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COHESIVE SPACES AND FIXED POINTS 

G. T. WHYBURN 

Charlottesville 

1. Partially Closed Sets. In working over material for my book on Analytic 
Topology I became interested in the type of set which has closed components and 
which comes near to being closed in other ways but is not so restricted as to actually 
make it closed. In particular, it was desired that the collection of its components 
be upper semi-continuous and, even more, that its natural extension to the rest of the 
space obtained by adding in individual points of its complement also be upper 
semi-continuous. 

The solution to this problem, in the case of compact metric spaces, was found 
in the notion of a set or collection being semi-closed. A collection of disjoint closed 
sets is semi-closed provided that any sequence of its elements which converges 
to a limit set meeting the complement of the union of the elements of the collection 
actually converges to a single point of this complement. A set K is semi-closed 
provided its components form a semi-closed collection. As indicated, it turned out 
that a collection of disjoint closed sets in a compact metric space is semi-closed if and 
only if its single-point extension to the whole space is upper semi-continuous. 

To illustrate, consider the Sierpihski universal plane curve S taken for con
venience on the 2-sphere S2. The collection of boundaries of complementary regions 
is semiclosed. The same is true if we take as an element each such boundary together 
with the region of which it is the boundary. In each case the single point extension 
to S2 yields an use decomposition of S2 with a monotone natural mapping of S2 

onto the decomposition space I. In the latter case this map is also non-separating 
so that, by the well known theorem of R. L. Moore, I also is an S2. In the former 
case the image of S alone is an S2, a true cyclic element of I, although Z itself is 
a cactoid. 

Interest in this type of partly closed set has been revived and heightened recently 
by the attention attracted by consideration of several types of partially continuous 
functions and their fixed point and related properties. I refer in particular to con
nectivities and peripherally continuous functions to be discussed later. 

A set K in a topological space X is quasi-closed [6] provided it is of external 
dimension 0, that is, for any x eX — K any open set U about x contains an open 
set V about x whose boundary dV does not meet K. In other words, K is quasi-closed 
provided dim* (K + x) = 0 for each x e X - K. 
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Similarly a set G is quasi-open provided that X — G is quasi-closed or, equiv-
alently, for each p e G and each open set U about p there exists an open set V with 
pe V c U and with boundary dVcontained in G. 

It is readily seen that every quasi-closed set is semi-closed but the reverse implic
ation does not hold even in compact metric spaces. (Note that every totally discon
nected set is semi-closed.) Also, the intersection of an arbitrary collection of quasi-
closed sets is quasi-closed. However the union of two such sets may fail to be quasi-
closed. Correspondingly, arbitrary unions of quasi-open sets are quasi-open, but 
the finite intersection axiom does not necessarily hold for such sets. 

2, Connectivities and Peripherally Continuous Functions. A function f: X -> Y 
is a connectivity provided the graph of each restriction fj C of f to a connected 
subset C of X is a connected set. Thus f is a connectivity provided its graph function 
g : X -> X x Y preserves connectedness where g is defined by 

g(x) = [xJ(x)-]eX x Y. 

This is a stronger property than that of preserving connectedness, even for real 
functions on an interval as was shown in an example by Kuratowski [4]. For real 
functions of Baire class 1 the two properties are equivalent. 

A function f: X -> Y is peripherally continuous [3] at x eX provided that if U 
and V are open sets about x and f(x) respectively, there exists an open set W with 
x e W c U and f(dW) c V. Clearly any continuous function on a regular space 
is peripherally continuous. However the functionf: J -+ I which is 0 for x irrational 
and (y/2)/2 for x rational is also peripherally continuous. Note also that this function 
has no fixed point. 

The two types of functions just defined are markedly different in the case of real 
valued functions of a real variable, since we have noted that whereas connectivities 
preserve connectedness in particular, a peripherally continuous function on the 
interval may have a discrete set of two or more points as its image set. However, 
remarkably enough, it turns out that on a large class of domain spaces, including 
in particular all Euclidean manifolds of dimension ^ 2, the two properties are entirely 
equivalent so that the two classes of functions coincide. [1, 8], These domains are 
the cohesive spaces to be discussed shortly. 

