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ON SPATIAL DECAY ESTIMATES FOR DERIVATIVES OF
VORTICITIES OF THE TWO DIMENSIONAL

NAVIER-STOKES FLOW

YASUNORI MAEKAWA∗

Abstract. We are concerned with the spatial decay estimates for derivatives of vorticities solving
the two dimensional vorticity equations equivalent to the Navies-Stokes equations. As an application we
derive asymptotic behaviors of derivatives of vorticities at time infinity. It is well-known by now that the
vorticity behaves asymptotically as the Oseen vortex provided that the initial vorticity is integrable. We
show that each derivative of the vorticity also behaves asymptotically as that of the Oseen vortex.
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1. Introduction. We are interested in the two dimensional flow of a viscous incom-
pressible fluid. The velocity of the fluid is described by the Navier-Stokes equations:

{
ut −∆u + (u,∇)u +∇p = 0 for t > 0, x ∈ R2,

∇ · u = 0 for x ∈ R2,
(1.1)

where u = u(x, t) ∈ R2 is the fluid velocity, p(x, t) ∈ R is the pressure,∇ = (∂/∂x1, ∂/∂x2),
∆ = (∂/∂x1)2 + (∂/∂x2)2 and ut = ∂tu = ∂u/∂t. The kinematic viscosity has been
rescaled to be 1. We are concerned with the vorticity ω =rot u = ∂u2/∂x1 − ∂u1/∂x2

when initial vorticity is integrable. For this purpose, instead of (1.1), we consider an
equation for the vorticity which is obtained by taking the curl of (1.1):

ωt −∆ω + (u,∇)ω = 0, t > 0, x ∈ R2. (1.2)

The velocity u is obtained in terms of ω via the Biot-Savart law

u(x, t) =
1
2π

∫
R2

(x− y)⊥

|x− y|2
ω(y, t) dy, t > 0, x ∈ R2, (1.3)

where x⊥ = (−x2, x1). The equation (1.2)–(1.3) are formally equivalent to (1.1).
The global well-posedness of the two dimensional vorticity equations in L1(R2) is first

obtained by Y. Giga, T. Miyakawa and H. Osada [10]. In fact they constructed a global
solution even when initial data is a finite measure. This result is extended by various
authors for example by M. Ben-Artzi [1], H. Brezis [2], and T. Kato [13]. Although the
uniqueness of solution was known by [10] when the point mass part of the initial data is
small, it is quite recent that the uniqueness is proved for a general measure by I. Gallagher
and Th. Gallay [5].
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2. Spatial decay estimates for derivatives of vorticities. In the past papers,
several estimates for vorticities have been established. For example, we already know Lp

estimates of vorticities and velocities as follows.
Let p ∈ [1,∞] and q ∈ (2,∞]. Let |f |p denotes the norm of f in Lp; if f is a vector

(f1, f2), by |f |p we mean |(|f1|2 + |f2|2)
1
2 |p. Then, we have

|∂b
t ∂

β
xω(·, t)|p ≤

W1

tb+
|β|
2 +1− 1

p

|ω0|1, (2.1)

|∂b
t ∂

β
xu(·, t)|q ≤

W2

tb+
|β|
2 + 1

2−
1
q

|ω0|1, (2.2)

where W1 = W1(b, β, p, |ω0|1) and W2 = W2(b, β, q, |ω0|1). Here, ∂β
x = ∂β1

x1
∂β2

x2
for multi-

index β = (β1, β2) ∈ N0 × N0, where ∂xi
= ∂/∂xi and N0 = N ∪ {0}, the set of all

nonnegative integers.
The above estimates (2.1), (2.2) were proved by T. Kato [13] for p ∈ (1,∞) by using

an interpolation method, and by Y. Giga and M.-H. Giga [9] for p ∈ [1,∞] by a Gronwall-
type argument (see also Y. Giga [11], or Y. Giga and O. Sawada [12]). In this paper we
establish spatial decay estimates for derivatives of vorticities. Our main result is

Theorem 2.1 ([14]). Assume that p ∈ [1,∞], q ∈ (2,∞]. Let ω be the solution of
(1.2)–(2.2) with initial vorticity ω0 ∈ L1(R2) and u be the velocity field associated with
ω via the Biot-Savart law. Then, there exists a positive constant W3 = W3(b, β, p, |ω0|1)
such that for all R ≥ 1 and t > 0,

|∂b
t ∂

β
xω(·, t)|p,2R ≤ W3

t1−
1
p +b+

|β|
2

{
t

1
4

R
1
2

+ |ω0|1,R

}
, (2.3)

where |ω(·, t)|p,R :=
( ∫
|x|>R

|ω(x, t)|p dx
) 1

p , |ω(·, t)|∞,R := ess.sup|x|>R|ω(x, t)|.
When b = 0 and |β| = 0, the spatial decay estimates similar to (2.3) are obtained by

A. Carpio [4] and by Y. Giga and M.-H. Giga [9]. In order to establish the estimate (2.3),
we need three spatial decay estimates as follows.

