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Abstract. We consider periodically forced ODEs which exhibit quasiperi-
odic oscillations. These oscillations are investigated by an approximation
and continuation of the associated invariant torus with respect to free
system parameters. For the invariant torus we derive an uncomplicated in-
variance equation whereby we do not require the system to be partitioned
or an a-priori-coordinate transformation to be applied. This equation is
solved by semidiscretisation methods where Fourier-Galerkin methods es-
pecially in the case of periodically forced ”weakly nonlinear” ODEs lead
to low dimensional autonomous systems which can be treated by standard
algorithms.

Also in the general case it turns out that this approach allows an effi-
cient computation and continuation of quasiperiodic solutions. A number
of problems has been analysed successfully and an example is given in this
paper.
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1 Introduction

We consider periodically forced ordinary differential equations (ODEs) of order
n>2
dx

il flz,t), f:R"xR—R" (1)

This is the preliminary version of the paper.
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under the following assumptions:

1. f e C"(R™ x R) with r > 1 sufficiently large. f is 2r—periodic with respect to
t:

fla,t+27) = f(x,t) VY(x,t) e R™ x R.

2. System (1) has a locally unique quasiperiodic solution y € C*(R) with p (2 <
p < n) rationally independent basic frequencies w; = 1,wa, ..., wp.

These p frequencies form a rationally independent (incommensurate) frequency
basis 2 = (w1,ws,...,wp) with wy =1 because of the 2r—periodicity of f. The
following methods can be applied to autonomous systems as well, but then the
basic frequency w; is also unknown and an additional phase condition must be
introduced.

During the last 15 years very different approaches have been developed for ap-
proximating quasiperiodic solutions and invariant tori. The method of invariance
equations tries to compute the parametrisation of an invariant torus by solving
the quasilinear partial differential equations. While [4], [5], [6], [1], [2], [16], [10]
use special forms of difference methods, in [12], [9], [3] multidimensional Fourier
methods are applied. The drawback of these approaches is that an a-priori trans-
formation from Cartesian to radius-angle coordinates (u, 8) is required and in most
applications such a global parametrisation is neither possible nor numerically fea-
sible.

As an alternative approach, [8], [14], [15], [L1], [9] consider a suitable Poincaré
map P and try to compute an invariant manifold of P as a solution of a functional
equation. The performance of these methods strongly depends on discretisation
and interpolation techniques and also on the stability of solutions.

For special 2nd order systems and systems with small perturbations the fol-
lowing additional methods are widely used in enineering;:

the averaging method of Krylov and Bogoljubov,

the method of amplitudes of Van der Pol,

the harmonic balance method and generalizations of C. Hayashi and
— multiscale methods.

In principle, they ”reduce the quasiperiodicity” of the solutions by transforming
periodic solutions into equilibria and, if possible, quasiperiodic to periodic solu-
tions. Unfortunalety they are restricted to special ODEs and do not extend to the
general case of system (1).

The aim of our approach is a numerical approximation of quasiperiodic solu-
tions z(t) = u(£2t) of the original system (1) without using a-priori transformations
into radius-angle coordinates (u, ). By means of a suitable torus system, we can
analyse quasiperiodic solutions x(¢,A) and their corresponding torus solutions
u(6,\) depending on parameters A € R™ by methods for periodic solutions. So we
are able to use existing continuation methods and methods for bifurcation analysis.
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2 Transformation into the torus equation

For the quasiperiodic solution y of (1) the representation
y(t) = u(2t) = ut,wat, ..., wpt)

with the associated torus function u = u(f) : TP — R" is used. u is assumed to
be continously differentiable and 2w —periodic in every variable 6;, i = 1,2,...,p.
Inserting this formulation for y into (1) yields

ou P ou
g (20 + 1 s () = S2).), 2)
which by using the vector-valued function ¢ : R — R"
0 = 2200+ 3w, 2 0) - (a0 ®)
g - 891 s ]aej ’ )

becomes equivalent to the equation
g(t)=0 vVteR. (4)

According to assumptions 1 and 2, g € C(R,R"™) is also quasiperiodic with basic
frequencies w; =1, wy,..., wy . Its associated torus function G : TP — R" with
g(t) = G(£2t) = G(t,wat, ..., wpt) is defined by

G() 891 +Z Jae CONE (5)

For G € C(T?,R") the range of the quasiperiodic function g¢(t) = G(wt) is
dense in the range of the torus function G(6), 6 € TP (see [12], p.10). With scalar
product and norm in C"

n
vy =Y 2%, |ef’ = {za) —Zml2
j=1

the identity
Sup l9()| = max [G(0)] (6)

holds ([12], p.11). As a consequence it follows that
gt)=0 VteR <+ GB)=0 V9eT? (7)

which leads to in the invariance equation (the torus system) on T?

