
Toposym 4-B

Rudolf Z. Domiaty
Remarks to the problem of defining a topology by its homeomorphism group

In: Josef Novák (ed.): General topology and its relations to modern analysis and algebra IV,
Proceedings of the fourth Prague topological symposium, 1976, Part B: Contributed Papers. Society
of Czechoslovak Mathematicians and Physicist, Praha, 1977. pp. 99--110.

Persistent URL: http://dml.cz/dmlcz/700671

Terms of use:
© Society of Czechoslovak Mathematicians and Physicist, 1977

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/700671
http://project.dml.cz


REMARKS TO THE PROBLEM OF DEFINING A TOPOLOGY 

BY ITS HOMEOMORPHISM GROUP 

R.Z.DOMIATY 

Graz 

!• Notation. 0 is the empty set. For any set X we denote by jXl the 
cardinality of X, by ty (X) : « {..., M, •..] the powerset of X and 
tjy ef(X) : m g, £^(X) J i « {..., ft , • • • ) . Let bij(X,Y) : . 
= ( f : X - » Y | f is bijectivej. Let bij(X) : « bij (X,X) be the group 
of all bisections of X onto itself and ^(X) the set of all subgroups 
of bij(X). Finally ^ resp. T denotes the categories of all groups 
resp. topological spaces. 

2« Introduction. At the beginning we want to refer to problems which 
frequently arise but are infrequently recognized. To gain adequate 
generality we use concrete categories ( [7J, p. 13-14). A concrete 
category is a triple £f : « ( 0 ,F,mor). 0 are the & -objects, 
F x (? -> Ji is a set-valued function ( Ji is the class of all sets 
and for each cf -object .z , F( Z ) is called the carrier or underlying 
set of ; ), and mor : C? x (7 ->> dt is a set-valued function, where 
for each pair ( E , 2 ) i f # -objects, mor ( I ,J? ) £ F(i2) P(~) 
is called the set of £? -morphisms with domain Z and codomain £2 
which satisfies the usual conditions. All subsequent categories £f, 
& »••. are concrete and we denote the objects of gf , for shortness, 
ty (X,Z) with X i s F ( Z ) . Finally we notice, that to every (X,Z) 
we can associate the group aut (X,Z ) € ^ ( X ) , the automorphism-
or symmetry group of (X, Z ). This group is of fundamental importance 
for a deeper insight into the nature of (X,Z.) (see for example[16J, 
p. 142). This motivatives immediately the following general represen
tation problem. 
(D) Given a category ff and a group G € (£ . Does there exist 

a (X, H. K{f such that aut (X,Z ) ~ G ? 

It seems that this question was raised in a still more general setting 
for the first time in 1955 by M.Gerstenhaber [3J.. Hitherto the problem 
(D) could be answered affirmatively for some categories, particularly 
in the important case <T (J.De Groot [5jf Z.Hedrlin - E.Mendelson f6j 
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and M#C#Thornton 114 J ) • 

Because of the special structure of the automorphism groups we can 
further use them to compare and connect objects of very different 
categories. For example, let f? and X be categories, (X, ~L)e *€ 
and (X,i? ) € 3C be objects with the same carrier. We call Z and 52 
compatible on X„ iff 

aut(X,Z ) - aut(X,J2) • 

This concept creates naturally the following "inverse problem": 
Given a set X and (X,J2 ) e 3V # Find a compatible (X, Z)e £f • 

This question is a special case of a problem which is an essential 
refinement of (D), the realisation problem (on X): 
(R)# Given a category £? , a set X and a G e ^ (X)# Does 

there exist a (X,Z)€^ such that 

aut (X, Z ) = G ? 

Remarks# 1) We want to call attention to two facts in (R)# First, 
G is always a concrete group of bijections of X onto itself and 
second, we demand the equality of both aut(X,Z) and G and not just 
the abstract isomorphism. 

