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REMARKS TO THE PROBLEM OF DEFINING A TOPOLOGY
BY ITS HOMEOMORPHISM GROUP

R.Z,DOMIATY

Graz

1. Notation. $ is the empty set. For any set X we denote by |X| the
cardinality of X, by #(X) : ={..., ¥, «..} the powerset of X and
by JX) = @lg@1 s ={e, ¥ e} Lot BLIEY) & =

= {f : X>Y|f is bijective}, Let bij(X) : = bij (X,X) be the group
of all bijections of X onto itself and y(x) the set of all subgroups
of bij(X). Finally f resp, 7 denotes the categories of all groups
resp. topological spaces,

2. Introduction. At the beginning we want to refer te problems which
frequently arise but are infrequently recognized. To gain adequate
generality we use concrete categories ( [7], p. 13-14)., A concrete
category is' a triple € : = ( / ,F,mor). ( are the & -objects,

F: >4 is a set-valued function ( 4 is the class of all sets
end for each ¢ -object =, F(I) is called the carrier or underlying
set of = ), and mor : 1 > ./ 1is & set-valued function, where
for each pair (= ,$ ) of & -objects, mor ( = , 2 ) S F(R )F(;)

is called the set of & -morphisms with domain = and codomain 2
which satisfies the usual conditions, All subsequent categories ¢ ,
X ,... are concrete and we denote the objects of ¢ , for shortness,
by (X,=) with X ¢ = F(Z), Finally we notice, that to every (X,=)
we can associate the group aut (X,=) ¢ 54 (X), the automorphism-

or symmetry group of (X,= ). This group is of fundamental importance
for a deeper insight into the nature of (X,=) (see for example[l6],
P.142), This motivatives immediately the following general represen-

tation problem.
(D) Given a category & and a group G ¢ 52 . Does there exist

a (X, = )ef such that aut (X,=) ~ G ?

It seems that this question was raised in a still more general setting
for the first time in 1955 by M,Gerstenhaber [ 3]. Hitherto the problem
(D) could be answered affirmatively for seme categories, particularly
in the important case J° (J.De Groot [5], Z.Hedrlin - E,Mendelson [6]
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and M,C,Thornton [14]).

Because of the special stiructure of the automorphism groups we can
further use them to compare and connect objects of very different
categories. For example, let & and X be categories, (X,=)e ¢
and (X,2)e X be objects with the same carrier. We call = and 2
compatible on X, iff

aut(X, =) = aut(X,2) .

This concept creates naturally the following "inverse problem":
Given a set X and (X, 52 )¢ ¥ . Find a compatible (X,Z)e & .

This question is a special case of a problem which ig an essential
refinement of (D), the realisation problem (on X):
(R). Given a category & , a set X and a G ¢ g(x). Does

" there exist a (X,= )€ ¢ such that

aut(X,=) = G ?

Remarks, 1) We want to call attention to two facts in (R). First,
G is always a econcrete group of bijections of X onto itself and
second, we demand the equality of both aut(X,=) and G and not just
the abstract isomorphism,

2) By the topological realisation problem (T) we understand the prob-
lem (R) for ¥ : = J . A strong impulse to look at the problem (T)
came from the theory of relativity, Since some prominent mathemati-
cians and physicists criticized the use of locally euclidean topolo-
gies in mathematical models of space-time, the way to introduce a
topology into a space with an "indefinite metric®" must be thought
over again, A milestone to this reflection is the important paper

of E,C,Zeeman [18] in 1967 which since then stimulated and influenced
all results on this subject, In [18] a new topology } , with various
very remarkable and attractive matematical and physical properties

is introduced inte the space-time of the special theory cf relativity
instead of the usual euclidean topology. We mention just one interes-
ting fact: The full homeomorphism group K(R4,} ) is identical with
the causality group, which is generated by the PO]]CARE—group and the
dilatations. Thus the causality structure and ZEEMAN'S topology }
are compatible on their carrier,
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3) The problem (T) can be considered as a question in the sense of
F.KLEIN 'S "Erlanger Programm", The roots of (T) can be traced back to
the "problem of N,WIENER" [17] (Given an infinite set X and a preas-
signed G € ¥ (X). Construct all topologies £ on X with G ¢ H(X,&).
[1] , [8]) and to the "modification problem" which grew out of dis-
cussion between C,J,Everett, J,v,Neumann, E,Teller and S,M.Ulam [2]
(Given (X,¥ )e 7~ . Does there exist a topology £ X on X, such
that H(X, & ) = H(X,%) ?[9] - [11],[12] , [15] , Pp.32).