Peripherally continuous functions may be characterized in a simple and useful 
way exhibiting clearly their relation to mappings ( = continuous functions). For it 
turns out that whereas a function f: X -> Y is continuous if and only if the inverse 
of every closed set in Y is a closed set in X9 to characterize peripherally continuous 
functions we need only change the second "closed set" to "quasi-closed set". Thusf 
is peripherally continuous if and only if the inverse of every closed set is quasi-
closed [6]. Note that in the example above of such a function from I into I the inverse 
image of 0 was the irrationals and of (y/2)j2 was the rationals, both being quasi-closed 
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sets which definitely are not closed. Despite the simple character of this characteriz
ation of peripheral continuity we note a certain lack of symmetry. Starting with 
a closed set in y we get a quasi-closed set as its inverse in X. Starting with a quasi-
closed set in y we know little about its inverse. This indicates, what actually is the 
case, that peripherally continuous functions do not compose. In other words the 
composition of two such functions is not necessarily peripherally continuous [5]. 

3. Cohesive Spaces. A connected space or set M is cohesive [6] between two 
of its closed subsets A and B provided Ha • Hb is connected for every representation 
Mr = Ha -F Hb where Ha and Hb are closed and connected and contain A and B 
respectively. Thus cohesion of a space between A and B is a sort of unicoherence 
between these two sets. 

A connected regular 7\-space X is locally cohesive provided that each open 
set U about a point x of X contains the closure of a canonical region about x, 
i.e., a connected open set R having a connected boundary dR and such that X is 
cohesive between x and X — R (equivalently, R is cohesive between x and dR). 
Note that a locally cohesive space is always locally connected and locally peripherally 
connected. Also it can have no local cut point. 

It is apparent that all manifolds of dimension ^ 2 are locally cohesive, as are all 
polyhedra without local cut points. Indeed it is readily shown that any locally uni-
coherent connected locally connected and locally compact Hausdorff space is 
locally cohesive at each of its non local cut points. (Local unicoherence means that 
each point is interior to some unicoherent connected subset.) Thus if there are no 
local cut points we have local cohesion at all points of the space. 

This brings us to the first of two key properties of a locally cohesive space X 
entering into the equivalence of connectivities and peripherally continuous functions 
on such spaces as domains. For if Wis any canonical region in X about aeX, then 
any set K separating a and dWin W contains the boundary of a canonical region R 
about a lying in W. This is readily shown using the cohesion property of X between a 
and dW. Accordingly, if E is any quasi-closed set in X, any open set U in X about 
a eX — E contains a canonical region R about a whose boundary does not meet E. 
Equivalently, if G is any quasi-open set in X, any open set in U about a e G contains 
a canonical region R about a whose boundary lies in G. 

The second key property is concerned with preservation of connectedness under 
peripherally continuous functions on a locally cohesive domain space X. I f / : X -* Y 
is such a function where X is locally cohesive and Y is completely normal, then not 
only is connectedness preserved under / but also the induced graph function 
g :X -> XxY of f is peripherally continuous [1, 8]. Thus in case X x Y is com
pletely normal, connectedness is also preserved under g so that / is a connectivity. 

The connectedness preservation of / here follows from the interesting result 
that in a locally cohesive space X, any connected set in X lying in the union of two 
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disjoint quasi-open sets lies entirely in one of them [7], As might be expected, the 
first basic property concerned with canonical regions enters strongly into the proof 
of this one. 

These key properties of locally cohesive spaces enable us to prove without 
too much difficulty that on such a domain space any peripherally continuous function 
is a connectivity. The reverse implication also holds in case the space is locally 
compact and metric [3, 5] . The best proof of this result [6] hinges on the facts (l) 
that if/: X -> Y is a connectivity where X is compact, then for any closed set C in Y, 
f~x(C) is semi-closed so that the single point extension of the collection of its com
ponents is upper semi-continuous [2], and (2) the rather surprising theorem that 
a Peano continuum M is cohesive between two of its points a and b if and only if the 
cyclic chain C(a, b) is unicoherent [6]. 

An interesting problem concerning locally cohesive spaces is that of determining 
the natural class of mappings under which the property of being locally cohesive 
is invariant. For monotone mappings it seems to be necessary that no point inverse 
separate any region in the domain space containing it and sufficient that the domain 
space be "locally cohesive about each point inverse" in a rather obvious way. Whether 
this latter property is a consequence of the local cohesion at individual points, 
however, does not seem to be a readily answerable question. 

