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TOPOLOGICAL GROUPS OF DIVISIBILITY 

J0 MOCKOK 

Ostrava 

If A is an integral- domain with the quotient field K, the group 

of divisibility G(A) of A is the partially ordered group K*/U(A), 

where K* denotes the multiplicative group of K and U(A) the group 

of units of A, with aU(A) < bU(A) if and only if a divides b in 

A. It is well known that any abelian lattice-ordered group is a group of 

divisibility of some Bezout domain. 

But, every lattice-ordered group may be endowed with the discrete 

topology and therefore considered a topological lattice-ordered group. 

We have an analogous situation for fields: every field may be considered 

a topological field with respect to the discrete topology. 

Hence, it seems natural to consider the following question: does 

there exist for any abelian topological lattice-ordered group G a to­

pological field (K,T) and a Bezout domain A in K such that U(A) 

is closed in K* with respect to the topology induced from K and such 

that the factor group K*/U(A) is a topological lattice-ordered group 

isomorphic (i.e. group and lattice homeomorphic) with G ? In this case 

we say that G has a representation (K,T,A). 

We have solved this problem for a special class of topological lat­

tice-ordered groups and special types of representations (K,T,A) but, 

unfortunately, in general case the problem remains unsolved. 

By a topologioal lattioe-ordered group (notation: tl-group) we shall 

mean a triple (G,<,F), where G is an abelian group, (G,<) is a lat­

tice ordered group (notation: 1-group) and F is a topology on the under­

lying set |G| of G such that (G,F) is a topological group and 

(|G|,<,F) is a topological lattice. 

Two tl-groups are tl-isomorphio if there is a homeomorphism between 

them, which is both a lattice and group isomorphism. 

If G is an 1-group, then a prime l-ideal of G is a convex sub­

group P of G, which is also a sublattice and from inf(a,b) € P it 

follows a e P or b e p for any a,b € G. Then a set (P. : i G J} of 

prime 1-ideals of a tl-group G is called a topologioal realization of 

G if P± is cl 

the natural map 

G if P. is closed in G for every i e J, Hi?. : i € J} = {0} and 

тt : G M{G/P
±
 : i 6 J} 
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is a tl-isomorphism from G onto xG, where nG inherits its topology, 

operation and ordering from II {G/P. : i € J} . 

Further, for any field K and a valuation w on X with value 

group G we may construct a field topology T in K defining the 

sets U = {x £ K : w ( x ) > a}, a e G+, R = {x € K : w ( x ) > 0 } , as a w, a w w 
base of the neighbourhoods of zero in K. Then the group U(R ) of units 

of R is open in K* and w : K* > G is continuous with respect to 
w ^ w ^ 

the discrete topology on G . 
First of all there holds the following proposition^ 

Proposition 1. Let H be a closed l-ideal of a tl-group G, If G 

has a representation, then the factor tl-group G/H has a representa­

tion. 

P r o o f . If (K,T,A) is a representation of G, then by [2] , 

Theorem 2.1. there exists a saturated multiplicative system S in A 

such that the group of divisibility of a quotient domain A is 1-iso-

morphic with G/H. Then it is possible to show that (K,T,A ) is a rep­

resentation of G/H. 

The following theorem solves completely the problem of existence of 

a representation for a totally ordered tl-group. 

Theorem 2. Let G be a totally ordered tl-group. Then G has a 

representation if and only if G is a discrete space. 

P r o o f . If (K,T,A) is a representation of G, then a canoni­

cal map w : K* >G is a continuous valuation. Since every set 

{B £ G : $ > a}, a £ G , is open in G, it follows that T £ T. Thus 

the set U(R ) is open in T and G is a discrete space, w 

It is well known that the factor group of an 1-group with respect 

to a prime l-ideal is totally ordered. Thus, using Proposition 1 and The­

orem 2 we obtain the following proposition. 

Proposition 3. If a tl-group G has a representation, then every 

closed prime l-ideal of G is open. 

Observe that using Proposition 3 an example of a tl~group (non-to­

tally o r d e r e d ) , which has no representation, is easy to construct. The 

example of a topological product of two copies of a totally ordered group 
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with the interval non-discrete topology works. 

Now we shall find a condition for a tl-group G to have some spe­

cial types of representations. We shall start with the following asser­

tion. 

Proposition 4. Let G be a H-group and let (K3T3A) be its rep­

resentation. Then there exists a topological realization {P. : i €. J} 

of G if and only if there is a family {w. : i 6 J} of valuations of 

K such that f\{R t i £ J} = A, T > sup{T : i €. J} and 
W j w t 

i I 
{U(R ) : i e J} is a subbase for the sets U.U(A), where U is an w. 
open neighbourhood of I,, ^n Ksc« 

We say that a representation (K,T,A) of a tl-group G is locally 

bounded provided that (K,T) is a locally bounded topological field and 

U(A) is a bounded set. Then the following theorem holds. 

Theorem 5. Let G be a tl-group with a topological realization 

{P. : i € J}. Then there exists a locally bounded representation of G 

if and only if J is a finite set and P. is open for every i 6 J. 

The p r o o f of this theorem is based on the using of Proposi­

tion 4. 

Further, we say that a representation (K,T,A) is locally compact 

provided that (K,T) is a locally compact topological field. Then we 

have the following theorem. 

Theorem 6. Let G be a tl-group with a topological realization 

{P. : i € J}. Then there exists a locally compact representation of G 

if and only if G is a discrete tl-group isomorphic with the group Z 

of integers. 

P r o o f . If (KfT,A) is a locally compact representation of G, 

then by Proposition 4 there exists a family {w. : i € J} of valuations 

such that A = Pi {Rw : i £ J} and sup{T : i £ J} < T, Every locally 
i i 

compact field is a complete topological field and it follows that T is 
a minimal field topology on K. Hence, T y^T for every i e J and 

the valuations w., i e J, are mutually dependent. On the other hand, 

since T is locally compact, it follows that w. is a discrete rank 
i 

one valuation for every i 6 J and the valuations w. $ w. are inde--
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pendent. Thus, card J = 1 and P1 = {0}. Therefore, G £-• G/P-, * G 2= Z % 
The converse is evident. 

It should be noted that we are not able to solve the problem of the 

existence of representation of a tl-group G even for special types of 

topologies on G. On the other hand, from the existence of such repre­

sentation (K,T,A) it is possible to show some facts about the rela­

tions between the topology on G and a domain A, 

We consider, for example, the topology T t on an 1-group G such 

that the set n' of all dual principal polars of G is a base of neigh­

bourhoods of zero. Recall that a dual principal polar of G is a set 

{a}' = {g e G : inf ( l g l , l a l ) = 0}, where a 6 G and Igi = s u p ( g , - g ). 

Then the following proposition holds. 

Proposition 7. If a tl-group (G,T ,) has a representation (&,T, 

A)^ then G is a discrete space if and only if the Jacobson radical of 

A is non-zero. 

We conclude this note by mentioning a result of a continuous order 

relation in a topological group. Recall that for a partially ordered set 

(M,<) with a topology T the order relation < is called continuous 

if for any a,b e M such that a ^ b there are U,V e T with a e U, 

b 6 V such that for every u e U , v e V , u ^ v holds. The importance 

of this notion follows from the fact that for every tl-group with T2-

-topology the order relation in G is continuous. 

We have the following simple characterization of continuous order 

relation in a topological order group. 

Proposition 8. Let (G,<,T) be a topological order group* Then < 

is continuous if and only if G is closed in G. 
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