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Abstract. We prove the existence of heteroclinics for a 4th order O.D.E.
related to the extended Fisher-Kolmogorov equation. Those solutions are
obtained by minimization of a functional over a convenient set of functions.
In particular, we
obtain heteroclinic connections between the extreme equilibria for a (dou-
ble well) potential with three minima at the same level.
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1 Introduction

In the study of ternary mixtures containing oil, water and amphiphile, a modifi-
cation of a Ginzburg-Landau model yields for the free energy a functional of the
form (see[2])

F(u) =
∫
[c(∇2u)2 + g(u)|∇u|2 + f(u)] dx dy dz

� Research supported by Fundação para a Ciência e a Tecnologia.

This is the preliminary version of the paper.

mailto:habets@anma.ucl.ac.be
mailto:sanchez@lmc.fc.ul.pt
mailto:massimo.tarallo@mat.unimi.it
mailto:susterra@tin.it


204 P. Habets, L. Sanchez, M. Tarallo and S. Terracini

where the scalar order parameter u is related to the local difference of concen-
trations of water and oil. The function g(u) quantifies the amphiphilic properties
and the “potential” f(u) is the bulk free energy of the ternary mixture. In some
relevant situations g may take negative values to an extent that is balanced by the
positivity of c and f .

The admissible density profiles may therefore be identified with critical points
of F in a suitable function space. In the simplest case where the order parameter
depends only on one spatial direction, u = u(x) is defined on the real line and
(after scaling) our functional becomes

F(u) =
∫ +∞

−∞
[
1
2
[(u′′2) + g(u)u′2] + f(u)] dx. (1)

The corresponding Euler-Lagrange equation is

uiv − g(u)u′′ − 1
2
g′(u)u′2 + f ′(u) = 0. (2)

When g ≡ const = β, we recognize here the well known extended Fisher-Kolmogo-
rov equation. If the potential f(u) has two nondegenerate minima, say, at ±1, with
f(±1) = 0, one question of great interest is the existence of a heteroclinic that
connects these two equilibria. Our purpose is to obtain such a solution to (2) in
cases where g may change sign. However, we shall be interested also in the case
where f possesses three minima at the same level, since this is the framework
where description of the three distinct phases becomes possible (see [2,4,5]).

Let us recall that the case g ≡ const = β �= 0, has attracted the attention of
several authors. Peletier and Troy (see [7] and related papers in its references) have
extensively dealt with the case β > 0 and the model potential f(u) = 1

4 (u
2 − 1)2;

they have shown that a heteroclinic connecting ±1 exists for all values of β > 0.
The cases β2 < 8 (“saddle-focus” case) and β2 ≥ 8 (“saddle-node” case) need a
different treatment. Kalies and VanderVorst [6] have considered an even potential
in the saddle-foci case. In [3] Kalies, Kwaspisz and VanderVorst have classified
heteroclinic connections (with β > 0) between the two consecutive equilibria ac-
cording to their homotopy type. Jan Bouwe van den Berg [1] has proved that if
β2 ≥ 8 the heteroclinic is asymptotically stable. More recently Smets and van
den Berg have considered the case β < 0 for which they prove (in a saddle-foci
case), by a version of the mountain pass theorem, that at each equilibria there
arise homoclinic solutions.

Here we start by considering the simple case g ≡ 0 and address two problems
that, however, seem not to be covered by the existing literature. First (section 2)
we prove the existence of the heteroclinic without the assumption of symmetry
for f . Second (section 3), we look at the case where the potential f is symmetric,
having not two, but three equilibria (0 and ±1) at the same minimum level: we
shall see that a heteroclinic connecting ±1 still exists in this case.

