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A CLASS OC AND COEPACTA 

WHICH ARE QUASI-HOMEOMORPHTC WITH SURFACES 

H. PATKOWSKA 

Warsaw 

We s h a l l consider metxizabie spaces only . A map f of a comp-
actum X in to a space Y i s sa id to be an g-mapping i f diam(f (y)>:£ 
for every y6.f(X)# Given two compact spaces X and Y, X i s sa id to 

be Y-Iike i f for every £>0 the re i s an £-mapping of X onto Y* The 
spaces X and Y a re said to be quasi-horneomorphic i f X i s Y-l ike 
and Y i s X- l i ke . A compact space X i s sa id to be quasi-embeddable 
in to a space Y i f for every £>0 the re i s an g-mapping of X in to Y. 

MardeSifc and Segal [5 J proved the fol lowing theorem: I f X 
i s a connected polyhedron then the following statements are equi­
valent; 

( i ) X i s embeddable into S 2 . 

( i i ) X i s quasi-eiabeddable into S . 

( i i i ) X does not contain any horneomorphic images of Kuratows-
ki graphs K̂  and Kp and any 2-umbrella. 

Recall that K̂  i s the 1-skelton of a 3-simplex with the mid-
-points of a pair of non-adjacent edges joined by a segment, Kp i s 
the 1-skelton of a 4-simplex. The n-umbrella i s the one-point union 
of an n-ball and of an arc , re la t ive to an inter ior point of the bal l 
and an end-point of the arc . 

I was looking for a bigger class such that the equivalences 
( i )4=^( i i )^ ( i i i ) hold for each member of this class and I have prov­
ed in D?J that this i s the case for the class Oi defined as follows: 

Definition. A locally connected continuum X belongs to the 
class oX iff there i s an £>0 such that no simple closed curve SCX 
with diam(S)<6 i s a re t rac t of X. 

I t i s easy to see that the class o( contains a l l compact, conn-
1 

ected LC -spaces, and therefore i t contains a l l compact, connected 
ANR-s too. Consequently, the equivalences ( i ) ^ ( i i ) 4 ^ ( i i i ) hold 
for each member X of these classes . 
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Tћe following c h a r a c t e r i z a t i o n of tћe connect d pian abie 

ANR-sets and of tћe p lәneabie AR-sets foi lows: X i s a connected 

p laneabie Arø i f f X^oi, X s a t i s f i e s the condit ion ( i i i ) and X i s 
2 

not homeomorphic with S . X i s a pianeabi AR i f f X i s a l oca l ly 
connected continuum such tha t no simple closed curve SrГX i s a r e t r -

act of X, X s a t i s f i e s t ћ condit ion ( i i i ) and X i s not homeoшorphic 

with S . 
These r e s u l t s and the methods of the i n v e s t i g a t i o n of the c l a s s or 
as developed i n £?J have b en used to solv tћe following question 
r a i s e d by Mardesic and Segal in [6J : Is i t t r u t ћ a t any l o c a l i y 
connected 2-dimensional compactum X. wћich i s M-Iike, where M i s a 
sur face ( i . e . a closed 2-manifold), i s homeomorphic with Mr: 

I have proved t ћ a t t h i s i s ind d the c a s e . Th proof w i l l be 
published i n d e t a i l in [g] . fíere ar the main ideas of tћe proof. 

Ganea in føЗ has pxoved t h i s theor m under the a d d i t i o n a i a s s-
umption t h a t X i s an AШ. So we are going to prov only t ћ a t our as s-
umptions imply t h a t X i s an ANR. To do t h i s - using t h r e s u l t s con-
cerning the c l a s s a f as mentioned on the beginning - w prov the 
fol lowing main lemmas: 

Lemma 1. Let Y be a compact spac such t h a t the group řL,(Y) 
( t h e ðech homology group with i n t ger coef f ic i n t s ) i s f i n i t e l y g n-
e ra t ed . I f X i s a l oca l ly conn cted continuum which i s Y- l ike , th n 

Lemттia 2, Assume t h a t XбoC and t h a t for every й >0 t h e r e i s a 
s e t ACX homeomвrpћic e i ther with Kи or with Kp and such t ћ a t diamíA}* 
<^iш Then for each k = 1 , 2 , » . . t h e r e i s a sequence B ^ , . . . , B k of d i s j o i n t 
subsets of X, each of which i s homeomorphic e i t h e r with K̂  or with Kp» 

Lemma Ҙ. Asзume t h a t XбoC, X does not contain any 2-uщbreIIa 
and t ћ e r e i s a Д>0 such t h a t t h e r e i s no s e t ACX with diam(A)-<^ homeo-
morpћic e i t h e r with Kи or with K~. Then for every x<£X there i s a 
neighborhood of x in X being a compact planeable AR-set. 