2) By the topological realisation problem (T) we understand the prob
lem (R) for *£ : m 7* . A strong impulse to look at the problem (T) 
came from the theory of relativity. Since some prominent mathemati
cians and physicists criticized the use of locally euclidean topolo
gies in mathematical models of space-time, the way to introduce a 
topology into a space with an "indefinite metric" must be thought 
over again# A milestone to this reflection is the important paper 
of E#C#Zeeman [18] in 1967 which since then stimulated and influenced 
all results on this subject* In 1718] a new topology ^ , with various 
very remarkable and attractive matematical and physical properties 
is introduced into the space-time of the special theory cf relativity 
instead of the usual euclidean topology. We mention just one interes
ting fact: The full homeomorphisa group H(R*,^ ) is identical with 
the causality group, which is generated by the POINCARj5-group and the 
dilatations. Thus the causality structure and ZEBiAN'S topology £ 
are compatible on their carrier. 
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2) The problem (T) can be considered as a question in the sense of 
P.KLEIN'S "Erlanger Programm". The roots of (T) can be traced back to 
the "problem of H.WIENER" [17J (Given an infinite set X and a preas-
signed G 6 <A (X). Construct all topologies £ on X with G c. H(X f#). 
[ 1J , [8]) and to the "modification problem" which grew out of dis
cussion between C#J#Everettf J#v# Neumann, E#Teller and S.H#Ulam [2j 
(Given (XfJ£ )e T . Does there exist a topology ^d ± 3C on Xf such 
that Htt f#) « H(X,^) ? [9J - fill, [12 J , [15J f p.32). 

3# The realisation problem for the category y # We start by recalling 
the definition of the concrete category ¥ ([13j). The objects of Jf 
are pairs (Xfv£)f where Xf the carrier of (Xfj£ ) f is a set and 

£ £ <£(X) is a set of subsets of X. If (X f:£ ) f (Y, W) e y then a 
map f : X •> Y is called a morphism • 

f€mor[ttfJE)f ( Y f ^ ) ] f if 

V Q e J : f"1 (Q)€ £ 

r e s p . an isomorphism, f e i so[(X f £), (Y, %) J f i f f i s b i s e c t i o n , 

f e m o r [ ( X , £ ) , ( Y , ^ ) J , and f"1^ mor [ ( Y f ^ ) f (X f £ )J . (Xfv£ ) and 
( Y . ^ 0 are c a l l e d isomorphic, (X, Jg ) - ( Y , %), i f i so [ (X,3E ) , (Y, %)]&. 
For every (X,̂ C ) ^ y we denote by 

(1) H ( X f £ ) : « i s o [ ( X f . £ ) , ttfJE)J 

its full automorphism group. Finally we want to point out the follow
ing useful convention. Let X and Y be sets. Then every f 6 bij(XfY) 
induces a canonical bisection 

(2) f* i fiX) -» f(Y) ; t* (Q) : -= ff(x) | xeQ J . 

Therefore we can characterize those fGbijtt) which are in H(XfoG ) 
by the equivalence 

(3) fCH(Xfje)<r=4> f* (£) » X . 

The realisation problem in y (here we take in account just the case 
y * y x ) then reads 

(S). Let X be a set and G e^(X). Does there exist a 

£ £ <£(X) such that 
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H(X,£ ) m G ? 

Remarks. 1) T is a full subcategory of / # 
2,) In all subsequent considerations we concern ourself exclusively 
with the study of (S) which is in some sense a generalisation of (T). 
The main reason for doing this is the greater simplicity. 
2) In general (S) need not to possess any solution. Put, for example, 

X % m{ 1,2,3} and G : » {(1), (1,2,3), (1,3,2) j £ <f <X). It is easy 
to show that there does not exist any ̂ c ^ ( X ) such that H(X,JP ) » G. 

£) Easy examples show that the existence does not imply uniqueness. 

A? A lemma on posets. In this section we formulate and prove a rather 
technical lemma. Let (Yf < ) be a poset (i.e. < is a reflexive and 
transitive relation on Y), 

J • « aut(Y,<) 

its full automorphism group, ^:».{••• ,{y}, •••} the set of all atoms 
respectively Ol\ « {..., Y ; « Y - {y}, ...j the set of all antiatoms 
in the usual boolean lattice (><£(Y),£), and 

Z :- aut [#(Y)f & ] . 

