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ON A FACTORIZATION LEMMA AND A CONSTRUCTION OF ABSOLUTE 

WITHOUT SEPARATION AXIOMS 

A.BLASZCZYK 

Katowice 

The aim of t h i s p a p e r i s t o show a g e n e r a l i z a t i o n of t h e con

s t r u c t i o n of a b s o l u t e p r e s e n t e d i n our p a p e r s [2] , C3] and C4] • We 

s h a l l p r o v e t h e f o l l o w i n g F a c t o r i z a t i o n Lemma : each s k e l e t a l map f : 

E onto s»X , where E is extremally disconnected, i s a composition 

£ £—.̂ 2 *X, where Z is extremally disconnected and the factor 

h i s irreducible and separated. By the use of this Lemma we give a 

general construction of the absolute of a space assuming no separation 

axioms. We shall also prove that projective objects in the category 

of H-closed spaces and their continuous maps are exactly those which 

are either f ini te spaces or Katetov extensions of discrete spaces. 

The concept of the absolute in the compact Hausdorff case i s due 

to Gleason f8] (see also Rainwater 0 51 and Hager C2 ). In more gener

al cases several constructions were given : I l iadis C11] , Ponomarev 

0 43 , Flachsmeyer L6J , Mioduszewski C12] , Mioduszewski and Rudolf 

C13] 9 Banaschewski [1] , Iryckhoff C 53 and in the case of TQ-spaces 

our papers C2] , C3] and [4] • Recently general constructions of abso

lute also in the absence of separation axioms was given by Ul'janov 

C17] and Sapiro C16] . Construction of the absolute presented in C173 

i s a generalization of a construction of Ponomarev C143 • In C16] there 

i s improved the method of centered families used by I l iadis C11] • 

All maps are assumed to be continuous. A map f : X---1-0-—-»-Y i s i r 

reducible if elf (F) /£ Y whenever F is closed and F /-" X. A map is sep

arated if distinct points with the same image have disjoint neighour-

hoods. A map i s perfect if i t is closed and preimages of points are 

compact Hausdorff. A space i s extremally disconnected (shortly, e.d.) 

if the closure of each open subset i s open. A map <* : ocX—nt0 >X i s 

called to be an absolute of a space X if i t i s irreducible, separated 

and perfect and the space^CX is e.d. 

Lemma 1. If a map f : E 2-.X is irreducible and separated, then 

for each g : E ^E for which fog = f, g i s the identi ty. 

Proof of this lemma is an easy modification of 1.4. in C133 

Lemma 2. If a map f : X0"* >E is irreducible, separated and E i s 
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e.d., then f is one-to-one. 

Proof.It is easy to check that if xe U, then f(x)6 c l (E\c l f 

(X~-U)). If f(x) sr f(y) and x £ y, then there exist disjoint open 

sets U and V such that xe U and ye V ; f being separated. Since Ur\V 

- 0 and E is e.d., 

cl(E— clf(X-U)) ^cl(E^clf(X-V)) = 0 ; 

a contradiction. 

A map f : X Ŷ is said to be skeletal (see [13J ) provided 

the preimage under f of each open and dense subset of Y is dense in X 

or, equivalent^ if Intclf"1 (U) = IntfH (clU) for each U being open in 

Y. It is known that each irreducible map is skeletal and that the 

class of all topological spaces and their skeletal maps forms a cate~ 

gory. 

Lemma 3» Irreducible separated maps are monomorphisms in the 

category of topological spaces and their skeletal maps. 

Proof of this lemma is analogous to the proof of Lemma 4 in [3] 

Theorem 1. If a map f : E onto *g i s i r r e d u c i b l e and s e p a r a t e d 

and E i s e . d . , t h e n t h e f o l l o w i n g a r e e q u i v a l e n t : 

( I ) f i s an a b s o l u t e , 

( I I ) f o r each map g : Y **&, Y b e i n g e . d . , t h e r e e x i s t s a 

map h : Y =̂ E such t h a t f ° h = g , 

( I I I ) f o r each s k e l e t a l map g : Y >X, Y b e i n g e . d . , t h e r e 

e x i s t s e x a c t l y one map h : Y >E such t h a t foh = g . 

P r o o f . 1 . ( I ) = = > ( I I ) . To p r o v e t h i s i m p l i c a t i o n l e t u s c o n s i d e r 

t h e p u l l b a c k d iagram 

Y * >T 

S, 
X з .>E 

f 

where T = { ( x , y ) e Y * E : g ( x ) = f ( y ) } and T and Y a r e t h e r e s t r i c 

t i o n s of t h e n a t u r a l p r o j e c t i o n s * One can check t h a t *f i s s e p a r a t e d 

and p e r f e c t . A s t a n d a r d method shows t h a t t h e r e e x i s t s a c l o s e d s u b 

s e t Z, Z c T , s u c h , t h a t ^ I Z i s i r r e d u c i b l e and o n t o . H e n c e , by Lemma 

2 , f | Z i s a homeomorphism. The map Y ° Of|Z)~1 i s a d e s i r e d o n e . 

2 . ( I l ) = = - > ( I I I ) . T h i s i m p l i c a t i o n , by Lemma 3 , i s o b v i o u s . 

3« ( I I I ) Z> ( I ) . T h i s i m p l i c a t i o n i s c o n t a i n e d i n t h e p r o o f 

of Theorem 10 i n o u r p a p e r [>33 • 

Theorem 2 ( F a c t o r i z a t i o n Lemma). F o r e a c h s k e l e t a l map 

f : E o n t 0 -̂ g, where E is e.d., there exists a factorization 
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УL 
—j » 

such that the factor h : z s-X is irreducible and separated and Z is 

e.d. and the family {h~
1
 (U) rs clh"1 (V) : U and V are open in X] is a "base 

of the topology in Z. 

