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PLANABLE AND SMOOTH DENDROIDS
T. MACKOWIAK
Wroctaw

§ 1. Introduction. All spaces considered in this paper are metric
and compact. A continuum means a compact, connected space. A dendroid
is a hereditarily unicoherent and arcwise connected continuum. If a den-
droid has only one ramification point t (see[ 3], p. 230), it is called
a fan with the top t (see [51, p. 6). A unique arc joining points a
and b in a given dendroid X we denote by ab. A dendroid X is said to be
smooth at p provided lim a = a implies Lim pa, = pa (see [8], p. 298).
If a dendroid X has a point p, at which it is smooth, then we say simply
that X is smooth.

A space X is said to be planable if there is a homeomorphism of X
into the Euclidean plane. It is well known that the problem of a chara=-
cterization of continua Xwhich are not planable is solved in case when
X is locally connected. Namely, a locally connected continuum X, which
is not the two-sphere, is planable if and only if it contains no-homeo-
morphic image of the Kuratowski’s primitive skew graphs K1 and KZ( see
[14]) and of the Claytor’s curves Cy and C, (see [11]) . The problem
of the planability of continua which are not locally connected is open
(for some partial results see[ 1], Theorem 4 and Example 1, p. 654).
Even for dendroids this problem is very complicated. There is no finite
( countable) collection & of dendroids such that any not planable den-
droid ( smooth dendroid) contains a homeomorphic copy of some member of
Jﬂ (see [ 6] and.[9]). Exactly the same situation is for fans, which can
be not planable (the first example was given in [ 2]), Namely, there
does not exist also such countable collection$ for fans (see [16J).
A1l smooth fans are planable, because they can be imbedded in the Can=-
tor fan (see [ 5], Theorem 9, p. 27 and [12], Corollary 4, p. 9Q).

Recall that if A is a closed subset of a space X, then the point
agA is called an inaccessible point of A in X provided ‘there is no nen-
degenerate arc ab in X such that abn A = {a}.

Some sufficient conditions to the non-planability of dendroids in
terms of inaccessible points are proved in [ 10].

A continuum Ko is said to be a convergence continuum of X if it is
the topological limit of a sequence of continua Kn such that K° =
=LimK and K nK_ = $ for n # m and n,m = 0,1,2,... (see [15],p. 245).

It is easy to see (for example from Claytor’s result) that every
locally connected dendroid is planable. Thus, since the non-local conne-

ctedness of a given continuum X implies the existence of non-degenerate
convergence subcontinua of X (see [15], § 49, VI, Theorem 1, p. 245) it
seems possible to characterize planable dendroids in terms of the con-
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vergence continua and of inaccessible points. In this paper we prove
some results in this direction of investigation of nonplanable dendroids.

§ 2. Convergence continua of arcs. In this section we will prove that

any convergence subcontinuum of planable dendroid is a convergence conti-
nuum of arcs. Firstly, from Brouwer’s reduction theorem easily we obtain
the following

THEOREM 1, Let a sequence {Kn} of subcontinua of X be such that
LimK =K, K nK = $ forn # m and n,m = 0,1,2,... Then there is a
maximal subcontinuum Qo of Ko for which there are arcs a, bn. conver=
ging to Qo such that anibnic Kni for some subsequence {ni} of the
sequence of natural numbers.

The following theorem generalizes Proposition 8 from [10].

THEOREM 2, Let a dendroid X contain a sequence of mutually disjoint
2
simple triods T = a:lpnu a;pnu agpn (n= 1,2,..4), vhere a1 ai, ai are

endpoints and P, is the top of T and such that Al Lim a pn, T n0 UA

= ¢ and bre A1\ (J aJ for i,5 =1,2,3 and n = 1,2,... Then X is not
planable. 3

Proof. Suppose X can be imbedded in the plane R2 under a homeo-
morphism h: X — h(X)CR We will write x instead of h(g_c_l to simplify deno-
tations. Let Bl bve regions in RZ such that ble B and Bln( lzl (Aju Bj)) =

<

=@ for i,j = 1,2,3. Thus, since ble At = Lim a’p , we can assume that

n'n
(1) ap,nB" # 9, a;pnn( ‘%/l BJ) =

for i,j = 1,2,3 and for each n = 1,2,...

