly, for all r <
N

N − 2
if N ≥ 2, (17)

A(um)→ z in C(Ω̄)-strongly if N = 1, (18)

A(um)→ z a.e. in Ω. (19)
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But, since A is bijective, from (19) we deduce

um → A−1(z) = u a.e. in Ω, (20)

with u ≥ 0 a.e. in Ω.
Thanks to the definition of σn together with (20) we obtain

σm(um)→ σ(u) a.e. in Ω. (21)

Also, by virtue of (H.1), (σn(un)) is bounded in L∞(Ω), and taking into account
(21), we have

σm(um)→ σ(u) in L∞(Ω)-weakly-∗. (22)

Now, we seek for estimates to the sequence (ϕn) in some Sobolev spaceW 1,p(Ω),
with 1 < p < 2. By virtue of (H.5), 2

p′ is the conjugate exponent of 2
p . Applying

Young’s inequality and taking into account (10), we obtain∫
Ω

|∇ϕn|p ≤
(∫

Ω

σn(un)−p/p
′
)p′/2(∫

Ω

σn(un)|∇ϕn|2
)p/2

≤ C
p/2
1

(∫
Ω

σn(un)−p/p
′
)p′/2

.

Let’s show the following estimate∫
Ω

σn(un)−p/p
′ ≤ C2. (23)

From 0 < σ(s) ≤ σn(s) ≤ σ̃, for all s ∈ R, it yields

σ̃−p/p
′ ≤ σn(s)−p/p

′ ≤ σ(s)−p/p
′
, for all s ∈ R,

hence∫
Ω

σn(un)−p/p
′ ≤

∫
Ω

σ(un)−p/p
′ ≤

∫
{|un|≤M}

σ(un)−p/p
′
+
∫
{un>M}

σ(un)−p/p
′
.

Thanks to (H.1), σ−1 is bounded on compact sets of R, in particular, there exists
a constant value CM > 0 such that min|s|≤M σ(s) = CM , and this implies that

σ(un)−p/p
′
χ{|un|≤M} ≤ C−p/p′

M , and∫
{|un|≤M}

σ(un)−p/p
′ ≤ C−p/p′

M |Ω| = C(M,p, p′, Ω) = C3.

On the other hand, by virtue of (H.4), we deduce∫
{un>M}

σ(un)−p/p
′ ≤

∫
{un>M}

α(un)−p/p
′ ≤

∑
i≥M

∫
{i≤un<i+1}

α(un)−p/p
′

≤
∑
i≥M

∫
{i≤un<i+1}

α(i+ 1)−p/p
′
≤
∑
i≥M

α(i+ 1)−p/p
′
|{un ≥ i}| (24)
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In order to derive some estimate to |{un ≥ i}|, we first study |{vn = An(un) ≥ i}|.
To do so, we take Ti(vn) as a test function in the equation of un; then∫

Ω

∇vn∇Ti(vn) =
∫
Ω

σn(un)|∇ϕn|2Ti(vn) ≤ C1i,

the left hand side can be written as
∫
Ω ∇vn∇Ti(vn) =

∫
Ω |∇Ti(vn)|

2 = Ii,n. By
Sobolev’s inequality we have

Ii,n ≥ C
(∫

Ω

|Ti(vn)|q̄
)2/q̄

≥ C
(∫

{vn≥i}
|Ti(vn)|q̄

)2/q̄

= C

(∫
{vn≥i}

iq̄

)2/q̄

= Ci2 |{vn ≥ i}|2/q̄ ,

where q̄ = 2∗ = 2N/(N − 2) and C = C(Ω,N), if N ≥ 3, q̄ ∈ [2,+∞) and
C = C(Ω, q̄), if N ≤ 2. Consequently,

|{vn ≥ i}|2/q̄ ≤
C1i

i2C
=
C1

iC
,

which yields, |{vn ≥ i}| ≤
(
C1

iC

)q̄/2

=
C4

iq̄/2
. Since un ≥ 0 in Ω, An(un) ≥ A(un)

in Ω, {A(un) ≥ i} ⊂ {vn = An(un) ≥ i} and

|{A(un) ≥ i}| ≤ |{vn ≥ i}| ≤
C4

iq̄/2
,

hence ∣∣{un ≥ A−1(i)}
∣∣ ≤ C4

iq̄/2
,

this can be expressed as

|{un ≥ l}| ≤ C4

A(l)q̄/2
.