391 Z w5 89 = f(u(6),61). (8)
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Any solution u of this system yields a quasiperiodic solution z(t) = u({2t) of
g(t) =0, t € R. Note that (8) is a special case of the general invariance equation
of an invariant p-torus u(6)

> B (ul0).0) 55 0) = F(u0).0). Q

Jj=1

In our approach, the basic frequencies w; for j > 1 are unknowns and may be
determined by appropriate extensions to system (8).

For simplicity we consider the 2-dimensional case, but all the ideas can also be
generalized to p-tori. In the case p = 2 semidiscretisation methods with respect to
0, may be applied, for example:

— Fourier-Galerkin,
— finite differences or
— collocation.

System (8) becomes thereby transformed into an autonomous system of ordinary
differential equations for functions u(f2) : T — R™, k € Z), C Z. We get an initial
value for the frequency ws at a Neimark-Sacker bifurcation point (nonresonant
case) of a periodic solution when a quasiperiodic solution is born. The first two
approaches are discussed in more detail here.

3 Semidiscretisation by Fourier-Galerkin methods

We define the nonlinear operator F : H' — HY as

ou ou
F(u) = 8—91+w28_92_f(u’91)’ (10)

where H*® = H*(T?), s = 0,1 are the Sobolew spaces of torus functions F :
T? — C" with generalized derivatives D*F € Ly(T?) up to order s. Especially
let H® = Ly(T?). Scalar product and norm in H*® are defined by

(F.G.= > [[10°F @), DG(6) by ass.

0<|al<s 75

[ial

(F,F)s = Y |DF(0)[? dby db,

0<|al<s T

With (10) we obtain a zero problem which is equivalent to G(f) =0 V6 € T? in
operator form
Fu)=0, uec H(T?). (11)

For simplicity we now replace ¢t = 6; because of w; =1 and 6 = 0, with
frequency w = ws. Let ¢;(t), ¢ = —N,...,—1,0,1,..., N, be an orthonormal
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system of a linear subspace of Ly(T!) for which
N
Gr(t) = Y cjps(t)
j=—N

holds. In case of the trigonometric functions

1 .
or(t) = e k=—-N,-N+1,....N

the constant matrix C' = (cg;) is especially

C = diag(—iN, ..., —2i,—i,0,4,2i,...,iN) .

367

We discretise u(t, §) by projection onto the subspace Hy = (span{px, |k| < N})"

with projector
N

Pyu(t,0) = Y ur(6) - i(t)

=—N

where the Fourier coefficients are

ug(0) = /u(t,@)g@k—(t)dt.

T1

(13)

(14)

Inserting v’ € Hy into (10) and applying Py to (11) yields the Galerkin or

spectral system
PyFu™) =0, uV €Hy.

(15)

This Galerkin procedure can be defined component-wise by introducing the vector

function

P(t) = (=N (2), - 00(1), 1 (1), o o ()T

and the matrix function

U#) = (u—n(0),....,u_1(0),uo(0),u1(0),...,un(6)) .

Then (13) in the representation

uN (t,0) = U@)p(t), (t,0) € T?

can be inserted into (10) by using (12)

F™(t,0)) = U0)Co(t) +wU' (0)p(t) = f(U(O)¢(t).1) -
We now expand f(U(6)p(t),t) in (17) into a 6—dependent Fourier series

FU@)e(t),t) = I'(UO)e(t) + Bn(6,1)
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where Ry (0,t) is the remainder for |k| > N and the coefficients are I'(U(0)) =
(vjr) € CP*ENHD - Applying the scalar product (14) to (17) in La(T") yields the
component-wise representation
w-uy(0) + (UO) - Cla —ya(U(0)) =0, i=1(I)n, [|<N.
In vector notation, the spectral system (Galerkin system) is now
w-U'@0)+U@®)-C=rU®)). (18)

If we consider the Fourier series for N — oo, then the periodic solutions of spectral
system (18) will obviously yield quasiperiodic solutions of the original system (1).
The following theorem can be proven (see [13]):

Theorem 1. With assumptions 1 and 2 it holds for N — co:
(1) U(0) is a 2mr—periodic solution of system (18) if and only if u(t) = U(wt)p(t)
is a quasiperiodic solution of the original system (1).
(i) A= (aw), k=1...n,l € Z, is an equilibrium point of system (18) with
A-C=TI(4) (19)
iff u(t) = Ap(t) is 2m—periodic solution of the original system (1).
The Galerkin system (18) is an autonomous system with n(2N + 1) equations.
For harmonically forced ”weakly nonlinear” systems which frequently appear in
electrical engineering we already achieve in practice good approximations for small
N =1,2,3. Applying the transformation to the independent variable
0 =wr with U@#)=U(wr)=Y(r),

to (18) we can eliminate the unknown parameter w and obtain the spectral system

Yi(r) = I'(Y(r)) - Y(r)-C (20)
for periodic solutions Y (7) with unknown period T'. This standard problem can
now be solved by software tools for periodic oscillations and is an efficient way to
compute and continue quasiperiodic solutions.