For simplicity, we deal with a potential that reduces to a quadratic function
near ±1, see assumption (F1). However, by using the Hartmann-Grobman theo-
rem, we could instead consider any nondegenerate minima at these points.
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Of course, in the case g ≡ β = 0 our functional becomes

J (u) =
∫ +∞

−∞
[
1
2
(u′′2) + f(u)] dx. (3)

and its corresponding Euler-lagrange equation is

uiv + f ′(u) = 0. (4)

Finally, in section 4 we shall introduce a “compatibility condition” relating g
and f in order to consider the original problem (1), (2). That condition allows g
to take negative values somewhere between ±1 as required in the the theory of
ternary mixtures; it is consistent with physical arguments (see [2]) and from the
mathematical point of view, it enables us to reduce the problem to the simpler
case g ≡ 0, since we are then able to construct a functional similar to J that
bounds F from below.

A variety of numerical results leading to solutions of equations of type (2),
obtained by minimization of the free energy F , can be found in the thesis of H.
Leitão [4].

The authors are indebted to H. Leitão for having brought this problem to
their attention. We aknowledge also the interest and useful discussions with D.
Bonheure.

2 Potentials with a single well

We consider a potential f ∈ C2(R) such that for some 0 < a < 1/2 and α > 0,

(F1) f(u) = 2α4(u− 1)2, ∀u ∈ (1− a, 1 + a),

f(u) = 2α4(u+ 1)2, ∀u ∈ (−1− a,−1 + a),

(F2) f(u) = 0 if and only if u = ±1

and

(F3) lim inf
|u|→∞

f(u) > 0.

Lemma 1. Given an interval [a, b] ⊂ R and a function u ∈ H2(a, b) such that
u(a) = A, u(b) = B, u′(a) = A1, u

′(b) = B1 the following inequality holds:∫ b

a

u′′2 dx ≥ 4
b − a [(B1 −A1)2 + 3(

B −A
b− a −A1)(

B −A
b− a −B1)]

and equality holds if and only if u is a 3rd degree polynomial.
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We introduce the space E consisting of all functions u defined in R such that
u ∈ C1(R), u′′ ∈ L2(R) and

lim
x→±∞

u(x) = ±1.

In order to minimize J in E we shall now obtain estimates on functions u ∈ E in
terms of an upper bound of the values J (u).

Lemma 2. There are constants K and N , depending only on C, such that, for
any function u ∈ E, J (u) ≤ C implies

‖u‖∞ ≤ K, ‖u′‖∞ ≤ N.

Proof. According to the assumptions on f there exist K > 0 and A > 0 such that

K2

A3
> C and Af(u) > C ∀|u| ≥ K

2
.

We claim that ‖u‖∞ ≤ K. Otherwise, either the set {x : |u(x)| ≥ K/2} has
measure greater than A and

J (u) ≥
∫ +∞

−∞
f(u) dx > A

C

A
= C,

a contradiction, or we can pick up an interval (c, d) such that d − c < A, u(c) =
|u|∞, u(d) = K

2 , u(x) ≥
K
2 , ∀x ∈ (c, d) and therefore by lemma 1

J (u) ≥
∫ d

c

u′′2

2
dx ≥ 2

d− c [u
′(d)2 + 3(

u(d)− u(c)
d− c − u′(d))(u(d) − u(c)

d− c )]

≥ 4
d− c [

u(d)− u(c)
d− c ]2 ≥ K2

A3
> C,

again a contradiction. Hence the first part of the statement is proved.
Next choose N such that

N > 4K, , N2 > 8C.

We show that u′ cannot attain the value N and one shows analogously that it
cannot attain the value −N . For suppose that u′(t0) = N ; then there exists t1 ∈
(t0, t0 + 1) such that u′(t1) = N

2 . Hence, letting m = u(t1)−u(t0)
t1−t0 it turns out that

J (u) ≥
∫ t1

t0

u′′2

2
dx ≥ 2

t1 − t0
[(
N

2
)2 + 3(m−N)(m− N

2
)] ≥ N2

8
> C,

which is impossible.
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Lemma 3. If u ∈ E and J (u) <∞ then

lim
|x|→∞

u′(x) = 0.