3. The realisation problem for the category ¥ . We start by recalling
the definition of the concrete category ¥ ([13]). The gbjects of
are pairs (X,X¥ ), where X, the carrier of (X,¥ ), is a set and

X c 4(X) is a set of subsets of X. If (X, &), (¥, 7>ey then a
map f£f : XY is called a morphism ,

fe mor[(X, %), (Y, y) ], if

Vaey - 1 Qe X

resp. an isomorphism, fe iso[(X,¥), (Y,y)l , if £ is bijection,

femor [ (X, %), (¥,¥)], and £ te mor [ (¥,%), X, %)]. (X,¥) and
(Y,%) are called isomorphic, (X, %) ~(Y,'?/), if iso [ (X, &), (Y, %)]M’.
For every (X,X )¢S we denote by

(1) HX,£) ¢+ = iso [ (X,£), (X, £)]

its full gutomorphism group., Finally we want to point out the follow-
ing useful convention, Let X and Y be sets, Then every fe bij(X,Y)
induces a canonical bijectien

(2) ¥ 9&(){)9 ?(Y) 3 e ¥ Q) : ={f(x)f er} .

Therefore we can characterize those f¢ bij(X) which are in H(X,¥)
by the equivalence

(3) FCH(X, X)<=D £%¥ (£)= X .

The realisation problem in ¥ (here we take in account just the case
¥ = /) then reads
(8). Let X be a set and G e%(x). Does there exist a

K e y(x) such that
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HX, %) = G ?

Remarks. 1) 7 is a full subcategory of ¥,

2) 1In all subsequent considerations We concern ourself exclusively
with the study of (S) which is in some sense a generalisation of (%),
The main reasen for doing this is the greater simplicity.

3) 1In general (S) need net to possess any solution., Put, for example,
X:={1,2,3} and ¢:={(1), (1,2,3), (1,3,2) } ¢ £(X). It is easy
to show that there does not exist any X _C_,y(x) such that H(X,¥X ) = G,
4) Easy examples show that the existence does not imply uniqueness.

4, A lemma on posets. In this section we formulate and prove a rather
technical lemma, Let (Y, £) be a poset (i.e, < is a reflexive and
transitive relation on Y),

T ¢= aut (¥, <)

its full automorphism group, y;-.f...,{y}, ...} the set of all atoms
respectively Z:= {..., ¥ : =Y - {y}, ..} the set of all entiatoms
in the usual boolean lattice (y(x),é), and

Z «= gut [y(Y), cl.

Further we consider mappings

T () > 3 Jg) = gH
(J i8 a group-isomorphism) and

Jor Y% g 3 = 5]
(3 i a bijection) and denote by

R:.=a3(MT)

whereby A is a subgroup of ¥ . Trivially, we can use Jj to transfer
the partial order < from Y te % : For U,Ve¥ we define

u<v => ;71 < 7t

then (Y,<) end (% ,<) are order-isomorphic. A direct computation
then delivers a simple characterisation of A in 2 .
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Lemma 1. Let fe) . Then

fe Q=D f/? e aut(¥,2<) .,
Now we prove

Lemmg 2. For U,V e y(Y) we define the relation ULV 1o be
true, iff

U=¢ 3 or

V=Y 3 or

U<V, if Uey and Ve® ; or

EWe7: U<WecV, if Ue’7 and v;y; or
vev , if U;‘y and v;%

The the following statements are valid:

1) £ is a partial order in %(Y) which is finer than < .

2) <is antisymmetric iff < is antisymmetrie,

3) is also the set of all antiatoms in ( ¢(Y),<).

4) If (Y, <) 1is a join-semilatitice ([4], p.8) then alse ((1), <),
Foer every U,Ve y(Y) with UAV and VAU we have

sup_ (U,V), if Ue% and Ve? .
sup__(U,V) = -
- UyV , otherwise,

5) aut [%(Y),.<]= A .