Further we consider mappings 

J t bij(Y) -»£ | J(g) :« g # 

(J is a group-isomorphism) and 

3 J Y ^ J i j(y) :* {y} 

(J is a bisection) and denote by 

fl :« J(T) 

whereby F| is a subgroup of L • Trivially, we can use j to transfer 

the partial order < from Y to % x For U9YeH> we define 

U<V :<*=*> r 1 (V)< d"1 00 ; 

then (Y, :£) and (%,<) are order-isomorphic. A direct computation 

then delivers a simple characterisation of H in L . 



or 

103 

Lemma !• Let f e l , Then 

fefl<$=*> tm e aut(^,<) . 

Now we prove 

Lemma 2. For U,V e ^(Y) we define the relation U>< V to be 
true, iff 

U = 0 ; or 

V m Y ; or 

U<V, if U e ^ and Ye W ; or 

3 W e | : U<W£Y , i f U e ^ and V^ W ; 

U£Y , i f U /£ W> and v ^ ^ • 

The the following statements are valid: 
1) -< is a partial order in ^(Y) which is finer than £ „ 
2)-<is antisymmetric iff ;£ is antisymmetric. 
3) #>is also the set of all antiatoms in (y(Y),^)# 

4) If (Y, :<) is a join-semilattice ([4J, P*8) then also (̂ (Y),̂ -l)« 

Foer every U,Ve ̂ ( Y) *"** u 7^ v a32*1 v / u w e h a v e 

r sup^ (U,V), if XJety and Ve' 
sup^(U,V) - J - ' 

( U (/ V , otherwise* 

5) aut [^(Y), --<J» fl • 

Remark., In general inf^ (U,V) does not exist, even if (Y, <) is 
a boolean lattice. 

Proof. 1) - 3) • Straightforward. 

£)• The case U-<V is trivial* Now suppose U^V and V-^U • 

oc) U e | and V£*^ • Because of the existence of S ;« sup^ (U,V)e]^f 
S is an ̂ c-upper bound for U and V# 
Assertion: 3 T £ a, (Y) : U-^T-^S, V-̂ T--<S • 
Then T e % and therefore T « S which implies 
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3 eup^ (U,V) * sup^ (U,V) 

&). Vffy ( t r i v i a l l y , V ̂  0 ) . We put S :« U u V; again, S i s an 
-<-upper bound for U and V . 
Assertion: g T e ̂  (Y) t U-<T-<S, V-<T-<S . 
In our case, the second term is equivalent to 

V c f c U ^ V . 

If U^ H f then because of 

U £ T SL U a V 

we obtain T « U J V « S and therefore 

3 sup^<(U,V) e U u V , 

If U » ( u j c ' t y , then because of 

V c T c V u j u j 

and U-<T we obrain T = V u f u j e S and therefore again 

3 sup^(U,V) m UuV . 

j>). First we show 

(1) R*t- aut [^(Y),-^ J s Z . 
To do t h i s we must carry out several steps* 

(2) V f e f l * V QZOL i t(Q)€CV 

Assume the existence of a Q € Ob such that f (Q)/ 66 j because 
f(Q) j* Y there must exist * f C ^ ( Y ) with 

f(Q)-^TXY . 
+ + -1 «• Together with f e fl we also have f e fl and therefore 

Jf"1(T)€ U(Y) t Q -= f"1f(Q)^f"1(f)-<r"1(T) = Y 

so that QfGb . This is a contradiction to QzUO . This proves (2). 
An immediate consequence of (2) is 

(3) Vf e fl* t t(Cl) » C6 # 

Few we claim 

(4) Vf^Ff* V q/y t f(Q)/ H # 
Assume the existence of a f € fl* and a Q^ ty such that 
f(Q) :« ff :» { u j c ^ TriTially, Q ̂  0 and therefore | Q | > 2 # We 
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choose two elements T , W € Q with T ^ w and put V :• r a 6fc and 
W :« i e f t . Because of (2) there ex i s t two elements r, s e Y with 
r ^ s such that f(V) « r ^ (JO and f(W) :-= ee(/0 . 

sup^(V,Q) « Y=N>f [ sup^(V f Q)J .= s u p ^ [ f ( V ) , f ( Q ) ] » f(Y) « 

8 Y -==-=!> s u p ^ ( r , { u } ) = r u(u} « Y-===-> u ^ f ===> 

u « r 

In an analogous manner sup^(W,Q) » Y implies 

u « s # 
This is a contradiction to r ̂  s • Therefore (4) is correct. This 
result is equrralent t© 

(5) Vf €fl* : f(^) « f . 