Let p, q, q̃ ∈ [1,∞] with q, q̃ ≤ p. Then, we have

|ω(·, t)|p,2R ≤ C

t1−
1
p

(
t

1
4

R
1
2

+ |ω0|1,R), (2.4)

|u(·, t)|∞,2R ≤ M ′
1

R
1
2
|ω(·, t)|4 + M ′

2|ω(·, t)|
1
2
1,R|ω(·, t)|

1
2
∞,R , (2.5)

|∂β
x et∆f |p,2R ≤ M3

t
1
q−

1
p + k

2−
1
4 R

1
2

|f |q +
M4

t
1
q̃−

1
p + k

2
|f |q̃,R, ∀f ∈ C0(R2) . (2.6)

Here, et∆ is the heat semigroup. The estimate (2.4) is for ω itself, which is obtained by
using the pointwise estimate for the fundamental solution of the perturbed heat equation,
ωt − ∆ω + (u,∇)ω = 0; as for this pointwise estimate, see [3]. The estimte (2.5) is for
the velocity u. Since u is represented by ω via the Biot-Savart law (1.3), it suffices to
estimate the well-known Reisz potential. The last estimate (2.6) is for the solution of the
heat equation. This estimate is established by using the representation

et∆f =
∫

R2

1
4πt

e−
|x−y|2

4t f(y) dy.
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Collecting these estimates, one can derive the estimate (2.3) from the integral equation

ω(x, t) = et∆ ω0 −
∫ t

0

e(t−s)∆(u(s),∇)ω(s)ds. (2.7)

We omit the details here.

3. Application to large time behaviors of the derivatives of vorticities.
As an application of Theorem 2.1, we study the large time behaviors of derivatives of
vorticities. It is well-known that the vorticity itself behaves like a constant multiple of
the Gauss kernel g(x, t) = (4πt)−1 exp(− |x|2

4t ) at time infinity. Let us recall its precise
form:

Theorem 3.1 ([8], [4], [6]). Assume that p ∈ [1,∞], q ∈ (2,∞]. Let ω be the solution
of (1.2)–(2.2) with initial vorticity ω0 ∈ L1(R2). Let m =

∫
R2 ω0(x) dx, and g(x, t) =

1
4πt e−

|x|2
4t . Then

lim
t→∞

t1−
1
p |ω(·, t)−mg(·, t)|p = 0 ,

lim
t→∞

t
1
2−

1
q |u(·, t)−mvg(·, t)|q = 0 .

(3.1)

Here vg is the velocity field associated with g via the Biot-Savart law (1.3).

The above theorem shows that the vorticity behaves asymptotically as mg which is
called the Oseen vortex. Note that the Gauss kernel is a solution of (1.2)–(2.2) with a
Dirac mass as the initial data. The quantity m =

∫
R2 ω0(x) dx is called “total circulation”

and it is preserved by the semi-flow defined by (1.2)–(2.2) in L1(R2);∫
R2

ω(x, t) dx =
∫

R2
ω0(x) dx, t ≥ 0. (3.2)

Y. Giga and T. Kambe [8] first proved Theorem 3.1 when the Reynolds number∫
R2 |ω0(x)|dx is sufficiently small by giving the delicate estimates of the bilinear form

of the integral equation associated with (1.2). Later A. Carpio [4] proved Theorem 3.1
under the assumption that |m| is small by rescaling solutions: ωk(x, t) = k2ω(kx, k2t),
uk(x, t) = ku(kx, k2t) for k > 0. Recently, Th. Gallay and C. E. Wayne [6] proved for
a general initital vorticity in L1(R2) by introducing entropy-like Lyapunov function for
a renormalized equation. After this work was completed, the auther was informed of a
recent work of I. Gallagher, Th. Gallay and P.-L. Lions [7] which give another proof for
Theorem 3.1 using the rearrangement argument.

With spatial decay estimates for derivatives of vorticities, we shall prove that each
derivative of vorticities behaves asymptotically as that of the Oseen vortex. That is, we
have the following theorem.

Theorem 3.2 ([14]). Assume that p ∈ [1,∞], q ∈ (2,∞], b ∈ N0 and β is a multi-index.
Let ω be the solution of (1.2)–(2.2) with initial vorticity ω0 ∈ L1(R2), m =

∫
R2 ω0(x) dx,

and g(x, t) = 1
4πt e−

|x|2
4t . Then, we have

lim
t→∞

tb+
|β|
2 +1− 1

p |∂b
t ∂

β
xω(·, t)− ∂b

t ∂
β
xmg(·, t)|p = 0, (3.3)

lim
t→∞

tb+
|β|
2 + 1

2−
1
q |∂b

t ∂
β
xu(·, t)− ∂b

t ∂
β
xmvg(·, t)|q = 0 . (3.4)
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Let us give the outline of the proof of Theorem 3.2 for α = 0, |β| = 1. First
we consider the same rescaling as was used in A. Carpio [4]. We shall see that the
convergence of ∂xω(x, t) as time goes to infinity is equivalent to the convergence of the
rescaled functions ∂xωk(x, 1) as k goes to infinity. Once we obtain Theorem 2.1, we can
apply Ascoli-Arzelà type compactness theorem in Lp to the family of rescaled functions
{∂xωk(x, 1)}k≥1. So every subsequence of {∂xωk(l)(x, 1)}∞l=1 (k(l) → ∞ as l goes to
infinity) has a convergent subseqence in Lp. Theorem 3.1 implies that the limit function
is unique, so we obtain Theorem 3.2. By the induction we see that Theorem 3.2 also
holds for higher derivatives of the solution; see [14] for details.