Remark, In general inf _ (U,V) does not exist, even if (Y, <) 1is
a boolean lattice,

Proof, 1) -3) . Straightferward,

_A,_). The case U<V is trivial, Now suppese inv and V;éU .

x) U 97/ and Veyz . Because of the existence of S := sup‘,’(U,V)ey/,
S is an <-upper bound for U and V,
Assertion: J T ¢ %(Y) : U<P<S, V=<T<S,
Then Te 7 and therefore T = S which implies

.
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3 sup_ (U,V) = sup_ (U,V)

B). VEW (trivielly, V4§ ). We put S := UuV; again, S is an
~~-upper bound for U and V.

Assertion: J 7¢ y(Y) : U<T<S, V<T<S,

In our case, the second term is equivalent to

VeTcUyVvV .
If Ug 7. then because of
UeTcU UV
we obtain T = UuV =S and therefore
J sup (U,V) = OuUV ,
If U= {u}e 'y, then because of
VercvVu {u}
and U<T we obrain T = Vu{u] = S and therefore again
J sup_, (U,V) = UUV ,

5). First we show

(1) A*:= aut [ ), < lez.
To do this we must carry out several steps.
(2) YeeR™ YV Qe :f@ew

Assume the existence of & Qe & such that f£(Q)¢ (4 ; because
f(Q) # Y there must exist @ T ¢ ¢ (Y) with

f)< <Y .

- *
Together with 1'&2F{ar we also have ¥ 1 A" and therefore

Jrlme ¢+ o= f"lf(o)—; rim <l -y
so that Q¢ (& . This is & contradiction to Qell . This proves (2),
An immediate consequence of (2) is

(3) VeeR® ¢+ s(a)= .

Now we claim
4) Vee A* ¥ ny' :f(Q)f? .

Assume the existemce of a fef™ and a QF % such that
£(Q) = U := {u}é: yf. Trivially, Q # #§ and therefore |Q| > 2, We
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choose two elements v,weQ with v £#w and put V = ¥¢ X and
W := We ({ . Because of (2) there exist two elements r, seY with
r# 8 such that f£(V) =Te¢ll) and f(W) :=8Bell .

sup . (V,Q) = Y =D f[sup_ (V,Q) ] = sup_. [£(V),£(Q) ] = £(¥Y) =
=Y =poup . (T,{u}) = Fufu} = Y= u¢r =>

Uuer
In an analogous manner sup_.(W,Q) = Y dimplies

u=8,
This is a contradiction to r # s ., Therefore (4) is correct., This
result is equivalent to

(5) YeeR" pe(W) =Y,
With (5) we can sharpen (2).
(6) FeeA VYyer : 23) = Y- (3] .

Let f¢A' and yeY . Now (3) implies
duey :+ £(F) =uelkl

and (5) implies
Ivey ¢ Uy} = (v} .

Therefore we obtain
sup_ (7 {3}) = Y=t 2[oup o (7,(33)] = sup [£(F), £y} ] =
= f(Y) = Ye=sup . (4,{¥}) = Y = u = v =t
£(3) =Y - £({y}) .

This proves (6). Finally we show
(1) Vee A" + uweu=t £({u}) € £(U).
Let £e&A" and ueU . Then with (5) we have

dvey & {v]l=f({u))=<£WU) =7V,

We claim

veV
Assume, on the contrary, that v§¢V , Then together with (6) and
Lemma 2, 4) have

sup< (¥,V) = ¥ =i> £ 1 [up < (7, M ] = sup[£"2(¥), £71(M)] =
= 2 1F) = sup_[Y - £72(v}), £2W T ¥ - £ ({v}) =
(Y-u) uU=Y-fuj=>UcY -luj=budu,

This is a contradiction te ueU, Therefore f({u}) < £(U).
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After this preparation we prove (1), Let U,Ve% (Y) with U eV
and fe A%,
®) If U ,ty« and v;!'?/ , then together with (5) we get

Uc V=P U< Va=>F(U)=< £(V)a=>£(U) c £(V)
B) If Ue 1? , then with (7) we get
Uev=> £f(U)c £(V) .
Because of £~t¢ AT we also get
te v 1) e 1w
and therefore have again
UeV==t>f(U) < £(V) .
This proves (1). Next we note
(8) A< A .
which is a direct consequence of (1), (5) and Lemma 1, Now the last
step is H*E a.