Using the Bennetts r e s u l t £l] tha t the 2-umbrelIa i s not quasi-
2 ° 

dable in S and B̂ " and using the theory of 
e r ing spaces we proved also the following lemma; 

2 ^ 
-embeddable in S and K~ and using the theory of the un ive r sa l cov 
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Lemma 4 . The 2-umbrella i s not quasi-embeddable in any 2-mani-
f o l d . 

Now, we proceed as fo l lows: Assume t h a t X i s a l o c a l l y conn­
ected compactum, dim X ^ 2 and X i s M-l ike, where M i s a su r f ace . S in ­
ce M i s connected and for every £>0 the re i s an £-mapping of X onto M, 
i t follows t h a t X i s connected. Now, lemma 1 implies t h a t X6c<. Since 
dim M=E2 and £-mappings cannot diminish the dimension, i t follows 
t h a t dim X «2. By lemma 4, X does not contain any 2-umbrel la . Assume 
t h a t for every ^>0 t he r e i s a s e t ACX with diam(A)<A homeomorphic 
e i t h e r with K>» or with Kp. I t has been proved by Borsuk in (XJ t h a t 
the surface M does not conta in any subset which i s the union of 
k*}ry(M) + 1 components, each of which i s homeomorphic e i t he r with K̂  
or with Kp, where r̂*(M) denotes the genus of M. Using lemma 2 and the 
f a c t t h a t each ^-mapping with s u f f i c i e n t l y small £>0 maps the given 
sequence of d i s j o i n t compact s e t s onto a sequence of d i s j o i n t s e t s , 
we obta in a con t r ad i c t i on with the Borsuk*s r e s u l t . Consequently, 
X s a t i s f i e s a l l the assumptions of lemma 3 , and the re fo re (by Hanner 
theorem) X i s an ANR. Using now the Ganea's r e s u l t {5] mentioned 
above, we conclude: 

Theorem 1. I f X i s a l o c a l l y connected compactum, dim X ^ 2 and 
X i s M-l ike , where M i s a s u r f a c e , then X i s homeomorphic with M» 

This impl ies ea s i ly the following 

Coro l l a ry . If X i s a compactum quasi-homeomorphic with a s u r ­
face M then X i s homeomorphic with M. 

Using s imi l a r methods we proved the fol lowing theorem,which gen­
e r a l i z e s the Borsuk's r e s u l t [2] t h a t each l o c a l l y p laneab le ANR-set 
i s embeddable i n t o a s u r f a c e . 

Theorem 2. Each l o c a l l y p laneable space X£oi i s embeddable i n to 
a s u r f a c e . 

Lemma 4 leads n a t u r a l l y to the fol lowing ques t ion: 

Question 1. I s i t t r u e tha t the n-umbrella i s not quasi-embedd-
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ab le in any n-manifold? 

Note, t ha t i t has been proved by Marde^ic and Segal in (jg*J 
t h a t the n-umbrella i s not quasi-embeddable in to SG and E11. However* 
our method of the proof of lemma 4 gives the p o s i t i v e answer to ques­
t i on 1 only i f we know tha t the un iversa l covering space for a given 
n-manif old i s e i t h e r E11 or Sn (or i s embeddable in to S n ) . 

The following other questions concerning quasi-homeomorphisms 
appear under the i nves t i ga t i on of t h i s sub jec t : 

Question 2 . I s any crumpled n-cube quasi-homeomorphic with t he 
usual n-cube I n ? Or, i f n o t , i s i t I n - l i k e v 

Recal l t ha t the crumpled n-cube i s the c losure of a component 
of SnN.S, where S i s any (n - l ) - sphe re topo log ica l iy embeded in S n . 
The quest ion concerning crumpled cubes i s c lose ly r e l a t e d to the 
next one, which i s suggested by the Ganea's example T4] of a 3-dim-

3 
ens ional ANR-set, which i s quasi-homeomorphic with S , but not homeo-

3 
morphic with S • 

Question j . I s any decomposition space of S n such t h a t the 
non-degenerate elements are simple arcs (or AR-sets, or even compact 
s e t s with the t r i v i a l shape) quasi-homeomorphic with Sn? Or, i f n o t , 
i s i t S n - l i ke? The same question concerns the decomposition space 
of any n-manifold. 

The following question i s known to many people , but seems to 
be a d i f f i c u l t one: 

Question 4 . Let N and M be two compact n-manifolds such t h a t 
N i s M-l ike . I s i t t r ue t h a t N i s homeomorphic with MY 
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