With (5) we can sharpen (2). 

(6) VftR* VyeY J f(y) « Y-f({yJ). 

Let f £ fl and yeY # Now (3) implies 

3 u€Y i f(y) « ueM, 

and (5) implies 

3 T6Y i f({yj) * { T } ^ ^ . 

Therefore we obtain 

s u p ^ ( y f { y } ) « Y = t > f [ s u p ^ ( y f l y j ) ] « s u p ^ [ f ( y ) f f ( { y } ) ] « 

« f(Y) « Y*==>sup^(u,{TJ) = Y « = 0 u « T «==>• 

f (y ) « Y - f ( { y j ) . 

This proTes (6)# Finally we show 

(7) Vffcfl* : u c U ^ f ( [ u ) ) c f ( u ) , 

Let f € H and u e U # Then with (5) we haTe 

3 T < - Y J { T } « f ( { u ) ) - * f ( U ) ** T # 

We claim 
T GT 

Assume, on the contrary, that rfLl m Then together with (6) and 
Lemma 2, 4) haTe 

sup^(T,V) « T—-> f - 1 [ s u p ^ ( T , T ) ] « s u p ^ C f " 1 ^ ) , f"X(T)J » 

» f - 1 ( r ) — 1 > sup^LY - r X ( { T } ) , r X ( T ) ] « Y - f - 1 ( { T } ) « = > 

(Y - { u j ) U U « Y -{u} *=t>TJ £ Y - (u} *-==>u fl U # 

This is a contradiction to ueU. Therefore f({u}) £. t(U)# 
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After this preparation we proTe (1). Let U,Ve^(Y) with U c ? 
and f e f l \ 
oc) If U ^ and V^ , then together with (5) we get 

U c vo=*> U-c V<^==>f(U)-^ f(V)<*=*t>f(U) o f(V) 

/?) If U€ ̂  f then with (7) we get 

U e v *=*> f(U) a f(V) # 
-1 n** 

Because of f £ H we also get 

U c v ==> f""1(U) £ f"1(V) 

and therefore haTe again 

U£V<3==»t>f(U) £ f(V) # 

This proTee (1). Next we note 

(8) fl*£ fl . 
which is a direct consequence of (1), (5) and Lemma 1# Now the last 
step i. R # g fl # 

Let U fVey(Y) with U-<V and fefl . 
cc) If U ^ and V^K , then together with (5) we get 

U u: yOF=*t> u £ V<=*> f (U) £ f (V)<*=Of (U) -* f (V) „ 

/3) If UeH and V e ^ , then Xy the def in i t ion 

.3 g s T : f « g * 
and therefore, with U := {u} and V :« {T} , 

rj-<v<l«=> U < V<J==t> u .< T<I==H> g(u) < g(T)0==l> g # ({u}) « 

* f ( U ) - < g # ( ( T } ) « f(V) . 

f) I f Vety and Iffy , then we haTe 

U^c v<>=*> 3 Wc^ : U f l c y ^ f ( u ) f f ( « [ ) c f ( V ) = . = ^ 
f(U) -<f (U) • 

In an analogous manner we find 
U - < v « « > f 1 ^ ) ^ f - 1 ( V ) • 
Therefore 

U-< v < E = o f (U) -< f (V) • 

This proTes Lemma 2* 

We close this section with a sharper Tersion of Lemma 2,4)• 
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Lemma 3« Let ( M(Y)f -< ) be as in Lemma 2. If (Y, £ ) is a complete 

join-semilattice, then the same is true for (̂ (Y)f-«< ) (i.e#f for 

any family (M^l of subsets of ^(Y) there exists sup^(M^ ) ) # 

Proof• Let A £ 0 be any fixed index set and 

V Ac A s MAe ^(Y) « 

We diTide A into two disjoint subsets A :« Aujl such that A e A 
iff M^ £ ̂  u($j s11^ A £-52 otherwise* We then distinguish three 
cases. 