Proof. This is a variation on the above argument. If, for instance, there exists ε > 0
and a sequence xn → +∞ with u′(xn) ≥ ε for all n then, since u(+∞) = 1, ∀δ > 0
we can pick up an interval (t0, t1) such that u′(t0) ≥ ε, u′(t1) = ε

2 , u(t1) ≤ u(t0)+δ
and t1 − t0 < 2δ

ε . As before, we derive (with the same meaning for m)

2J (u) ≥
∫ t1

t0

u′′2 dx ≥ 4ε
2δ

[(
ε

2
)2 + 3(m− ε)(m− ε

2
)] ≥ ε3

8δ
.

The main idea in the next lemma is that there is an upper bound, depending
only on the value of J , for the time it takes for a function u ∈ E to travel in the
(u, u′)-plane from a neighborhood of (−1, 0) to a neighborhood of (1, 0).

Lemma 4. Let C > 0 and ε > 0 be given. Then there exists R > 0 such that for
any function u ∈ E with J (u) ≤ C, there exist x1 and x2 > x1 that satisfy

|u(xi)− (−1)i| ≤ ε, |u′(xi)| ≤ ε and x2 − x1 ≤ R.

Proof. Let C > 0 and ε > 0 be given and let u ∈ E be so that J (u) ≤ C. Define
x1 = sup{x | |u(x) + 1| ≤ ε and |u′(x)| ≤ ε}. As u ∈ E , it is clear that x1 ∈ R.
Now given x2 > x1 suppose that

∀x ∈ [x1, x2], |u(x)− 1| ≥ ε or |u′(x)| ≥ ε. (5)

We shall give a bound on x2 − x1 in terms of C and ε.
Define the sets

A = {x ∈ [x1, x2] | |u(x) + 1| ≥ ε and |u(x)− 1| ≥ ε},
and

B = {x ∈ [x1, x2] | |u(x) + 1| < ε or |u(x)− 1| < ε}.
It is easy to see that B is the union of intervals Ii on which |u′(x)| ≥ ε. Further
except maybe for the first and the last one, each of these intervals is adjacent to
an interval Ji = [ci, di] so that

∀x ∈ [ci, di], u(x) ≥ 1 + ε, u′(ci) ≥ ε, u′(di) ≤ −ε,
or

∀x ∈ [ci, di], u(x) ≤ −1− ε, u′(ci) ≤ −ε, u′(di) ≥ ε.

Claim 1 – meas(A) ≤ C
rε

, where

rε = min{f(u) | |u+ 1| ≥ ε and |u− 1| ≥ ε}.

This follows from the inequalities

C ≥ J (u) ≥
∫
A

f(u(x)) dx ≥ rεmeas(A).



208 P. Habets, L. Sanchez, M. Tarallo and S. Terracini

Claim 2 – meas(Ii) ≤ 2. On an interval Īi = [ai, bi], we have |u′(x)| ≥ ε and

2ε ≥ |u(bi)− u(ai)| = |
∫ bi

ai

u′(x) dx| ≥ ε(bi − ai).

Claim 3 – The number n of intervals Ji is bounded : n ≤ C/min{2ε2, rε}. Let
Ji = [ci, di] be such that ∀t ∈ [ci, di], u(t) ≥ 1 + ε, u′(ci) ≥ ε and u′(di) ≤ −ε. We
can write

2ε ≤ |u′(di)− u′(ci)| = |
∫ di

ci

u′′(x) dx| ≤ ‖u′′‖L2(ci,di)(di − ci)1/2.

and ∫ di

ci

[12 (u
′′)2 + f(u)] dx ≥ 2ε2

di − ci
+ rε(di − ci) ≥ min{2ε2, rε}.

A similar argument holds if ∀x ∈ [ci, di], u(x) ≤ −1−ε, u′(ci) ≤ −ε and u′(di) ≥ ε.
It follows then that

C ≥ J (u) ≥
∑
i

∫ di

ci

[12 (u
′′)2 + f(u)] dx ≥ nmin{2ε2, rε}.

