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REGULARITY: A GENERALIZATION OF EQUICONTINUITY 

SAROOP K. KAUL 

Regina 

1. Single valued functions: 

Let (X,Y) denote the set of all functions from a space X to 

a space Y. We say F C(X,Y) is regular at x e X if given an open 

set U and a subset HcF such that H(x) c U, where 

H(x) = {f(x): f e H}, there exists an open set V containing x 

such that H(V)cU, where H (V) =Jj{H(z): z e V}. F is said 

to be regular if it is regular at each point of X. For the 

definition of even continuity see [7]. 

Theorem (1.1) : If Y is a regular space, FC(X,Y) and F(x) 

is compact for each x e X, then F is regular if and only if it 

is evenly continuous. 

Thus, as a corollary to this, we have that in the Ascoli 

theorem in [4] one can replace even continuity by regularity. 

Theorem (1.2) : Let Y be a regular space, FC (X,Y) be 

regular, and F be the pointwise closure of F. Then f e F implies 

f is continuous. 

These and other results have been proved in [3]. 

2. Set valued functions: 

Let us consider the set of all set valued functions 

1$ = £ (X,Y) , from a space X to a space Y, where a set valued function 
Y Y f: X -*- Y induces a single valued function f: X -* 2 , 2 being 

the set of all closed non-empty subsets of Y. Given any topology 
Y 

t on 2 , we say that f is t-continuous if f is t-continuous; and 

also talk of the pointwise topology p. and the compact open 

topology c, on £ as those which make f **--> f a homeomorphism with 
*- /N * Y 

the corresponding topologies on f = ff: f e ^ } = ( X , 2 ) . Let 

K, T, and v denote the upper semi-finite, lower semi-finite and 
Y 

finite topologies on 2 [9] respectively. It is interesting then 

that natural generalizations of regularity and even continuity give. 
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results, similar to those in §1, for set valued functions. So 

let FCii. 

Regularity: F is said to be regular at x e X if given an 

open set U in Y and a subset H of F such that H(x) c, u* where 

H(x) =V{f(x): f e H}, there exists an open set V containing x 

such that H(V) U, where H(V) =U{H(x): x c V}. 

Even Continuity: F is said to be evenly continuous at 

x e X if given any y e Y and a closed neighbourhood V of y 

there exists an open neighbourhood W of y and an open neighbourhood 

U of x, such that if g e F and g(y)#1 W 7- <j> then 

U<g[V] = {z e X: g(z)/%V ^ <f>}; F is said to be evenly continuous 

if it is evenly continuous at each point of X. 

Let S = {f e {: f(x) is compact for each x e X} = S(X,Y). 

Theorem (2.1): Let Y be a normal space. If Fc S is regular, 

F(x) is compact for each x e X, and F is a closed subset of 

(S,c ), then (F,c ) is compact. 

Theorem (2.2): Let Y be a regular space. If FC S is 

evenly continuous, F(x) is compact for each x e X and F is closed 

in (S,c ), then (F,c ) is compact. 
T T 

Theorem (2.3): Let Y be a regular space, X be locally 

compact. If F is a closed subset of (S,c ) then (F,c ) is 

compact if and only if (1) F is regular, (2) F is evenly continuous, 

and (3) F(x) is compact for each x e X. 

Remark. For single valued F, under the hypothesis of the 

theorem, even continuity and regularity are the same. Hence this 

theorem gives a complete generalization of the Ascoli theorem 

[7, theorem 21, p. 236], for v-continuous compact valued functions. 

Theorem (2.4) : Let Y be a regular space, and F€S be a 
Y 

set of t-continuous functions is S for a topology t on 2 • If 

f e cl (F) in S, then f is t-continuous for t = K or t = T 
pt 

provided F is respectively regular or evenly continuous. 
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3. Following Fuller's result [2], for local compactness in 

single valued function spaces, we have the following theorems for 

set valued functions. Let S = S(X,Y) be as in §2 above. 