3 s =
The arc a;]p1 v a.‘2p1 contains an arc c102 such that c1c2n< U(Alu Bl))

12 (71,72 2 3 1=
= cc“n(B'UuBT) = {c ,C }. Similarly, the ar‘c a1p1ua1p1 contains an
arc d%d’> such that d?d’n( U (atuBY) = e (B?UB3) ={¢&°a%}.

Let pal bé an arc in A such that pa nB {a }, and pa npaCl ={p}

for i # j and i,j = 1,2,3. Then the contlnuum U(pa vB)u c'clu d d3
separates the plane into three regions D D an & such that Da \ D]‘
# @ for i = 1,2,3. Infinitely many points 1 belong to DT for some i =

= 1,2,3. Let p € pi _for j = 1 2,... It follows from (1) that a b C

%3 51
c D . Therefore A cD , because At - Lim anpn = Lim an Pp.e But

. . . . JJ
patc A* and pa'\ D! # @#, a contradiction.

Now we will prove
THEOREM 3. Let a sequence of subcontinua {Kn] of planable dendroid X

be such that Lim K_ = K and K an Ko =@ forn# mand n,m= 0,1,2,...
1
Then there iz 2 sequence {an n}of arcs such that Lim an 2n 2 = K and

LD
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1 2 s
an nlc Kni for i = 1,2,e0.
Proo f. Let @ be a maximal subcontinuum of K for which there

are arcs a, a, converging to Q and such that a an C K for some sub-
i"i ny

seqguence {ni} of the sequence of natural numbers (such Qo
Theorem 1) . Suppose, on the contrary, that Ko\ Q # 0. Let a

exists by
3e Ko\ Qo.

Since K = Lim K = Lim Kni, we infer that there are points ani belong-
ing to Kn such that lim an = 3. For each i = 1,2,... we take an arc
i
3 . 3 2 _ ) .
anipni in Kni such that a lp n an a, {an . Since X is compact, we

can assume that sequences {a Py } are convergent for j = 1,2,3. Put
ny ny
AJ = Lim aJ P for j = 1,2,3. By the choice of Qo we conclude that

i
there is a natural number io such that for each i)-io the set Tn =

T 2 3 . . , i
=a_ p_ uva.p.uvua.p is a simple triod. Moreover,
n; ng n; n;” “nytny
(2)  AIN( &J AR) £ ¢ for j,k = 1,2,3.
k#J
In fact , suppose that AJ\( L} A ) = @ for some j = 1,2,3. Then
. #J 3
ade (A, Thus Lim ( (Z/ a¥p ) =vin( (J & ) = A'u Aa%u A3, But
ki J k3 i Pi k=1
sets aﬁ P, are arcs for i.)i and Q is a proper subcontinuum of
k#j i Ui

"0 420 A%, because a’e (A'v A% A%)\ . It is impossible, by the cho-
ice of Qo. The condition (2) and Theorem 2 imply that X is not planable,
a contradiction., The proof of Theorem 3 is complete.

From Theorem 3 we infer that

COROLLARY 4e Any convergence subcontinuum of planable dendroid X is

a convergence continuum of arcs which are contained in X.

§ 3. Some properties of planable dendroids. We have (see [ 3], (47),

p. 239, [4], XI, p. 217 and [15], $49, III, Theorem 10, p. 470)

PROPOSITION 5, If X is a plane dendroid, then the set R2\ X is con-

nected.
Firstly, we will show the following
LEMMA 6., If ajsespa, are different accessible points of a continuum

A in a plane dendroid X, then there are nondegenerate mutually disjoint

arcs a1b1,...,anbn in X and a simple closed curve C in R2 such that

ﬁ%”A=hﬂ for i = 1,2,+.4,n and

n
(Au H a;b;)n C = {bg,bp.00pb ]

In fact, since points aq5eee5a, are different and since they are
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accessible points of a continuum A in a dendroid X, we infer that there
are nondegenerate mutually disjoint arcs a4Cq5.05a,Ch in X such that
ajc;nh = {ai} fori=1,2,...,n. Sets A and B = {01,...,cn} are dis-
Jjoint and closed sets which do not separate the plane (cf. Proposition 5)
Thus, by Theorem 9 in [15], § 61, II, p. 514, we obtain that there is
a simple closed curve C in R® which separates A and B. Therefore CnA
= @ and Cnajcy # @ for each i = 1,2,...,n. Let b, be the first point

in the arc alcl (in the order from a; to ci) which belongs to C for i =

= 1,2,...4n. Then C and arcs a1b1,...,anbn satisfy required conditions.