Conclusion – We deduce from the previous claims that

x2 − x1 = meas(A) + meas(B) ≤ C
rε

+ (C/min{2ε2, rε}+ 2)2

and the lemma follows.

For convenience we introduce the notation

V+(T, ε) := {u ∈ E : |u(t)− 1| ≤ ε, |u′(t)| ≤ ε ∀t ≥ T }

where T and ε are given positive numbers. Analogously we define V−(T, ε) replacing
−1 for 1 and t ≤ −T for t ≥ T in the above definition. Let us also set

V(T, ε) = V+(T, ε) ∩ V−(T, ε).

Lemma 5. Let C > 0 and ε > 0 be given. Then there exists R > 0 such that for
any u ∈ E with J (u) ≤ C, there exists v ∈ V(R, ε) that satisfies

J (v) ≤ J (u).

Proof. Fix ε1 such that

ε1(2 +
1
α
) ≤ min{a, ε}, (4α+ 2)ε1 ≤ ε, and (α+ 2α2 + 2α3)ε21 ≤

α4a3

4N
.

Let R be given as in Lemma 4 with respect to C and ε1. Let u ∈ E be such that
J (u) ≤ C. There exist x1 ≤ x2 such that

|u(xi)− (−1)i| ≤ ε1, |u′(xi)| ≤ ε1 and x2 − x1 ≤ R.
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Define then the function v as

v(x) =


−1 + z(x) if x ≤ x1,

u(x) if x1 ≤ x ≤ x2,

1 + w(x) if x ≥ x2,

where z and w are respectively the solutions of

ziv + 4α4z = 0, −1 + z(x1) = u(x1), z′(x1) = u′(x1), z(−∞) = 0
and

wiv + 4α4w = 0, 1 + w(x2) = u(x2), w′(x2) = u′(x2), w(+∞) = 0.

Next we compute

z(x) = eα(x−x1)[z(x1) cosα(x − x1) + ( z
′(x1)
α − z(x1)) sinα(x − x1)],

where
|z(x1)| ≤ ε1, |z′(x1)| ≤ ε1.

It follows that for all x ≤ x1, we have |z(x)| ≤ ε1(2 + 1
α ) ≤ min{a, ε}, |z′(x)| ≤

(4α+ 2)ε1 ≤ ε and

K(z) :=
∫ x1

−∞
[12 (z

′′)2 + 2α4z2] dx = 1
2 [z

′′(x1)z′(x1)− z′′′(x1)z(x1)]

= αz′(x1)2 − 2α2z(x1)z′(x1) + 2α3z(x1)2 ≤ (α + 2α2 + 2α3)ε21 <
α4a3

4N .

If for any x ∈ ]−∞, x1], u(x) ∈ [−1− a,−1 + a], we compute

∫ x1

−∞
[12 (u

′′)2 + f(u)] dx = K(1 + u) ≥ K(z).

Here we used the fact that, as z is a critical point of the convex functional K(u),
it is a minimum. On the other hand, if there exists x ∈ ] − ∞, x1] such that
u(x) �∈ [−1− a,−1 + a], there exist x3 ≤ x4 ≤ x1 so that

u(x3) = −1 + a/2, u(x4) = −1 + a
and

∀x ∈ [x3, x4], u(x) ∈ [−1 + a/2,−1 + a].
It follows that

N(x4 − x3) ≥
∫ x4

x3

u′(x) dx = a
2 = u(x4)− u(x3) = a

2

and ∫ x1

−∞
[12 (u

′′)2 + f(u)] dx ≥
∫ x4

x3

[12 (u
′′)2 + f(u)] dx ≥ α4a3

4N .
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A similar computation holds for the interval [x2,+∞[ and we can write

J (v) =
∫ x1

−∞
[12 (z

′′)2 + 2α4z2] dx

+
∫ x2

x1

[12 (u
′′)2 + f(u)] dx+

∫ ∞

x2

[12 (w
′′)2 + 2α4w2] dx

≤
∫ x1

−∞
[12 (u

′′)2 + 2α4(u+ 1)2] dx

+
∫ x2

x1

[12 (u
′′)2 + f(u)] dx+

∫ ∞

x2

[12 (u
′′)2 + 2α4(u− 1)2] dx

= J (u).