With such an approximation at hand the invariant closed curves v; and s
of the two Poincaré sections P; and P, of a quasiperiodic solution can easily be
calculated. Using (13)

N
uN(#0) = D ur(0) - i (t) (21)
k=—N
we get immediately the approximations:
1 N
N
v (0) = — ug(6) for t = 2mm, m € N and (22)
' U k:Z_:N
1 N
N
t) = — u(0) - t for 6 =Tm, m € N. 23
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4 Semidiscretisation by finite difference methods

Let the nonlinear operator F : B! — B with

Flu) = Oou ou

= 8—914‘002%_]((“791)» (24)

now act in Banach spaces B¥ = C*¥(T?), k = 0,1. The zero problem G(f) =0 on
T2 is then in operator form

F(u)=0, ueccC{T?). (25)

If this problem is semidisretised by finite differences on 6 the resulting ODE sys-

tem could also be treated by standard software. Here we use our own continuation

methods and therefore we first linearise (24) and then discretise the linear systems.
Applying Newton’s method to (25) yields the linearised problem

F'(uF) ok = F(ub)

I WY (26)
where the Frechét derivative is
0 0
F'(uf) = — — — f.(u",07) . 2
(u ) 601 +WQ 892 f (u ’ 1) ( 7)

fz is the Jacobian of f with respect to x. Then we have to solve linear systems of
the form

v ov
8_91 +(JJ26—02 — A(01,92) U = 7“(91,92). (28)

with quasiperiodic vector function r and matrix function A. Replacing t = 01, 6 =
0> and w = wy, we define a mesh in ¢ by

: . 2m
GNz{ti|ti=z-h;z=0,1,...,N; hzﬁ}
and discretise v(¢,6) on Gy by
’U(ti,e) = vi(G), 1)0(9) = ’UN(Q), ¢ = 0, 1,. . .,N.

Approximation of the derivative with respect to ¢ by finite differences
l
v 1
a(ti, 9) ~ {DN’U}i = E Z Cj - vi+j(0) . (29)

j=—k

and insertion into (28) leads to

l
1
wv; + Ej—zk; ¢j iy — Ai(0) -vi = 7i(0) (30)
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where A;(6) = A(t;, ) and r;(6) = r(t;,6). Using w = 2% and isolating v} yields

the cyclic periodically forced linear ODE system for the Newton corrections

l
v = %(Aiw)-m—% > vy +n—<9>) (31)

J=—k

with unknown period 7. This linear system can now be solved by standard methods
for periodic solutions.

Again, we can easily obtain approximations to the invariant closed curves vy
and 72 by:

g

1(0) = u(0,0) ~ uo(0) (32)
Yot

5 Application to an electrical circuit

As an example we study a dynamical system given by H. Kawakami and T. Yoshi-

naga in [17]. The Duffing-type system of order 3 is given by
j?l = T2
1
rgz—kw2—§@€+&ﬁnl+3cwt (34)

1
I3 = —gkg(Sx% +$§)1‘3 + By,

which describes a resonant electric circuit with two saturable inductors. The period
of the Poincaré map is T' = 27 and we explore the system for the parameter values
By =0.03, B=10.22, ks = 0.05 and k; € [0.04,0.15].

By numerical integration ("brute force” method), a bifurcation of the 2r—pe-
riodic solution into an invariant torus can be observed at ki ~ 0.1214. A stable
quasiperiodic solution arises for smaller values k; < ki, which is continued in
figure 1. Obviously a cascade of period doublings with respect to one basic fre-
quency (torus doublings) arises and finally a strange attractor can be seen. The
27 —stroboscopic Poincaré map is displayed by bold dots.

1. Solution via spectral system. We choose a truncated Fourier series of order 1

21(t) = y1(wt) + y2(wt) sin(t) + y3(wt) cos(t)
2 (t) = ya(wt) + ys(wt) sin(t) + ye(wt) cos(t)
z3(t) = yr(wt) + ys(wt) sin(t) + yo(wt) cos(t)

with the real functions

Y
Y(wt) = | ya(wt) ys(wt) yz(wt) and  o(t) = [ sin(t)
) ys(wt) yo(wi) cos(t)
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i el
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140 000 : 165

k1 =10.09

1101

0926
161

k1 =0.05 k1 =0.043

Fig. 1. Solution scenario of system (34)
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As the right hand sides of (34) are polynomials in x1, z2, 23, we can use a computer
algebra system to generate the spectral system. With Maple 5.1 we obtain the
following 9-dimensional spectral system with symbolic parameters By, B, k1 and
k2 (The dots denote derivatives to 7 = wt).

