
EQUADIFF 10

Jiří Bouchala
Landesman–Lazer type conditions and quasilinear elliptic equations

In: Jaromír Kuben and Jaromír Vosmanský (eds.): Equadiff 10, Czechoslovak
International Conference on Differential Equations and Their Applications, Prague,
August 27-31, 2001, [Part 2] Papers. Masaryk University, Brno, 2002. CD-ROM; a
limited number of printed issues has been issued. pp. 45--51.

Persistent URL: http://dml.cz/dmlcz/700381

Terms of use:
© Institute of Mathematics AS CR, 2002

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides
access to digitized documents strictly for personal use. Each copy of any part of this
document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech
Digital Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/700381
http://project.dml.cz


Equadiff 10, August 27–31, 2001
Prague, Czech Republic

Equadiff 10 CD ROM
Papers, pp. 45–51

Landesman–Lazer Type Conditions and
Quasilinear Elliptic Equations

Jiří Bouchala�

Department of Applied Mathematics, Faculty of Electrical Engineering and Computer
Science, VŠB-Technical University,

Tř. 17. listopadu, 708 33 Ostrava, Czech Republic,
Email: jiri.bouchala@vsb.cz

Abstract. We study the existence of the weak solutions of nonlinear
boundary value problem

{−∆pu = λ|u|p−2u+ g(u)− h(x) in Ω,
u = 0 on ∂Ω,

where Ω ⊂ RN is a smooth bounded domain, N ≥ 1, p > 1, g : R → R

is continuous function, h ∈ Lp′
(Ω) (p′ = p

p−1
), ∆p is the p-Laplacian, i.e.

∆pu = div(|∇u|p−2∇u) and λ ∈ R.
Our sufficient conditions generalize all previously published results.
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1 Introduction. The variational eigenvalues.

We study the existence of the weak solutions of nonlinear boundary value problem{
−∆pu = λ|u|p−2u+ g(u)− h(x) in Ω,

u = 0 on ∂Ω,
(1)
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where Ω ⊂ RN is a smooth bounded domain, N ≥ 1, p > 1, g : R → R is
continuous function, h ∈ Lp′(Ω) (p′ = p

p−1 ), λ ∈ R and ∆p is the p-Laplacian, i.e.

∆pu := div(|∇u|p−2∇u).

We recall that u ∈W 1,p
0 (Ω) is a weak solution of (1) if and only if∫

Ω

|∇u|p−2∇u∇v dx = λ

∫
Ω

|u|p−2uv dx+
∫
Ω

g(u)v dx−
∫
Ω

hv dx

for all v ∈W 1,p
0 (Ω).

It is possible to achieve that the weak solutions of our BVP (1) corresponding
with the critical points of the functional

J(u) :=
1
p

∫
Ω

|∇u|p dx− λ

p

∫
Ω

|u|p dx−
∫
Ω

G(u)dx+
∫
Ω

hu dx : W 1,p
0 (Ω)→ R,

where

G(t) :=
∫ t

0

g(s)ds.

Now we are going to investigate how the choice of λ, g and h (and their relation)
influence the geometry of our functional J . The great part in that has the infor-
mation, if λ is the eigenvalue of the operator −∆p or not; i.e. if there exists a weak
nontrivial solution of BVP {

−∆pu = λ|u|p−2u in Ω,
u = 0 on ∂Ω.

Now we define the even functional

I(u) :=

∫
Ω
|∇u|p dx∫

Ω |u|p dx
: W 1,p

0 (Ω) \ {0} → R,

and for any k ∈ N we consider set

Fk :=
{
A ⊂ {u ∈W 1,p

0 (Ω) : ‖u‖Lp(Ω) = 1} :
there exists a continuous odd surjection h : Sk → A

}
,

where Sk represents the unit sphere in Rk.

Pavel Drábek and Stephen B. Robinson proved in 1999 that for any k ∈ N the
number

λk := inf
A∈Fk

sup
u∈A

I(u)

is an eigenvalue of −∆p. This situation is very interesting, because it is not known
if this represents a complete list of eigenvalues 1 but it is known that:
1 Nobody knows how to obtain all eigenvalues of −∆p; we only know that we have
complete list of eigenvalues if N = 1 or p = 2.
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• λ1 is the first eigenvalue,

λ1 = min{
∫
Ω |∇u|

p dx; u ∈ W 1,p
0 (Ω),

∫
Ω |u|

p dx = 1},

there exists a unique positive corresponding eigenfunction ϕ1 whose norm in
W 1,p

0 (Ω) is 1,

• λ2 is the second eigenvalue,

• ∀k ∈ N \ {1, 2} : 0 < λ1 < λ2 ≤ λk ≤ λk+1,

• λk → +∞.

Pavel Drábek and Stephen B. Robinson assumed in their paper that function g
is bounded and they found some sufficient conditions for solvability of our BVP (1).
Now we are going to generalize these results for some not bounded function g.

2 The case λ < λ1.

Theorem 1. If we suppose in addition that

lim
x→±∞

g(x)
|x|p−1 = 0,

then the BVP (1) has at least one weak solution.

(It follows from Ekeland variational principle (see [6] and [1]) that the energy
functional J has a global minimum in this case.)

3 The case λ = λ1.

Theorem 2. Let us define

F (x) :=
p

x

∫ x

0

g(s) ds− g(x).