At last, it is clear that v ∈ C1(R),
v′′ ∈ L2(R) and as z(−∞) = w(∞) = 0 we can write v ∈ E . Translating v if

necessary, we can assume −R ≤ x1 ≤ x2 ≤ R so that v ∈ V(R, ε).

Lemma 6. Let a function u ∈ C1(R) be such that u′′ ∈ L2(R), u′ is bounded,
J (u) < +∞ and there exist R > 0 and 0 < ε < 1 such that

|u(x)− (−1)i| < ε if (−1)ix > R, i = 1, 2.

Then u ∈ E.

Proof. Clearly, if u satisfies the assumptions of the lemma then because of (F1)-
(F2)-(F3)

lim inf
x→+∞

u(x) ≤ 1 ≤ lim sup
x→+∞

u(x).

Strict inequalities are easily ruled out since u′ is bounded. The statement now
follows from Lemma 3.

Theorem 7. There exists a minimizer u of J in E which is a heteroclinic of (4)
connecting ±1.

Proof. Let m := infu∈E J (u) and choose a minimizing sequence (un)n ⊂ E such
that J (un) ≤ m+ 1/n, for any n ∈ N.

Fix 0 < ε < 1
2 . According to Lemma 5, there exist R > 0 and a sequence

(vn)n ⊂ V(R, ε) that satisfies J (vn) ≤ J (un) ≤ m+ 1
n .

Estimates in Lemma 2 imply that (vn)n has a subsequence (still written (vn)n
for simplicity) such that for some function v

vn
Cloc(R)→ v, v′′n

L2(R)
⇀ v′′.

By Fatou’s lemma, we have J (v) ≤ m. On the other hand it is clear that |v(x) −
1| ≤ ε and |v′(x)| ≤ ε for |x| ≥ R. It follows from Lemma 6 that v ∈ E and
therefore J (v) = m. The proof is complete.
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3 Symmetric potentials with a double well

In this section we assume that f is a C2 even function with three minima at the
same level, namely we replace (F2) by the following:

(F2′) f(u) = 0 if and only if u = 0 or u = ±1.
and we introduce

(F4) f is even and increasing on some interval ]0, b[, b < 1.

Theorem 8. Assume that f satisfies (F1),(F2’), (F3) and (F4). Then there exists
an odd heteroclinic of (4), with u′(0) > 0, connecting ±1.
Proof. As in [6] we now look for a minimizer of

J0(u) =
∫ +∞

0

[
1
2
(u′′2) + f(u)] dx.

in the set E0 consisting of functions u ∈ C1([0,+∞)) with u(0) = 0, u(+∞) = 1
and u′′ ∈ L2(0,+∞). A minimizer will satisfy (4) in [0,+∞) and the natural
boundary condition u′′(0) = 0; hence its odd extension is the solution one looks
for.

First we note that estimates for the C1 norm of u in terms of an upper bound
of J0(u) immediately follow from Lemma 2. In order to construct a compact
minimizing sequence in E0 it suffices to show that, given a small number ε > 0,
there exists T > 0 such that u ∈ E0 may be replaced with v ∈ E0 such that
J0(v) ≤ J0(u) and v ∈ V+(T, ε).
By the argument of lemma 4, given u ∈ E0 with J0(u) < ∞ there exists

t∗ = inf{t > 0 : |u(t) − 1| ≤ ε, |u′(t)| ≤ ε}. We replace the “tail” of u (the
restriction of u to t ≥ t∗) with a solution of a linear problem translated to 1 as
in the proof of lemma 5. Also, using arguments similar to those appearing in the
proof of lemma 4, it is easy to estimate, in terms of the value C := J0(u), the
length of the interval [t′, t∗] such that u(t′) = b/2 and u(t) ≥ b/2 if t ∈ [t′, t∗].
Because of (F2’) we can find γ > 0, depending only on C, such that max{u′(t) :
t ∈ [t′, t∗], b/2 ≤ u(t) ≤ b} ≥ γ. Let t̄ be a point where this maximum is attained
and consider the function w ∈ C1(R) defined by

w(x) =

u(x) if x ≥ t̄

u(t̄) + u′(t̄)(x − t̄) if x ≤ t̄
(7)