4. Alternative method. In fact, to prove the convergence results on derivatives in
Theorem 3.2, there is an alternative method by appealing interpolation together with
the convergence results of the vorticity ω itself and global estimates on derivatives (2.1).
In particular, spatial decay estimates in Theorem 2.1 are not involved. We shall show
the proof only for the case b = 0 and |β| = 1.

First, note that we have the interpolation inequalities such as

|f |1,p ≤ C|f |
1
2
p |f |

1
2
2,p, for all f ∈ W 2,p(Rn), (4.1)

where C depends only on n and p ∈ [1,∞]. So we see

|ωk −mg|1,p ≤ C|ωk −mg|
1
2
p |ωk −mg|

1
2
2,p

≤ C|ωk −mg|
1
2
p (|ωk|2,p + |mg|2,p)

1
2

≤ C|ωk −mg|
1
2
p ,

where C depends only on p and |ω0|1. Here, the last inequality follows from the global
estimates (2.1). Since we already have limk→∞ |ωk(·, 1) − mg(·, 1)|p = 0, the desired
convergence follows.

This proof is very simple compared with the proof using compactness argument to-
gether with spatial decay estimates for derivatives of vorticities (2.3). However, the above
interpolation method has a disadvantage if there is an inhomogeneous term in the vorticity
equations of the form

ωt −∆ω + (u,∇)ω = f. (4.2)

Before seeing this, note that we can prove the global existence and uniqueness of the
solution of (4.2) under appropriate conditions on f . Moreover, we can also show the large
time behaviors of solutions similar to those in Theorem 3.1. Let us state the typical
results for the inhomogeneous case without proofs.

Theorem 4.1. Assume that a function f ∈ L1(R2 × (0,∞)) satisfies that tf(·, t) ∈
L∞(0,∞;L1(R2)). Let ω0 ∈ L1(R2). Then, there exists a unique solution ω ∈ C([0,∞);
L1(R2)) of (4.2) with initial vorticity ω0. The vorticity ω satisfies that for p ∈ [1,∞) and
q ∈ [1, 2),

sup
t>0

t1−
1
p |ω(·, t)|p ≤ C, (4.3)

sup
t>0

t
3
2−

1
q |∂xω(·, t)|q ≤ C, (4.4)
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|ω(·, t)|p,2R ≤ C

t1−
1
p

(
t

1
4

R
1
2

+ |ω0|1,R

)
(4.5)

+C

∫ t

0

1

(t− s)1−
1
p

(
(t− s)

1
4

R
1
2

|f(·, s)|1 + |f(·, s)|1,R

)
ds,

where C depends only on p, q, |ω0|1, and Cf :=
∫∞
0

∫
R2 |f(x, t)|dxdt+ess.supt>0t|f(·, t)|1.

Moreover, we have

lim
t→∞

t1−
1
p |ω(·, t)− (m + mf )g(·, t)|p = 0. (4.6)

Here, m =
∫

R2 ω0(x) dx and mf =
∫∞
0

∫
R2 f(x, t) dxdt.

If we use interpolation inequalities such as (4.1) in order to derive the large time
behaviors of derivatives of vorticities solving (4.2), we are forced to assume unnecessary
regularity conditions on the inhomogeneous term f . On the other hand, by arguing as
in Section 3 with spatial decay estimates for derivatives of solutions of (4.2), we can
derive the large time behavior of derivatives of solutions without irrelevant regularity
assumptions on f . Precisely, we have

Theorem 4.2. Assume that a function f satisfies the conditions in Theorem 4.1. Let
ω0 ∈ L1(R2) and q ∈ [1, 2). Then, the solution ω satisfies that

|∂xω(·, t)|q,2R ≤ C

t
3
2−

1
q

(
t

1
4

R
1
2

+ |ω0|1,R

)
(4.7)

+C

∫ t

0

1

(t− s)
3
2−

1
q

(
(t− s)

1
4

R
1
2

|f(·, s)|1 + |f(·, s)|1,R

)
ds,

where C depends only on q, |ω0|1, and Cf . Moreover, we have

lim
t→∞

t
3
2−

1
q |∂xω(·, t)− ∂x(m + mf )g(·, t)|q = 0. (4.8)

The proof of the above theorem is quite similar to that of the homogeneous case, we
omit the details here.
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