Y1 = Y4
Y2 =ys +ys
Y3 = Y6 — Y2

Us = —0.1875 y1ys? — ky ya — 0.1875 y1y9> — 0.1875 y1y2% — 0.375 y1y7>
— 0.375 y2y7ys — 0.375 ysy7yo — 0.1875 31932 — 0.125 ;>

s = —0.375y2y1> — 0.375 yay7” — 0.75 y1y7ys — 0.28125 yoys” + s
— 0.09375 yays? — 0.09375 yoye® — k1 ys5 — 0.09375 yo>
—0.1875 y3yoys

6 = —0.375y3y7? — 0.375 ysy12 — 0.28125 y3y9? — 0.09375 y3ys>
— 0.1875 yayoys + B — y5 — 0.09375 93 — k; ys — 0.75 y19790
— 0.09375 y3y»>

U7 = —0.375 ks yoy1ys — 0.1875 ko y7y2> — 0.1875 ko yo>y7
— 0.1875 ks y7y3? — 0.375 ko y7y12 — 0.125 ko y7> + By
— 0.1875 ks ys®y7 — 0.375 ko ysy1y/2

U8 = —0.375 kg ysy12 — 0.09375 ks ys® — 0.75 ks y7y192 + o
— 0.1875 ks yoysyz — 0.09375 ks ysyo? — 0.09375 ko ysys>
— 0.375 ko ysy7> — 0.28125 ks ysyo?

o = —0.75 ko y7y1y3 — 0.09375 ks yo> — 0.09375 ks ysyo
—0.09375 ks yoyo> — 0.375 ks yoyr> — 0.1875 ks ysysya — Us
—0.375 ks yoy1 2 — 0.28125 ks yoy3>.

This autonomous system can now be analysed by the continuation and bifurcation
code AUTO 97 of E.J.Doedel et al. [7]. Some of the results are displayed in figures
2 and 3.

In figure 2 the spectral system is displayed for parameter k; € [0.025,0.20].
Hopf bifurcations arise at k; ~ 0.1315 and 0.1281 (labels 2 and 3). The branch
arising at label 3 for k; ~ 0.1281 has been followed. A cascade of period doublings
(labels 7, 13, 15) and further bifurcations occur. Figure 3 displays periodic orbits
of the spectral system. Obviously a sequence of period doublings arises. For k1 =
0.043 a phase portrait is given together with its Poincaré map.

An interpretation of the periodic orbits of the spectral system in connection
with the quasiperiodic solutions of the original system can be found in table 1.
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1.95]

1.90
T T T T T T
0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200

Fig. 2. Bifurcation diagram of the spectral system
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Fig. 3. Periodic orbits of the spectral system.
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No. of 1abe1|spectral system |original system |
1 stable equilibrium stable periodic solution
3 Hopf bifurcation torus bifurcation
6 stable periodic solution |stable invariant torus
7 period doubling torus doubeling
12 unstable 2-per. solution|stable inv. double torus
13 period doubling torus doubling
16 unstable 4-per. solution|stable inv. 4-fold torus
15 period doubling torus doubling

| — strange attractor strange attractor |

Table 1. Interpretation of bifurcation diagram in figure 2.

2. Solution via finite differences. For semidiscretisation we used the central differ-
ence formula of 4th order:

8’in 1

o ~ Ton (Vi — 8vi—1 + 8Vi41 — Vig2). (35)

In this example the resulting linear differential equations (31) were solved by the
same finite difference method. The simple torus was continued on a 20 times 20
(t,0)-grid and the double-torus on a 20 times 40 grid. Using standard continuation
techniques we obtained the bifurcation diagram in figure 4 with the following
special points:

bifurcation bifurcation |emerging
point type solution type

kT € [0.12,0.1225]

torus asymptotically stable
bifurcation |2-torus

torus-flip |asymptotically stable
bifurcation|doubled 2-torus

kT € [0.08,0.0825]

Figure 5 shows approximations of the invariant torus arising at k7 € [0.12,0.1225]
and figure 6 shows cross-sections of the doubled invariant torus for different pa-
rameter values.
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Bifurkation diagramm of the system by Kawakami
1.76 T T T T T T

Xy,

0.04 0.06 0.08 0.1 0.12 0.14 0.16
k1

Fig. 4. Bifurcation diagram obtained by the finite difference method.

k1 =0.1175 k1 =0.04

Fig. 5. Approximations of the emerging invariant 2-torus.
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k1 = 0.0825 k1 =0.08

k1 = 0.075 ki =0.04

Fig. 6. Approximations of the cross-sections v; and 2 of the emerging invariant
doubled 2-torus.
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