Now the zero θ of w to the left of t̄ depends only on u′(t̄) and therefore on C. If
w(x) ≤ u(x) ∀x ∈ [θ, t̄] we define v(x) = w(x+ θ) for x ≥ 0. If this is not the case,
then ∃t̃ ∈ [θ, t̄] such that u′(t̃) = max{u′(t) : t ∈ [θ, t∗], u(t) ≥ 0} ≥ u′(t̄) and
0 ≤ u(t̃) < b/2. In this case we consider w̃ defined as in (7) with t̃ instead of t̄.
Clearly, the zero θ̃ of w̃ is ≥ θ, and we define v(x) = w(x + θ̃) for x ≥ 0. In any
case it is obvious, because of (F4), that J0(v) ≤ J0(u)

and we can take T = t∗ − θ.
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4 Back to the original problem

In this section we reconsider the functional F and its Euler-Lagrange equation (2).
We shall assume that g is a C1 function in R satisfying

(G) g−1(]−∞, 0[) =]γ−, γ+[ where − 1 < γ− < γ+ < 1 and for some

s < 1 we have |G(u)| ≤ s
√
8f(u), ∀u ∈ R, where G(u) :=

∫ u

0

g(s) ds.

Lemma 9. Under the condition (G), there is a constant k > 0 such that ∀u ∈ E

F(u) ≥ k

∫ +∞

−∞
[
u′′2

2
+ f(u)] dx.

Proof. Take c ∈]k, 1[ and compute∫ +∞

−∞
[
1
2
(u′′2 + g(u)u′2) + f(u)] dx ≥

∫ +∞

−∞
[
1
2
((1− c2)u′′2 + (cu′′ − G(u)

2c
)2) + (f(u)− G(u)2

8c2
)] dx

where we have performed integration by parts to obtain

−
∫ +∞

−∞
G(u)u′′ dx =

∫ +∞

−∞
g(u)u′2 dx.

Hence by our assumption

F(u) ≥
∫ +∞

−∞
[
(1− c2)u′′2

2
+ (1 − (

k

c
)2)f(u)] dx.

Theorem 10. Let (F1)-(F2)-(F3)-(G) hold. Then equation (2) has a heteroclinic
connecting ±1 that minimizes F on E.

Proof. The proof follows the same ideas as in theorem 7. The aim is to modify
a minimizing sequence (un) for F so that it is possible to extract converging

subsequences.
Step 1. (un) is bounded in C1(R). This is a straightforward consequence of

Lemmas 9 and 2.
Step 2. The statements of Lemmas 4 and 5 are true for the functional F .

While this is clear with respect to lemma 4 we must make some comment on how
to replace the tails of a given function u = un for a new function related to u while
the value of the functional F decreases. So let us consider for instance the right
tail. Given that |u(x2)− 1| < ε and |u′(x2)| < ε consider the functional

F2(v) =
∫ +∞

x2

[
1
2
(v′′2 + g(v)v′2) + f(v)] dx
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having as domain D2 the set of functions v ∈ C1[x2,+∞[) such that v′′ ∈
L2(]x2,+∞[), v(x2) = u(x2) and v′(x2) = u′(x2). Using integration by parts as in
the proof of Lemma 8 we see that, for any function v ∈ D2

F2(v) ≥ −G(v(x2))v′(x2) + k

∫ +∞

x2

[
v′′2

2
+ f(v)] dx. (8)

We shall also consider the subset C2 ⊂ D2 consisting of those functions v such
that |v(x) − 1| ≤ a ∀x ≥ x2. Without loss of generality we may assume that a is
so small that g(u) > 0 ∀u ∈ [1− a, 1 + a].