Let U,Ve «Z(Y) with U<V and fefl .
o) If U¢7} and vgy , then together with (5) we get

U< V=t U & V<= £(U) & £(V)<=DF(U) =< £(V) .
B) If Ue’? and Ve? , then by the definition

3 géTr : £ = g#
and therefore, with U := {u} and V := {v} ,

U=V<= U £ V<=t u < v<—p> g(u) < g(v) <= g¥ ({u}) =
= ()< g¥ ((v}) = £LV) .
9 It Uegr and Vf’?' » then we have

U< Vo= J We : USWe V=D £(U) £ £(W) ¢ £(V)=>
£(U) < £(U) .
In an analogous manner we find
U=<v=t 1)< (V) .
Therefore
U< V<= £(U) < £(V) .

This proves Lemma 2,

We close this section with a sharper version of Lemma 2,4).
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Lemme 3., Let (y(Y), <) be as in Lemma 2, If (Y, £ ) is a complete
join-semilattice, then the same is true for (y(Y), < ) (i.e., for
any family {Ml} of subsets of y(Y) there exists sup (M, ) ).

Proof. Let A # § be any fixed index set and
VAecA: Mye (1) .

We divide A into two disjoint subsets A := Aufl such that Ae 4
iff Mye¢ 7 U{ﬂ} and A¢ £ otherwise, We then distinguish three
cases,

D A=¢=>dsuwp ¥, = U u, .
2) £ =¢=> Hsup_‘M;L=supéM,\, .
3) A#4¢ and @ £6.

If we put for brevity

fu} :=sup_Mg, V:= U M, and S := supg ({u}, V), then
de A — wef

trivially, S is an upper < -bound fer {M;d « If we assume

J Te g&(Y) V 1eA M, < T<S

then a straightferward calculation shows that T = S ., This proves
Lemma 3.

5. The space (4 (X), < ). For the whole section let X be a fixed
set and G e -{/(x). Again we consider (y(x), ) and (4 (X), <) as
boolean lattices and denote their automorphism groups (with respect
to their pertial order) by T := aut[g(X),c] eand

Y := sut[$ (X),c]. In addition we put

I:pij(X)=>T 3 I(F) :=¢
J: bi;}[ép(x)] >T; 3 =g"
K:J.I: bij(X)> 2

#

(I and J are group isomorphisms and K is a group monomorphism)
and

(1) IFI := K bij(X) = J(T)

1= K(G)
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(M8 a subgroup of # and A & subgroup of =~ ). Clearly, for any
5/6 Z we have

(f € H <>
(2) d fe bij(x) 2= (¥ ) ¥ =t

JgeT Y =g * .,
With (2) we can reformulate (S): The existence of a #£e¢ 4 (X) such
that H(X,£) = G is equivalent to the following two conditiomns
a) Yyrel: p(x)=2%
py Ve eR-T : «(X)# £.
In this case we call ¥ a maximal fixed point of [ with respect to

H . If we consider the group H as an action ond (X), i.e.(f,4 (X))
as a transformation group, because of (2) we finally obtain

(3)

Theorem 1. The following statements are equivalent

1. ] Xeb@ : HE,2) =0 .
2, [ is a stability subgroup of (H , T @) .
3. There exist a maximal fixed point of [ with respect to A .

Now we are interested in an intrinsic characterization of H . This
cen easily be done with Lemma 2, At first we identify ({?d(x), <)

end (4 (X), € ) with the posets (Y, < ) and (.y(Y),EE) respectively,
Then we denote by

4 ={Fef@ld Te@(X) : ¥ ={} §

the atoms of (¢ (X), € ). Finally, we define as in Lemma 2, the parti~
al order <: For %,%) ¢ 4 (X) we have U< ) , iff

X =g, or
v = é@(x) , OT
vsv, if %:={U}€ﬁf and %:a{”e/ s oOr
d we ¢(X) :UcWe W o, if U 1= {'U}e;{ and 70%/‘#. or

Ul 12 WA ena %fﬁﬁ.

With (1) and the results of the last section we obtain immediately
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Theorem 2. 1) f = aut[d(X),=<].
2) (4 (X), <) is a complete join-semilattice.

Summing up the results of Theorems 1 and 2 we can recognize the reali-
sation problem (S) as a special case of the fellowing problem (identi-
fy Z with 4(X) and < with <) ,

(B) Given a complete join-semilattice (Z, < ), its full automorphism
group H := aut(Z, < ) and let | be a subgroup of A .
Does [ appear as a stability subgroup in the transformation
group (f,2) ? Or, in other words, does there exist & meximal
fixed point of | with respect to A (see (3) a),b) ?
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