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A CLASS AL AND COMPACTA
WHICH ARE QUASI-HOMEOMORPHIC WITH SURFACES

H. PATKOWSKA

Warsaw

We shall consider metrizable spaces only. A map £ of a comp-
actum X into a space Y is said to be an g-mapping if diam(f-'] (¥ Xt
for every y€f(X). Given two compact spaces X and Y, X is said to

be Y-like if for every ¢>O there is an g£-mapping of X onto Y, The
spaces X and Y are said to be guasi-homeomorphic if X is Y-like
and Y is X-like. A compact space X is said to be quasi-embeddable
into a space Y if for every ¢)>0O there is an £-mapping of X into Y.

Marde$ié and Segal [5] proved the following theorem: If X
is a connected polyhedron then the following statements are equi-
valent:

(1) X is embeddable into S°,
(i1) X is quasi-embeddable into S2.

(1ii) X does not contain any homeomorphic images of Kuratows-
ki grapbs K, and K2 and any 2-umbrella.

Recall that K, is the 1-skelton of a 3-simplex with the mid-
-points of a pair of non-adjacent edges joined by a segment, K2 is
the 1-skelton of a 4-simplex., The n-umbrella is the one-point union
of an n-ball and of an arc,relative to an interior point of the ball
and an end-point of the arc.

I was looking for s bigger class such that the equivalences
(i)@?(ii)é%(iii) hold for each member of this class and I have prov-
ed in [#] that this is the case for the class & defined as follows:

Definition. A locally connected continuum X belongs to the
class &« iff there is an ¢£>0 such that no simple closed curve SCX
with diam(S)4E is a retract of X.

It is easy to see that the class & contains all compact, conn-
ected ch—spaces, and therefore it contains all compact, connected
ANR-s too. Consequently, the equivalences (i)&(ii)&(iii) hold
for each member X of these classes.
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The following characterization of the connected planeable
ANR-sets and of the planeable AR-sets follows: X is a connected
planeable ANR iff X€o, X satisfies the condition (iii) and ¥ is
not homeomorphic with 52. X is a planeable AR iff X is a locally
connected continuum such that no simple closed curve ScX is a retr-
act of X, X satisfies the condition (iii) and X is not homeomorphic
with s°,

These results and the methods of the investigation of the class «
as developed in [}] have been used to solve the following guestion
raised by Merde$i% «nd Segel in [6]: Is it true that any locally
connected 2-dimensional compactum X which is M-like, where M is a
surface (i.e. a closed 2-manifold), is homeomorphic with M<

I have proved that this is indeed the case. The proof will be
published in detail in Eﬂ . Here are the main ideas of the proof.

Ganea in [3] has proved this theorem under the additional ass-
umption that X is an ANR. So we are going to prove only that our ass-
umptions imply that X is an ANR. To do this - using the results con-
cerning the class o, as mentioned on the beginning - we prove the
following main lemmas:

Lemma 1. Let Y be a compact space such that the group H1(Y)
(the Sech homology group with integer coefficients) is finitely gen-
erated, If X is a locally connected continuum which is Y-like, then
Xe,

Lemma 2. Assume that X€x and that for every A >0 there is a
set ACX homeomerphic either with K1 or with K2 and such that diam(A)4
<A. Then for each k=1,2,... there is a sequence 81,...,Bk of disjoint
subsets of X, each of which is homeomorphic either with K1 or with K2.

Lemma 3, Assume that X&o, X does not contain any 2-umbrella
and there is a X>0 such that there is no set ACX with diam(A)<) homeo-
morphic either with K1 or with K2. Then for every x&X there is a
neighborhood of x in X being a compact planeable Ak-set.

Using the Bennet’s result [1] that the 2-umbrella is not quasi-
-embeddable in 82 and E2 and using the theory of the universal cov-
ering spaces we proved also the following lemma:
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Lemma 4., The 2-umbrella is not quasi-embeddable in any 2-mani-
fold.

Now, we proceed as follows: Assume that X is a locally conn-
ected compactum, dim X »2 and X is M-like, where M is a surface. Sin-
ce M is connected and for every &>0 there is an €-mapping of X onto M,
it follows that X is connected. Now, lemma 1 implies that X€X, Since
dim M=2 and §¢-mappings cannot diminish the dimension, it follows
that dim X =2. By lemma 4, X does not contain any 2-umbrella. Assume
that for every A>0 there is a set ACX with diam(A)<)A homeomorphic
either with K, or with K5 It has been proved by Borsuk in [ﬂ that
the surface M does not vontain any subset which is the union of
ksy(M) + 1 components, each of which is homeomorphic either with K,‘
or with K2, where K(M) denotes the genus of M. Using lemma 2 and the
fact that each £-mapping with sufficiently small ¢»0 maps the given
sequence of disjoint compact sets onto a sequence of disjoint sets,
we obtain a contradiction with the Borsuk’s result., €onsequently,

X satisfies all the assumptions of lemma 3, and therefore (by Hanner
theorem) X is an ANR. Using now the Ganea’s result [5] mentioned
above, we conclude:

Theorem 1, If X is a locally connected compactum, dim X2 and
X is M-like, where M is a surface, then X is homeomorphic with M.

This implies easily the following

Corollary. If X is a compactum quasi-homeomorphic with a sur-
face M then X is homeomorphic with M.

Using similar methods we proved the following theorem,which gen-
eralizes the Borsuk’s result [Z] that each locally planeable ANR-set

is embeddable into a surface.

Theorem 2, Each locally planeable space XEX is embeddable into
a surface.

Lemma 4 leads naturally to the following question:

question 1, Is it true that the n-umbrella is not quusi-embedd-
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able in any n-manifold¢?

Note, that it has been proved by Marde$i& and Segal in ES]
that the n-umbrella is not quasi-embeddable into s® ana E°. However,
our method of the proof of lemma 4 gives the positive answer to ques-
tion 1 only if we know that the universal covering space for a given
n-manifold is either En or st (or is embeddable into Sn).

The following other questions concerning quasi-homeomorphisms
appear under the investigation of this subject:

Question 2, Is any crumpled n-cube quasi-homeomorphic with the
usual n-cube I™? Or, if not, is it 1°-like

Recall that the crumpled n-cube is the closure of a component
of Sn\\S, where S is any (n-1)-sphere topologically embeded in s?.
The question concerning crumpled cubes is closely related to the
next one, which is suggested by the Ganea’s example [4] of a 3-dim-
ensional ANR-set, which is quasi-homeomorphic with 53, but not homeo-
morphic with S°.

Question 5. Is any decomposition space of s? such that the
non-degenerate elements are simple arcs (or AR-sets, or even compact
sets with the trivial shape) quasi-homeomorphic with sfe Or, if not,
is it 8%-1like7 The same question concerns the decomposition space
of any n-manifold.

The following question is known to many people, but seems to
be a difficult one:

Question 4. Let N and M be two compact n-manifolds such that
N is M=-likees Is it true that N is homeomorphic with Mv
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