Claim A. If v ∈ D2\C2 and v′ is bounded then F2(v) ≥ −G(v(x2))v′(x2)+k a3

8N .
Here N is an upper bound for ‖v′‖∞.

In fact, as we have seen in the proof of Lemma 5, we may choose an interval
[x3, x4] such that x3 ≥ x2, v(x3) = a/2, v(x4) = a and a/2 ≤ v(x) ≤ a ∀x ∈
[x3, x4]. Hence the result follows as before, by using the above inequality (8).

Claim B. The minimum of F2 in D2 exists and, if ε is sufficiently small, the
minimum is attained at a function z ∈ C2.

Clearly, F2 is bounded below in D2. Estimates analogous to those obtained
in Lemma 2 hold. Using inequality (8) it is easily seen that by extracting con-
vergent subsequences from a minimizing sequence the minimum is obtained. Now
let C2(δ) = {v ∈ D2 : |v(x) − 1| ≤ δ ∀x ≥ x2}. Let also β := sup{g(u) : u ∈
[1 − a, 1 + a]}. Given 0 < δ < a there exists ε > 0 such that the solution z of the
linear problem

viv − βv′′ + 4α4(v − 1) = 0, v(x2) = u(x2), v′(x2) = u′(x2), v(+∞) = 1

belongs to C2(δ). On the other hand

min
C2
F∈ ≤ min

C2(δ)
F2 ≤ min

v∈C2(δ)

∫ +∞

x2

[
1
2
(v′′2 + βv′2) + 2α4(v − 1)2] dx =∫ +∞

x2

[
1
2
(z′′2 + βz′2) + 2α4(z − 1)2] dx = O(ε2) as ε→ 0.

Combining this with Claim A, Claim B follows.
Step 3. The minimization procedure completed. As in theorem 7, a minimizing

sequence (un) for F is replaced by a new minimizing sequence (vn) ∈ V(R, ε) (with
a convenient choice of R and ε). The estimates in step 1 allow us to extract a
subsequence still denoted (vn) that converges to some function u weakly (in the
same sense as in theorem 7) and C1-uniformly on compact intervals. To see that
v is a minimizer of F it suffices to note that, since g(vn) > 0 on [R,+∞[, Fatou’s
lemma is applicable and∫ +∞

R

g(u(x))u′(x)2 dx ≤ lim inf
n→∞

∫ +∞

R

g(vn(x))v′n(x)
2 dx.

The same is true on ]−∞,−R] and of course this implies that∫ +∞

−∞
g(u(x))u′(x)2 dx ≤ lim inf

n→∞

∫ +∞

−∞
g(vn(x))v′n(x)

2 dx.
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Similar arguments can be used to deal with the double well potential. However,
we should rephrase (F2’) as

(F2′′) There exists m such that

f(u) = m
u2

2
∀x ∈]− a, a[ and f(u) = 0 if and only if u = 0 or u = ±1.

The next two lemmas are similar to a part of the contents of section 4 in [3].

Lemma 11. Let |α| < 2
√
β. Then there exists ∆ > 0 such that any nontrivial

solution of the differential equation

uiv + αu′′ + βu = 0

changes sign in every interval of length > ∆.

Proof. After rescaling we can write any solution as u = Aet sin(t+φ)+Be−t sin(t+
ψ) where A, B, φ, ψ ∈ R. We can suppose that A �= 0 and B �= 0. Set E(t) = |A|et,
F (t) = |B|e−t and let t̄ be such that F (t̄) = G(t̄). Since max{F (t), G(t)} >
min{F (t), G(t)} for t �= t̄ and the points where the graphs of Aet sin(t + φ) and
Be−t sin(t+ψ) touch those of ±E and ±F have abcissae that difer from π, we see
that it suffices to choose ∆ > 3π.