Theorem (3.1): Let X be a compact T2~space and Y be a 

locally compact T^-space. If FCS is regular and evenly con­

tinuous then F the closure of F with respect to p .in S is 

locally compact. 

Theorem (3.2) : Let X be a compact T-,-space and Y be a 

locally compact normal T2~space. If FCS is regular then F 

the closure of F in (S,p ) is locally compact. 

4. Regularity: 

Let i = (>(X,Y) be the set of all set valued functions 

from a space X to a space Y as in § 2 _ Given any f e £, by the 

graph G(f) of f is meant the subset {(x,y): y z f(x), x e X} 

of X x Y. For any F c ^ we define the set valued function 

TT : X -> Y given by TT (x) = F(x) , x £ X. From a theorem of 

Billera [1] we have immediately, 

Theorem (4.1) : Let Y be a compact T2-space. Then 

i,Y) is regular if and 

has a closed graph in X x Y. 

FCl$(x'Y) is regular if and only if for any subset H of F, TT__ 

Again, given f e £ one can write formally f*(y) = 

{x: y e f(x)}. If f* is a set valued function from Y to X then 

(x,y) -* (y,x) maps G(f) onto G(f*) in 1-1 manner. If 

F*<$ set F* = {f*: f e F}. 

Theorem (4.2) : Let X and Y be compact T2-spaces. If 

FCi(X,Y) and F* = £(Y,X) mapping *: (F,PV) + (F*/Pv) given 

by *(f) = f* is a homeomorphism. 

Remark 1. In the above theorem F and F* regular implies 

that each is a set of u.s.c, functions but not necessarily l.s.c. 

Remark 2. Let X and Y be compact T2-spaces and SO(X,Y) 

be the set of all open and continuous functions from X onto Y. 



226 

Then the set D(Y,X) = {f* = f"1: f e SO(X,Y)} is the set of all 

v-continuous, open "decompositions" from Y onto X, where f* is 

a decomposition means that for Y-xrY? £ Y and y- ¥• Y?r 

f* (y x)^ f* (Y2)
 = • * a n d o n t o means that f*(Y) = X. For single 

valued functions let c and p denote the compact-open and the 

pointwise topologies respectively on the function space. 

Theorem (4.3) : Let FCSO(X,Y) and (F,c) be compact. If 

for any net {f } in F, !>{lim sup f (y) : y e Y} = X, then 

*: (F,c) -*• (F*,c ) is a homeomorphism. 

Theorem (4.4) : Let FCD(Y,X) and (F,c ) be compact. Then 

*: (F,c ) -* (F*,c) is a homeomorphism. 

Corollary to theorem (4.3): Suppose X and Y are compact 

T^-spaces and {f } is a sequence of monotone open mapping from 

X onto Y converging in c to an open mapping f from X onto Y. 

If O ̂  i+«>UPf ty) '• y e Y} = X for each subsequence {f } of 
i i 

{f }, then f is monotone, 
n 

Corollary to theorem (4.4): Suppose F is a set of monotone 

open mappings in SO(X,Y) where X and Y are compact T2-spaces. If 

F* has a compact closure in (D(Y,X),c ) then F the closure of F 

in (SO(X,Y),c) is compact and f e F implies that f is monotone. 

5. Regularity and Even Continuity: 

Theorem (5.1) : Let F(S(X,Y) be regular and evenly 

continuous, let X be a compact T2~space and Y be a regular T2-

space. If {f } is a net in F converging to f e F with respect 

to pv, then {G(f )} converges to G(f) in (2XxY,v). 

Theorem (5.2) : Let Y be a regular T2~space and FcS(X,Y) 

be regular and evenly continuous. Let (f } be a net in F and 
XxY 

{G(f )} converge to a compact subset A e 2 with respect to v 

on 2 X X Y. Then A = G(f) for some f e S(X,Y) and {fa} converges 

to f with respect to p . 
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