Let X be a dendroid and let A be a subcontinuum of X, A point b of

A is called a convergence point of A in X if there is a sequence {an}
of X such that Lim a b = A and Lim (a bn A) = {b].
It follows from the definition of the convergence point that

LEMMA 7. If b is a convergence point of a subcontinuum A of a den=-
droid X, then b belongs to the closure of the set of all accessible
points of A in X.

Now, we will prove

THEOREM 8, Let b be a convergence point of a subcontinuum A of a
planable dendroid X. Then the set of all accessible points of A in X
is céntained in some arc cb.

Proo f. We assume that X is embedded in the plane RZ. Firstly
we will prove that
(3) the set of all accessible points of A in X is contained in some
arc cyCye
In fact, suppose, on the contrary, that Cq1sCH and c3 are accessible
points of A in X and they are endpoints of a simple triod T contained
in A. According to Lemma 6 %here are disjoint nondegenerate arcs dqcq,
d2c2 and d C3 in X and a simple closed curve C in R2 such that
(4) djcinhA = {c}for1-123and(AuUd 1) C = {dy,d,d5).
The curve D = C v Cv d C.

i=1
mains such that the closure of any of them fails to contain at least

one of the points c1,cz,03. Since b is a convergence point of A in X,

lu}T separates the plane RZ into four do-

we conclude, by (4), that there are arcs anan in X such that Lim anan

= A and a, a'r\D = @ for each n = 1,2,... Therefore some subsequence
{a a } of the sequence {a,a n} is contained in some domain into which

D sgpagates the plane. Then the set Lim a, aé fails to contain some c;.
k "k .
But {01,02,03}¢:T<:A = Lim aja’ = Lim ankank, a contradiction.
From Lemma 7, we infer that be&c4c,. Suppose, on the contrary, that
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r, and r, are accessible points of A in X such that e =< r1<:b'<r

(in the natural order of c,c 2). According to Lemma 6 there are dis%01nt
nondegenerate arcs STy and Solos and a simple closed curve S in R® such
that

(5) s;rinh = {ri} for i = 1,2 and (A,us1r1\152;2)n S = {51,sé§.

The curve R = S\/s152 separates the plane R® into three domains W,
w2 and w3. Since b is a convergence point of A in X, we infer that there
is a seaquence {an} of points of X such that
(6) Lim a b= A,
and
(7) Lim (anbrxA) ={b).

We may assume, by (6), that anb,\S =@ for eachn =1,2,..., because
AnS = @ by (5). Moreover, since sets a bnsys, are connected for each
n=1,2,e0.y we may assume that all arcs anb are contained in the clo-

" sure of one of sets w1, W2 and WB' ay
(8) a bc:W for each n = 1,2,...

From (6) and (7), we infer that there is a nondegenerate arc r3S3
in X AW, such that r353l1(AlJS1T1\152 2) = rzsznh = {PB;. Thus rz is an
acc9351b]e point of A in X. Therefore, by (3) , we conclude that r1<‘r3<
<r, (in the order of the arc r T, ).

bets A and B = {51,52,53} are disjoint and closed, and they do not
separate the plane (cf. Proposition 5). We obtain that there is a simple
closed curve S° in RZ which separates A and B (see [(15], § 61, II,
Theorem 9, p. 51&). Therefore S'’n A = P and S'ar;s; £ 9 fori=1,2,3,
Let s% be the first point in the arc r3Ssz (in the order from r; to si)
which belongs to S”, and let [s{sé] be an arc in S’ containing s% such
that [s{sé] n(SL/s1sz) ={s{,sé}. Then the set [s{sé]‘1r3s% separates W,
into three comonents V1, V?, VB’ the closure of each of them does not
contain both r, and ThHe