4. Separation and Intersection Theorems. We turn now to a consideration 
of a new type of separation theorem which can be established in locally cohesive 
spaces. Two sets A and B in a space X are weakly separated in X provided no com
ponent of X meets them both. Of course, that they are separated in X means that 
there exists a separation 

X = Xa + Xb 

of X between them so that A a Xa9 B a Xb. 

We recall the standard separation theorem that in a compact metric space K, 
any two closed sets A and B that are weakly separated in X are actually separated 
in X. The same result holds in a compact Hausdorflf space H. Worded slightly dif
ferently this says that if no component of H meets both of two closed sets A and B 
then there is a separation of H between A and B. 

Remarkably enough an entirely analogous theorem holds in locally cohesive 
spaces where the sets involved in the theorem are neither compact, closed nor open 
[7], To facilitate the proof it is stated first in the form involving quasi-open sets: 

Separation Theorem. Let G be a quasi-open set in a locally cohesive Tx-spaceX. 
If two disjoint relatively closed subsets Ga and Gb of G are weakly separated in G, 
they are actually separated in G. Indeed if A and B are closed sets in X satisfying 
A- G = Ga, B • G = Gb, there exist disjoint open sets Ua and Ub in X such that 
G'cUa + Uh and UaB = Ub- A = 0. 
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It can be shown that there is no loss of generality if we assume A and B each 
to be of positive dimension at each of its points. The proof then goes as follows. 

Proof. For each x e G let Rx be a canonical region about x with boundary Cx 

lying in G and so chosen that (i) for x e Ga (Gb)9 Cx meets A (resp. B) but Rx does 
not meet B (resp. A), (ii) for x e G — Ga — Gb9 Rx meets neither A nor B. The union 
Ua of all sets Rx which are finitely chainable to Ga by regions [Rv] is open as is also 
the union Ub of all such regions not so chainable to Ga. Further, G c: Ua + Ub 

and clearly Ub • A = 0. Thus we have left only to show that Ua- B = 0. If this 
is not so, then some b e Gb is in a set of [JRj which is finitely chainable to a e Ga; 
and we have a simple chain a e Ri9 R2, ..., RnB b of regions [jRj only the first 
of which contains a and only the last of which contains b. However, this is impossible 

n 

because if C, is the boundary of Rh 1 ^ / ^ n9 C = \JCi is a connected subset of G 

and Ga • C{ ^ 0 5-- Gb • Cn so that C meets both A and B. 

Stated in terms of quasi-closed sets we have 

Separation Theorem (alternate form). Let L be a quasi-closed set in a locally 
cohesive Tx-space X. If two closed sets A and B in X are weakly separated in X by L, 
there exists a closed set K in L which separates A — K and B — K in X. 

To get this form of the theorem we take G = X — L, Ga = A • G, Gb = B • G, 
K = X — (Ua + Ub)9 where Ua and Ub are given by the previous theorem. Then 
A - K c Ua since Ub • A = 0, B - K aUb since Ua • B = 0, so that X - K = 
= Ua + Ub provides the required separation. 

Using this form of the Separation Theorem we now obtain a basic extension 
of the Hurewicz-Wallman intersection result for closed sets in the unit interval I" 
of Euclidean space En. For each i, 1 ^ i: ^ n, let .4,- and £,- be the faces of/" on which 
xt = 0 and xf = 1 respectively. 

Intersection Theorem [7]. Given quasi-closed sets Cl9C2, . , Cn m K1 such 
n 

that for each /, 1 <£ f <; Wj c f weakly separates A{ and Bt in I". Then f)Ci ^ 0. 
I 

Proof. For each f5 by the above, Q contains a closed set Kt which separates 
At - Kf and B- - Kt in F , so that I* - Ki = Ui + Vh where t7£ and Vt are disjoint 
and open and contain At — K{ and Bt — Kh respectively. Now define a function 
f(x), x e In