1) A - 0 =*> 2 sup^ MA " A^ AM A . 

2) -ff « 0 = £ > 3sup^MA=- sup̂ .11̂  . 

3) A i- 0 and S2 * 0 . 

If we put for brevity 

{uj :« sup^Mj, Y := 17 M^ and S := sup .<(<>}, T)f then 

trivially, S is an upper .-C-bound for{M^] . If we assume 

3 T £ ^ ( Y ) V leA t M A ^ T - < S 
then a straightforward calculation shows that T « S , This proves 

Lemma 3# 

5# The space ( ̂  (X). -< )• For the whole section let X be a fixed 
set and G e £?(X)# Again we consider ( ̂ (X)f £ ) and ( ̂ (X)f e) as 
boolean lattices and denote their automorphism groups (with respect 
to their partial order) by T :« aut[^(X), £• ] and 
Z 2* aut[«<r(X),£] • In addition we put 

I : MJ(X) «*T ! Kf) := f # 

J : bij[ £&)] -* L ! J(g) := g* 

K : J • I : Mj(X) «* 2. 

(I and J are group isomorphisms and K is a group monomorphism) 

and 

(1) R :« K bid (I) - J(TT) 
T s« K(G) 
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( r i s a subgroup of R and R a subgroup of H )• Clearly, for any 
(f 6 Z we have 

< / £ r T < t = 4 > 

(2) 3 f € bij(X) : if « (f * )*<*==-> 

3 g£ TT s y> « g * . 

With (2) we can reformulate (S): The existence of a £ e *f (X) such 
that H(XtjE) « G i s equivalent to the following two conditions 

a) V f 6 r : J-(JC)= 3£ 
( 3 )

 b ) Vfl.6 fl-T : 0CC.9C) ^ . £ . 

In this case we call X a maximal fixed point of f with respect to 
R o If we consider the group R as an action on«6(X)t i.e. ( ft f tT(x)) 
as a transformation group, because of (2) we finally obtain 

Theorem 1. The following statements are equivalent 

1. 2 £t #00 : H(X,£) « G . 

2. f is a stability subgroup of (Rt^(X) ) . 

3. There exist a maximal fixed point of V with respect to R • 

Now we are interested in an intrinsic characterization of R • This 
can easily be done with Lemma 2. At first we identify (^(X), £ ) 
and ( lT(X)t £ ) with the posets (Y, £ ) and (.̂ (Y),£. ) respectively* 
Then we denote by 

4 :-{?£f00l I T€^(X) ,f-{fj j 

the atoms of (iT(X), £ ). Finally, we define as in lemma 2, the parti

al order -Ct For Ut1/J € jf(X) we have 11 < 10 , iff 

Vi m 0 , or 

£? = ^(X) , or 

U £ 7, if %:-{u]<./ and #? .-{Vjfe ̂  , or 

3 We ̂ (X) t.Ucwej0 , if % .« { u } ^ waul 10ft4, or 

^S2C7 if # ^ and # / / . 

With (1) and the results of the last section we obtain immediately 
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Theorem 2. 1) ft . aut [?f (X)t-< ] # 

2,) (l)(-0, -< ) is a complete join-semilattice. 

Si-tmming up the results of Theorems 1 and 2 we can recognize the reali
sation problem (S) as a special case of the following problem (identi

fy Z with if(X) and < with -<) # 

(P) Given a complete join-semilattice (Z, < ), its full automorphism 

group R := aut(Z, < ) and let V be a subgroup of R # 

Does r appear as a stability subgroup in the transformation 

group (fl ,Z) ? Or, in other words, does there exist a maximal 

fixed point of f" with respect to ff (see (3) a),b) ? 
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