Therefore, thanks to (2) in (H.5) and (24), we have∫
{un>M}

σ(un)−p/p
′ ≤

∑
i≥M

α(i+ 1)−p/p
′ C4

A(i)q̄/2

≤ C4

∫ +∞

M−1

ds
α(s+ 1)p/p′A(s)q̄/2

= C5.

This shows (23) and we deduce that∫
Ω

|∇ϕn|p ≤ Cp/2
1 C

p′/2
2 = C6, (25)
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which means that, ϕn − ϕ0 is bounded in W 1,p
0 (Ω). We then take a subsequence

(ϕm) ⊂ (ϕn) and ϕ ∈ W 1,p(Ω) such that

ϕm ⇀ ϕ in W 1,p(Ω)-weakly, (26)

ϕm → ϕ in Lr̄(Ω)-strongly, for all r̄ < p∗ if N ≥ 2, (27)

ϕm → ϕ in C(Ω̄)-strongly, if N = 1, (28)

ϕm → ϕ a.e. in Ω. (29)

From (H.5), p > 2N/(N+2)which implies that p∗ = Np/(N−p) > 2. In particular

ϕm → ϕ in L2(Ω)-strongly. (30)

Thanks to (10)
(
σn(un)1/2∇ϕn

)
is bounded in L2(Ω)N ; and there exist a subse-

quence
(
σm(um)1/2∇ϕm

)
⊂
(
σn(un)1/2∇ϕn

)
and Φ ∈ L2(Ω)N such that

σm(um)1/2∇ϕm ⇀ Φ in L2(Ω)N -weakly. (31)

From (22) and (26) it is deduced that Φ = σ(u)1/2∇ϕ ∈ L2(Ω)N . Moreover, taking
into account (H.1), (22) and (31), we also have

σm(um)∇ϕm ⇀ σ(u)∇ϕ in L2(Ω)N -weakly. (32)

Consequently, ∇ · (σ(u)∇ϕ) ∈ H−1(Ω) and

〈∇ · (σ(u)∇ϕ) , φ〉 = −
∫
Ω

σ(u)∇ϕ∇φ = 0, for all φ ∈ H1
0 (Ω),

Going back to (9) and taking φ = ϕnξ, with ξ ∈ D(Ω). Then

0 =
∫
Ω

σn(un)∇ϕn∇(ϕnξ) =
∫
Ω

σn(un)|∇ϕn|2ξ +
∫
Ω

σn(un)∇ϕnϕn∇ξ

=
∫
Ω

σn(un)|∇ϕn|2ξ −
∫
Ω

∇ · (σn(un)ϕn∇ϕn) ξ,

and so,
σn(un)|∇ϕn|2 = ∇ · (σn(un)ϕn∇ϕn) en D′(Ω); (33)

from the equality∫
Ω

σm(um)ϕm∇ϕm∇ξ =
∫
Ω

σm(um)1/2ϕmσm(um)1/2∇ϕm∇ξ.

and by virtue of (21), (30) and (31), passing to the limit in m→∞, it yields∫
Ω

σ(u)1/2ϕσ(u)1/2∇ϕ∇ξ =
∫
Ω

σ(u)ϕ∇ϕ∇ξ, for all ξ ∈ D(Ω),

so, σm(um)|∇ϕm|2 = ∇ · (σm(um)ϕm∇ϕm) → ∇ · (σ(u)ϕ∇ϕ) en D′(Ω). Since
σm(um)|∇ϕm|2 ≥ 0 is bounded in L1(Ω), we conclude that ∇ · (σ(u)ϕ∇ϕ) is a
positive Radon measure. This ends up the proof of theorem 1.
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Remark 2. It is interesting to know if the equality ∇ · (σ(u)ϕ∇ϕ) = σ(u)|∇ϕ|2
holds in our setting. There are cases where this holds true (for instance in N = 1).
In the general case and with the regularity deduced here for u and ϕ, we do not
know if this equality still holds ([10]).
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