We suppose

lim
x→±∞

g(x)
|x|p−1 = 0

and

F (−∞)
∫
Ω

ϕ1(x) dx < (p− 1)
∫
Ω

h(x)ϕ1(x) dx < F (+∞)
∫
Ω

ϕ1(x) dx, (2)
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or

F (+∞)
∫
Ω

ϕ1(x) dx < (p− 1)
∫
Ω

h(x)ϕ1(x) dx < F (−∞)
∫
Ω

ϕ1(x) dx, (3)

where
F (−∞) = lim sup

x→−∞
F (x), F (+∞) = lim inf

x→+∞
F (x),

F (+∞) = lim sup
x→+∞

F (x), F (−∞) = lim inf
x→−∞

F (x).

Then the BVP (1) has at least one weak solution.

(If (2) is satisfied that the energy functional J has a saddle point geometry
while if (3) holds this functional attains its global minimum .. . see [3].)

4 The case λk < λ < λk+1.

Theorem 3. We suppose

lim
x→±∞

g(x)
|x|p−1 = 0

and

∀v ∈ Ker(−∆p − λ) \ {0} :

(p− 1)
∫
Ω

h(x)v(x) dx < F (+∞)
∫

{x∈Ω:
v(x)>0}

v(x) dx+ F (−∞)
∫

{x∈Ω:
v(x)<0}

v(x) dx, (4)

or

∀v ∈ Ker(−∆p − λ) \ {0} :

(p− 1)
∫
Ω

h(x)v(x) dx > F (+∞)
∫

{x∈Ω:
v(x)>0}

v(x) dx+ F (−∞)
∫

{x∈Ω:
v(x)<0}

v(x) dx, (5)

and that

∀v ∈ Ker(−∆p − λ) \ {0}, ‖v‖ = 1 :

(∀δ ∈ R+) (∃η(δ) ∈ R+) : meas{x ∈ Ω : |v(x)| ≤ η(δ)} < δ

(“the strong unique continuation property”).

(6)

Then the BVP (1) has at least one weak solution. 2

2 Notice that if λ ∈ R is not an eigenvalue of the −∆p, i.e. if does not exist function
v ∈ Ker(−∆p − λ) \ {0}, then the conditions (4), (5) and (6) are vacuously true.
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(Proof of this theorem is based on application a saddle point theorem for linked
sets . . . see [1].)

5 The case λ = λk.

Theorem 4 ([1]). We suppose

lim
x→±∞

g(x)
|x|p−1 = 0

and

∀v ∈ Ker(−∆p − λ) \ {0} :

(p− 1)
∫
Ω

h(x)v(x) dx < F (+∞)
∫

{x∈Ω:
v(x)>0}

v(x) dx+ F (−∞)
∫

{x∈Ω:
v(x)<0}

v(x) dx, (7)

or

∀v ∈ Ker(−∆p − λ) \ {0} :

(p− 1)
∫
Ω

h(x)v(x) dx > F (+∞)
∫

{x∈Ω:
v(x)>0}

v(x) dx+ F (−∞)
∫

{x∈Ω:
v(x)<0}

v(x) dx, (8)

and that

∀v ∈ Ker(−∆p − λ) \ {0}, ‖v‖ = 1 :

(∀δ ∈ R+) (∃η(δ) ∈ R+) : meas{x ∈ Ω : |v(x)| ≤ η(δ)} < δ.

Further, we assume that there exists sequence

µn ↘ λk (if we assume (7)) or µn ↗ λk (if we assume (8))

such that

∀n ∈ N ∀v ∈ Ker(−∆p − µn) \ {0}, ‖v‖ = 1 :

(∀δ ∈ R+) (∃η(δ) ∈ R+) : meas{x ∈ Ω : |v(x)| ≤ η(δ)} < δ.

Then the BVP (1) has at least one weak solution.
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6 The one dimensional case.

At the finish we note: if we consider one dimensional problem and – for example –
Ω = (0, π), i.e. if we consider BVP{

−(|u′|p−2u′)′ = λ|u|p−2u+ g(u)− h(x) in (0, π),
u(0) = u(π) = 0, (9)

then situation is easier: we know all eigenvalues of the p-Laplacian 3 and we know
that any eigenfunction satisfies ”the strong unique continuation property”. There-
fore we can rewrite our results in this form:

Theorem 5. We suppose

lim
x→±∞

g(x)
|x|p−1 = 0

and

∀v ∈ Ker(−∆p − λ) \ {0} :

(p− 1)
∫ π
0 h(x)v(x) dx < F (+∞)

∫ π
0 v

+(x) dx+ F (−∞)
∫ π
0 v

−(x) dx,

or

∀v ∈ Ker(−∆p − λ) \ {0} :

(p− 1)
∫ π
0
h(x)v(x) dx > F (+∞)

∫ π
0
v+(x) dx+ F (−∞)

∫ π
0
v−(x) dx,

where
v+ := max{0, v}, v− := min{0, v}.

Then the BVP (9) has at least one weak solution u ∈ W 1,p
0 (0, π).

3 All eigenvalues are described by the equalities

λk :=

(
kπp

π

)p

= kpλ1, k ∈ N,

where

πp := 2(p− 1)
1
p

∫ 1

0

ds

(1− sp) 1
p

.
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