9 by letting f(x) be the terminal end of the position vector x + d(x) in E'\ 
where the ith component dt of the vector d(x) is +^(x, Kf), the sign being + for 
xeUt and — for x e Vt. Then for x e U { and each i, we have dt = Q(X, Kf) ^ 1 — xt 

so that 0 <; Xi + di S U and for x e Vh d{ = —Q(X, Kt) ^ — xt and again 0 :g x£ + 
+ d ^ x < 1. Thus in any casef(x) e I". Sincef clearly is continuous and f: I" ~+In, 
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we have f(x0) = x0 for some x0eln by the Brouwer fixed-point theorem. Thus 
n n 

d(x0) = 0 and x0 e ClKt cz p |Q. 
i I 

5. Fixed Point Theorem. As an application of the separation and intersection 
theorems for locally cohesive spaces we give next a simple direct proof for the Hamii-
ton-Stallings extension of the Brouwer Fixed Point Theorem to connectivities and 
peripherally continuous functions [3, 5, 7]. This famous theorem has been extended 
in a number of different directions, including the following: (i) Relaxation of the 
single valuedness condition on the mapping. Here there are important results due 
to Kakutani, A. D. Wallace, Eilenberg-Montgomery, Strother, Smithson and others, 
(ii) Relaxation of the structure requirements on the domain space. Included here 
are results of Lefschetz, Eilenberg-Montgomery, Ayres, Borsuk, Cartwright, Hamilton 
and others, (iii) Relaxation of the continuity condition on the function. The extension 
we give now belongs to this last group of results and stems from the simple observ
ation that, in the case of a real function / : ll -» I1, the graph will cross the diagonal 
in I1 x I1 (and t h u s / will have a fixed point) so long as it is connected. 

Using the results developed above, a proof basically like this and almost as 
simple is now available to us for the 

Fixed-Point Theorem (Hamilton-Stallings). Any peripherally continuous func
tion of In into itself, n ^ 2, has at least one fixed point. The same is true of any 
connectivity function of F into itself for n _ 1. 

Proof. Let f :In —> I", n ^ 2, be any peripherally continuous function. We 
visualize I" x F in the form F x I'n where J" = /- x I2 x ... x In and Vn = 
Ii x I2 x ... x In; and for x = (xl9 x2, ..., xn) e F let f(x) = x' = (x'l9 x29..., x'n) e 
efn. Let g:F->F x I,n be the graph function for/ , i.e., g(x) = [x , / (*)] ; and for 
1 ^ i fg n, let pt = ntg :F -> I,- x l\ be the projection of the graph of / into the 
plane Ir x I\ given by Pi(x) = 7tJ(x9x') = (xh xtyelt x fi9 where f(x) = x' = 
= (x[9 x'29..., x'n). Let Ai be the diagonal xt = x\ in the plane I{ x I'.. That / has 
a fixed point now follows from three assertions: 

(i) For each i9 1 ^ i ^ n, pt is peripherally continuous. 

(ii) For each i, 1 ^ i ^ n, the set Ct = pj\A^) is quasi-closed and it weakly 
separates in F the faces At and Bt of F on which xt = 0 and xt = 1, respectively. 

n n 

(iii) f\Ci ^ 0 and f(x) = x for each x e f)Ct. 
I I 

To verify (i), let E be any closed set in I; x I-. Then ni\E) is closed since nt 

is continuous. Thus the set g'1 nJ'1(E) = p7*(E) is quasi-closed, since / i s peripher
ally continuous and thus so also is its graph function g. Whence, p{ is peripherally 
continuous. 
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To prove (ii) note that since A{ is closed, Ct is quasi-closed by (i). Now if some 
component Q of/" - Ct intersected both Ax and Bh Pi(Q) would be connected since 
connectedness is preserved under p{ by (i). However, Pi(Q) would then meet A{ 

because it contains a point pt(a), a e Ah where x\ ^ x{ and also a point P,(b), h e Bh 

where xf

t ^ xh 

Assertion (iii) now follows from (ii) and the Intersection Theorem, and this 

concludes the proof of the first statement in our theorem. 

The second statement is verified by the simple argument given above in the 
first paragraph of this section in case n = 1. For n ^ 2 it results from the fact that 
In is locally cohesive along with the equivalence of connectivities and peripherally 
continuous functions on such spaces as discussed above in § 3. 

In conclusion it may be noted that the above proof of the Intersection Theorem 
leans heavily on the Brouwer Fixed Point Theorem. It would be highly desirable 
to have an elementary and independent proof of this basic result. This would then 
make the above proof of the Hamilton-Stallings theorem complete and free of 
dependence on the Brouwer Theorem. The latter would then be a direct and true 
corollary to the former. 
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