Lemma 12. Let T > 1 and α, β be as in the preceeding lemma. Let z be a
minimizer of

GT (u) :=
∫ T

0

[
1
2
(u′′2 + αu′2 + βu2) dx

in the subspace Z(T, δ, η) of H2(0, T ) consisting of those functions such that u(0) =
0, u(T ) = δ, u′(T ) = η. Then given ε > 0 there exist δ0 > 0 and η0 > 0 such that
for all T ≥ 1, if |δ| < δ0 and |η| < η0 then |z| ≤ ε in [0, T ].

Proof. First note that indeed the minimum exists, since under our assumptions
there are constants c > 0, d > 0, depending on α and β only, such that we have
for all u ∈ Z(T, δ, η)

GT (u) ≥ c‖u‖2H2(0,T ) − dδη. (9)

It is easy to see that the value of the minimum is O(δ2 + η2). Now if there is a
constant k > 0 such that, for all choices of |δ| and |η| the minimizer z satisfies
‖z‖C[0,T ] > k then (using lemma 1, for instance) we obtain another constant k′ > 0
such that ‖z‖H2(0,T ) > k′. From (9) and what has been said above we obtain a
contradiction and the lemma follows.

Theorem 13. Assume that f is even and satisfies (F1),(F2’) and (F4). Assume
in addition that g is a C2 even function and satisfies (G). Then there exists an
odd heteroclinic of (2) connecting ±1.
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Proof. As in the preceeding case we concentrate on the details that demand a
different argument with respect to the simpler case where g ≡ 0. The main idea is
to modify a minimizing sequence for

F0 =
∫ +∞

0

[
1
2
[(u′′2) + g(u)u′2] + f(u)] dx.

in E0 so that its modified elements go from 0 to a neighborhood of 1 in bounded
time. To simplify our exposition, in way similar to what we have done about f ,
assume in addition

(G′) ∃g0 < 0 such that g(u) = g0 ∀u ∈]− a, a[.

Note that the compatibility condition (G) entails

g0 < 2
√
m.

So fix 0 < ε < a and take one of the elements u ∈ E0 of a given minimizing
sequence. If t∗ is as in the proof of theorem 8, consider the largest value t+ < t∗

such that u(t+) = ε and u(t) > ε whenever t ∈]t+, t∗[; it is clear that t∗ − t+

is bounded in terms of an upper bound of F0 taken over the sequence. Now if u
has no zero in [t+ − 1, t+] there is T ∈ [t+ − 1, t+] where 0 < u(T ) = δ < ε and
0 ≤ u′(T ) = η < ε.

Claim: If ε is sufficiently small, the minimum of

F0,T =
∫ T

0

[
1
2
[(u′′2) + g(u)u′2] + f(u)] dx.

in Z(T, δ, η) is attained in some function z with ‖z‖∞ < a and so it is the mini-
mum of GT .

Proof of the Claim: as in lemma.. . we have

F0,T (u) ≥ G(δ)η + kJ0,T (u), u ∈ Z(T, δ, η)

where we have set kJ0,T =
∫ T
0 [12 [u

′′2 + f(u)] dx and we argue using the last
summand as in the proof of Claim B in theorem 10.

Suppose that ε has been fixed according to the Claim. We replace the restriction
of u to [0, T ] with the minimizer z of F0,T , so that with the new function

w(x) =

 z(x) if 0 ≤ x ≤ T

u(x) if x ≥ T

we clearly have F0(w) ≤ F0(u). Lemma 11 implies that w(t−) = 0 for some
t− ≥ T −∆. Integration by parts again yields∫ t−

0

[
1
2
[(w′′2) + g(w)w′2] + f(w)] dx ≥ 0
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so that we may discard the restriction of w to [0, t−] and the function v(x) = w(x+
t−) has the desired properties: F0(v) ≤ F0(u) and it enters the ε-neighborhood of
(1) at a time depending only of the upper bound of the sequence and the value
of ε.
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