Proof. Consider an equivalence on X assuming x~y whenever the fol

lowing condition holds : 

f (x) = f (y) and for each U and V being open in X there is 

xe f
1
(U)nclf'

1
(V) iff yef^U)nclf^(V). 

In the sequel the proof does not differ from the proof of Theorem 1 in 

our paper f 2 ] . We define Z to be the set of all equivalence class of 

the relation
 ur~ " with the topology generated by the family {g(f"4

(U)n 

clf~
1
(V)) : U and V are open in X } , where g is the projection. 

Uote. The Factorization Lemma proved here differs from the 

Factorization Lemma from our paper [ 2] . Namely, the equivalence re

lation "~
 n
 here is finer than that from C 2] (they coincide in the 

case when X is a T
0
-space). 

Construction of the absolute. 

Let X be a topological space. Consider all skeletal maps f : E ->X, 

where E is e.d. These maps do not necessarily form a* set. By Theorem 

2, for each such a map there exists a factorization E ---—̂  Z -—^X, 

where Z is e.d. and h is irreducible and separated. Since the family 

(h
 1
(U)oclh

1
(V) : U and V are open in X} is a base in Z and h is sep

arated, |Z |^|X |«exp|r| 9 where T is the topology in X. Hence there 
exists a set S(X) of irreducible and separated maps g : Y— s-X from 

e.d. spaces Y onto X such that each skeletal map f : Y — — > X , where 

Y is e.d., admits a decomposition Y 5>Y -*—s»X for some ge s(X). 

It was proved inL 3-1 (see Lemma 7) that for each topological space X 

the set S(X) is non-empty; for each topological space there exists an 

e.d. topology which is maximal in the set of all topologies on X 

having skeletal contraction onto X. Let Y be the disjoint union of 

all Y for ge S(x) and let f : Y
 onto

 >X be the map induced by maps from 

3(X). Clearly, Y is e.d. and f is skeletal ; f|Y being skeletal ( ir

reducible maps are skeletal). By Theorem 2, there exists a facfcoriza-
" X X 

tion Y >ol,X -^—->X, where * is irreducible and separated. Moreo
ver, for each skeletal map f : Y 3»X, where Y is e.d., there exists 

X X 

a map h : Y >o(X such that ofo h = f . Hence, by Theorem 1 , c* : <*X 

>X is the absolute. By Lemma 1, for each topological space the absolute is unique up to a homeomorphism. 
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Remark of the categorial character. 

Let us consider the category TOP of all topological spaces and 

their skeletal maps. By Theorem 1, for each skeletal map f : X >Y 
Y * "X" 

t he re e x i s t s a unique map f : dX -̂CY such tha t oc o f = f o d. f 
X Y 

d : oCX >X and ai : oCY >Y being the abso lu t e s . Hence the abso
l u t e define a functor cC: TOP >ED , ED being the category of a l l 
e .d . spaces and t h e i r s k e l e t a l maps. By Fac to r i za t ion Lemma, our con
s t ruc t i on of the absolute f a l l s under a general ca t ego r i a l scheme of 
cons t ruc t ions of adjoint functors given by Freyd [7] , dual to the 
cons t ruc t ion of the Cech-Stone functor . 

A map h : E >oCX, E being e . d . , i s said to be l i f t i n g over oCX 
nap f : 

the abso lu te . 
of a map f : E >X provided tha t f = oCXo h, where rfX : oCX =>X i s 

Theorem 3 . A map f : E >X, where E i s e#d. , admits a unique 
l i f t i n g over otx i f f 

( * ) In tc l f 1 (U) = Intf1 (clU) 
for each U being regu la r ly open subset of X. 

The proof of t h i s theorem i s the same as the proof of Theorem 3 
in our paper [4] . 

Note. The maps for which condit ion (-* ) holds were considered 
by Henriksen and Jer i son [10] (see a l so [133 and[16l ) and are ca l l ed 
in the l i t e r a t u r e HJ-maps. However t h i s c l a s s i s not closed with r e 
spect to the superpos i t ion . So, from the ca t ego r i a l point of view the 
c l a s s of ske l e t a l maps seems to be the best subclass of the c l a s s of 
HJ-maps. 

An object P of the category K i s said to be p ro j ec t ive in K 
provided for each epimorphism f : Y >X from K and for each g : P 

>X from K the re e x i s t s a morphism h : P >X, he K , such tha t 
g = f o h . Gleason [8] proved tha t in the category of compact Haus-
dorff spaces and t h e i r continuous maps, p ro jec t ive objec ts coincide 
with e .d . spaces. We sha l l prove the following 

Theorem 4. P ro jec t ive objec ts in the category of H-closed 
spaces and t h e i r continuous maps are exact ly those which are e i t h e r 
f i n i t e spaces or Katetov extensions of d i s c r e t e spaces. 

P r o o f . 1 , The necess i ty was proved in our paper [4] (Theorem 5)* 
2 . To prove the converse l e t g : rD >X and l e t f : Y >X be a 
map onto, X and Y being H-closed, TD denote the Katetov extension of 
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discrete space D. Consider the following diagram 

f 

The topologies of spaces VD, oQC, oCY have contractions to compact 

Hausdorff ones (such topologies are called c o m p a c t - l i k e ) , being H-

closed and e.d. The maps h and k exist in virtue of Theorem 1. Since 
Y X 

f o oc is onto and <A is irreducible and cLY is H-closed, k is onto. 
Thus, by Theorem 6 in our paper [4] , there exists a map 1 : rD -j# 

Y Y 

such tha t ko 1 = h . Therefore g = f o or o 1. The map Oc o 1 i s the de
s i red one. 
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