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SEPARATE CONTINUITY AND CONTINUITY FOR SOME 

GENERALIZED CONTINUITY NOTIONS 

T
#
 NEUBRUNN 

Brat islava 

The relation between separate continuity and continuity depends 

on the type of continuity which is considered, The separate quasicon-

tinuity implies quasicontinuity of a function f as ә function of two 

variables. (Se [бj for a reәl function of two real variables and 

[73 for a mapping f : X x Y —» Z where X is a Bәire space, Y second-

contable and Z regularj) The converse is not true
#
 The feeble conti-

nuity [lj (somewhat continuity L-O) in each variable separately of 

a function f on X x Y does not imply the feeble somewhat continuity 

of f as a function of twoo variables
#
 But somewhat continuity in one 

variable and quasicontinuity in the other give som information of f 

as a function of two vaгiables. The situәtion is completely different 

in case of so called almost continuity [з] , £4] # Th notion of al-

most oontinuity app aгs firвt in [Іl]
 # 

Definition 1
#
 If X, Y aгe topological spaces then a function 

f : X —? Y is said to be quasicontinuous at x € X if for any open 

containing x , and any open V containing f (x 1 , there exists a non-

empty open s t G such that f (б ) C V
#
 The f unction f is said to 

be quasicontinuous, if it is quasicontinuous at any x e X
# 

D finition 2
#
 A function f : X -? Y is said to be somewhat con-

tinuous if for any open G C ү such that f (>) / 0, int f (Gr) / 

/ 0 holds
# 

Definition 3
#
 A function f : X —ғ Y is said to be almost conti-

nuous at x € X if for any V open V C ү, containing f (x ) , the 

set Cl ( f"" ( V)) contains a neighbourhood of x
 #
 We say that f is 

almost continuous if it is almost continuous at any x G X
# 

Theorem 1
#
 Let X be a Baire space, Y such that each point y «- Y 

posesses a neighbourhood satisfying second contability axiom and Z 

a regular space
#
 Let f : X x Y •-? Z be such that f̂  quasicontinuous 

for each y c Y and the x - sections f , aгe quasicontinuous with 

the exception of a set of first cathegory
#
 Then f is quasicontinuons 

Theorem *2
#
 Let X be a Baire space, Y a space satisfying second 

countability axiom and Z a regular space
#
 Let f : X x Y —-? Z be such 

that for each y a Y the sections f̂  aгe quasicontinuous and the x-

sections f , with the exception of a set of first category are some-

what continuous. Then f is somewhat continuous
# 
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Theorem 1 is evidently a slight generalization of Martin's ver

sion of Kempisty's theorem (.see L5] L71) Theorem 2 seems to be of a 

different kind but it includes (see [8])the mentined Martin's theorem., 

It seems to be an interesting fact that in Theorem 2, which re

sembles to a certain extent Theorem 1, we can not substitute the assum

ption ot second countability by a "locally" second countability as it 

is in Theorem 1# 

Example 1# T = '0,1) will serve as an index set. To each t e T 

an isometric image of the metric space X = (0,1) (with the usual 

metric ) will be associated. We may suppose Y r\ Y '= 0 for t ̂  t'# 
If necessary we shall denote y the corresponding image of y <s (0,1) 

in the space Y # If there will be no confusion possible, we write 

simply y instead of y # The sets Y are supposedto be endowed with 

the order structure inherited from (0,1) Put Y = LJ Y ^ . AS to the 
t*r t 

topology, Cr is open in Y if G = U G* where &t are open in Y # 
R = (- co, co ̂  is considered with the usual topology* We can see that 

in Y any point y posesses a neighbourhood satisfying second countabi

lity axiom. For any t e T the function 

f : X x Y —9 R is defined as: 
0,if x < t, y ^ -= y ) , rational 

l,if x < t, y irrational 

^t}f ( x , y ) = 0,if x = t, 0 <-- y 4 ~ 
1 l,if x = t, -------- c y <: 1 

0,if x > t, y irrational 

l,if x > t, y rational 

On the product X x Y define f : X x Y —9 R as: 

f ( x , y ) = ^ f (x, y ) , if y t Yt 

For any y t Y, r is a quasicontinuous function. 

For any x £ X the function f is somewhat continuous. 

The function f is not somewhat continuous as a function of two 

variables* In fact, if & = (-5- * -§-) * th*n f"1 (G ^ t 0» °ut 

int f""1 (G ) = 0# 

By means of a similar example it may be shown that the assumption 

on X to be a Baire space in Theorem 2 is essential. 

In theorems 1 and 2 the quasicontinuity may be substituted by se-

micontinuity as defined by Levine [6 J . It follows from the fact that 

the last two notions are equivalent as was proved in L^0] • 

As to the almost continuity, there is no good relation between 

separate almost continuity and almost continuity* 
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Theorem 3# Let X, Y be separable metric spaces without isolated 

points* Then there exists a real function f : X x Y -> R, such that 

f is almost continuous at each U . y ) £ X x Y, and a dense set 

D C X x Y such that for each ( x , y ) € D the sections f and 
O O XQ 

fY° are not almost continuous* 

The fact that almost continuity of sections does not imply the 

almost continuity of f as a function of two variables may be also 

easily -verified* 

Example 2# On the interval ^ - l , ! ^ x < -1,1 > consider the 

set F = [(x, y ) : 0 £ x i 1 - -|- x i y i xj 

Define 

f : < -1,1 > x < -lfl> -* R, as 

/0 , if ( x, y ) £ F - C 0,0) 

f £ x,y ) « J 0 , if both x, y are simultaneously rational or irratio
nal and (x,y ) £ F 

M , if x is rational, y irrational or conversly and 
C*.y) 4 F 

f co,o) « i# 

The function f is not almost continuous at C0,0) # The almost 

continuity of the sections f , f^° may be easily verified for each xo 
x £ X, y d Y respectively* 

Detailed proofs will be given in £ 9j # 
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