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STRUCTURE OF CONNECTED LOCALLY COMPACT GROUPS
H.BOSECK and G,CZICHOWSKI -
Greifswald

0. Let G denote a connected locally compact topological group.
By the theorem of YAMABE the group G is the projective limit
of a family Gi s 1¢I of Lie groups : G = llg Gi + Denote by
Ly the Lie algebra of the Lie group Gi 3 the inverse spectrum
of the Lie groups ( Gy » 81 )I induces an inverse spectrum of
the correspo?ding Lie algebras ( Li ’ dgi )I s the homomorphisms
gi andi dgi ??ing connected by the exponential mappings :

exp, dgi = g5 ©Xpy, . The topologicel Lie algebra I of the
group G 1is by definition the projective limit of the family
Li y 11 of finite dimensionel Lie algebras : 1L = }15 Li .

The 1ift exp of the exponential mappings exp; , ieI is a
continuous mapping of L 4into G

Proposition 1 . The algebraic subgroup Go of G generated
by explL 1is dense in G .

Proposition 2 . There exists a compact totally disconnected
subgroup A of the center Z of G such that G = GO'A .

1. Assume I to be finite dimensional. In this cas it is pos-
sible to strengthen the topology of G induced by G 1in such
a way, that Go becomes a Lie group with corresponding Lie al-~
gebra L . By proposition 2 exists a continuous epimorphism £
which maps the direct product Gonl-\ onto G , and by well known
theorems on Lie groups the kernel of £ 1is discrete and a sub-
group of the center of GoxA o Let ¥ denote the universal
covering group of the Lie group Go s i.e. the unique simply
connected Lie group defined by L , we get

Theorem A1 e Let G denote a finite dimensional connected
~ Tocally compact topological group. There exists a unique
simply connected Lie group (4 » & compact totally dis-
connected abelian group D and a discrete eubgroup D
of the center of GxA such that
G ¥ Gxa/D.
The topological group A can be chosen as a subgroup of
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the center Z of G .

Since A% 7 , there exists a continuous and open epimorphism
which maps the direct product Gon respe GXZ onto G .

Corollary . A finite dimensional connected locally compact
topological group is a Lie group if and only if its center
is a Lie group .

2, Consider the general case., It is possible to strengthen the
topology of Go induced by G 1in such a way, that GO be-
comes a connected locally connected complete topological group
and the exponehtial mapping from I into Go is locally onto
- exp maps a neighborhood of zero in 1 onto a neigborhood
of the identity of Go in the strengthened topology. The topo-
logical group Go is in general not locally compact but a

" projective 1limit of Lie groups : Go }35 G o) * The inverse
spectrum ( G, o} * go )J induces an inverse spectrum of the
corresponding universal covering groups G o3 of the Lie groups

Goj s JeJ  ( G 0f * g ); . the homomorphisms gJJ and Eg;
?
being oonneoted by the ooverin;;d epimorphisms f from ?5 03
23’ J!
onto G j goj = 80;) fdj' . The pro;jective 1limit

g- 2.__ 03 equals the projective limit of the inverse spectrum
of the universal covering groups of the Lie groups G1 which
occur in the representation of G as a projective 1limit of

Lie groups : @= 2._1_15 '6'1 o The topological group E’ is the uni-
versal covering group of G as well as of G in the sense of
TASHOF [6] . It must be noticed _that the group @  4in general
does not cover G , the 1ift 1’ of the covering epimorphisms
fi sy 1¢I from 51 onto Qi is a continuous homomorphism of

G into G

By proposition 2 exists a continuous epimorphism ho which
maps the direct product Gosb onto G and since the Lie al-
gebras of all these groups coincide, the kernel of ho is a
totally disconnected subgroup, which is contained in the cen-
ter of GouA N

We cite the rollowing

Proposition 3 (GLUSEKOV f5] ) The topological Lie algebra of
a locally compact group is topologically isomorphic to a
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direct sum of finite dimensional Lie algebras
. oW
T L R @ .
L ® ® m§ﬁ1 o
L' denotes an arbitrary finite dimensional Lie algebra, 44

a cardinal number, and Lm , méM a family of compact non
abelian Lie algebras.

Taking the unique simply connected Lie group to any finite di-
mensional Lie algebra which occurs in the direct sum of propo-
sition 3 we get the topological isomorphism

~ ~ ~
G = HxR xmkam .

# denotes a simply connected ILie group not necessarily compact,

while all groups fm y MéM are compact simply connected non

abelian Lie groups.

The follewing theorem 1s a generalization of a result of
PONTRJAGIN [7]

Theorem A2 . Let G denote a connected locally compact topolo-
—glcal group. There exists a unique simply connected locally
connected topological group 4 , & compact totally discon-
nected abelian group A , and a totally disconnected subgroup
D of the center of Gxbsuch that
¢ = Gxa/p .
The group 6 may be represented as a direct product of a
connected simply connected non abelian Lie group Er , 8
cardinal number #¢ of copies of the additive group of the
reals, and a family fﬁ , méM of connected simply connected
compact non abelian Lie groups
~ ~ ~ =~
G = HxR Xmll—MKm .
The topological group & can be chosen as a compact sub-
group of the center Z of G .

As in the finite dimensional case using the inclusion A ¢ 2
we get the following

Corollary . A connected locally compact topological group is
locally connected if its center is locally connected.

3. The following theorem states necessary and sufficient con-
ditions for the compact totally disconnected component L to
vanish in the above description of the group G under the
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assumption that the center 2 of G 1s metrizable.

Theorem B . Let G denote a connected locally compact topo-
logical group with the property that the center Z is pe-
trizable. The following conditions are equivalent

(1) G 1is locally connected

(2) G 1is arcwise comnected

(3)‘ G 1is an L-group - any finite dimensional quotient
group of G 1is a Lie group

(4) the universal covering group & covers G - the
covering map ? from E into G 1s an open epi-
morphism

(5) the exponential mapping from L into G is locally
onto - exp maps a neighborhood of zero onto a
neighborhood of the identity .

Corollary . A connected locally connected locally compact
topological group with a metrizable center is the quotient
group of a direct product of Lie groups by a totally dis-
connected central subgroup.
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