Since [>1~ﬂ]r\a bc 3'n a, b for each n = 1,2,... and S'aA = @, we can
assume, by (6), that [DTUQ]r\ano = § for eachn = 1,2,... Therefore,
because sets a b41(81 oV T3S ) are connected for each n = 1,2,..., we
infer from (8) that for each n = 1,2,... the arc a, b is contained in
the one of sets V1L;r3b V2(Jr3b V,L;er Therefore some subseauence
{s‘ b} is contained, say in V1g1r3b But set V. q v rzb does not contain
either Ty Or Iy and {r1,r25C:A = Lim ankb = Lim anb, a contradiction.
The proof of Theorem 8 is comnlete,

Combining Lemma 7 and Theorem 8 it is easy to obtdin

COROLLARY 9, If A is a subcontinuum of nlanable dendroid X, then
A has at most two convergence points.

Remark that if one will chanee the definition of convergence points
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distinguishing two situations, when sets anbr\A are degenerate and when
they are nondegenerate, then he may prove other ovroperties of planable
dendroids, which do not follow from above proved properties.

§ 4. Two examples of plane smooth dendroids. It is known (see [13],
Corollary 4.2) that there is no universal plane dendroid, i.e., there
is no plane dendroid containing a homeomorphic copy of any plane den-
droid. In spite of this one can ask whether there is a plane smooth den-
droid which contains a homeomorphic copy of any plane smooth dendroid.
The answer is negative, We consider firstly two special examples of plane
smooth dendroids to obtain this result.

Let (x,y,z) denote a point of the Euclidean 3-space having X,y and
z as its rec¢tangular coordinates. Put

00
i nL_J ({(1/n cos t,1/n sin t,0) : 0t <3/25

D

-

7}
u{(x,-1/n,0) : 0<x<1}v {(x,0,0): 0<x<1}),

0
({(t - 550 : ost<}o {(-t « 5,- £,0): oses)y

o
N

it
Cs

-

) v {(%0,0): -1gx<1}),
= (0,0,0) ?
= {(0,0,2) : 0<z<1}

H g
! |

and

E; =D,ul fori=1,2.

It is easy to see that

PROPOSITION 10. D1 and D2 are both smooth plane dendroids with p as
a unique point at which they are smooth.

One can prove more general

PROPOSITION 10°., If X is a smooth dendroid containing either Dy or D
which is contained in the plane, then p is a unique point, at which X
is smooth.

We have also

2

PROPOSITION 11. E1 and E2 are both nonplanable dendroids.
Smooth dendroids have the following property

PROPOSITION 12, If a dendroid X is smooth at r, A is a subcontinuum
of X, and rq is an arc such that rqnA = { q}, then A is smooth at q.

Now, we will prove

THEOREM 13, There is no smooth plane dendroid containing a homeomor-
phic copy of D1 and a homeomorphic copy of D2.

P r oo f. Suppose, on the contrary, that X is plane dendroid which
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is smooth at r and for i = 1,2 a mapping hi: Di->hi(Di) is a homeomor-
phism such that h (D)€ X. Let ra; be an arc in X such that rqir\hi(Di)
= {qi} for i = 1,2. By Proposition 12 we obtain that for i = 1,2 the
dendroid hi( Di) is smooth at h;(g;). Thus h;(a;) = hy(p) for i = 1,2,
by Proposition 10. Therefore, for i = 1,2, if the arc ra; is nondegene-
rate, then the continuum rqig,hi(Di) is homeomorohic to Ei, and, by
Proposition 11, we obtain a contradiction. Hence h1(p) = h2(p). But
h1(p) is an endpoint of h1(D1\ and there are two arcs in hz(ADZ)having
only the point hz(p) in the common part. Thus X must contain a homemor-

phic copy of E1. But this is impossible by Proposition 11, because X
is planable.

COROLLARY 14, There is no universal smooth plane dendroid.

§ 5. Problems. Besides the general oﬁen problem of a characteriza-
tion of plafe(smooth)dendroids the following problems are open.

Does a plane dendroid exist containing all plane smooth dendroids ?

Is an open image of a plane dendroid always a plane dendroid ?
(compare [7}).

Remark that open mappings do not preserve the planability in gene-
ral (see [17], Example, p. 189).
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