Bernd Müller T_3 -completions of convergence vector spaces

In: Josef Novák (ed.): General topology and its relations to modern analysis and algebra IV, Proceedings of the fourth Prague topological symposium, 1976, Part B: Contributed Papers. Society of Czechoslovak Mathematicians and Physicist, Praha, 1977. pp. [298]--307.

Persistent URL: http://dml.cz/dmlcz/700702

Terms of use:

© Society of Czechoslovak Mathematicians and Physicist, 1977

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://project.dml.cz

${\rm T}_{\rm Z}{\rm -}{\rm COMPLETIONS}$ OF CONVERGENCE VECTOR SPACES

Bernd Müller

Mannheim

I. Introduction

The aim of this paper is to construct, for a T_{χ} -convergence vector space E (abbreviated by T_3 -cvs), a T_3 -completion \hat{E} with the following properties: \hat{E} is a complete T_{χ} -cvs, possesses the usual universal property within the category of T_{τ} -cvs and contains a subspace isomorphic to E. First we give an example of a T_3 -cvs F for which there exists no complete convergence vector space containing F as a subspace. If we consider a completion C(F) of F in the category of uniform convergence spaces or Cauchy spaces which contains F as a subspace (see e.g. [9], [10]), this example shows that C(F) cannot be a convergence vector space. Therefore we characterize those ${\rm T_3-cvs}$ E which possess a ${\rm T_3-}$ completion \hat{E} . For example, every subspace E of a complete T_3 -cvs M possesses a T_3 -completion \hat{E} but, in general, \hat{E} is not isomorphic to a subspace of M, even if E is dense in M (see example III.3). Other examples of ${\rm T_{3}-cvs}$ possessing a ${\rm T_{3}-completion}$ are locally precompact ${\rm T_{z}-cvs}$ (see [8]). In this case, the ${\rm T_{z}-completion}$ is a locally compact ${\rm T}_{\rm Z}{\rm -cvs.}$ Finally, it is mentioned without proof, that for certain vector sublattices A of $C_c(X)$, the algebra of all continuous real valued functions on the convergence space X, endowed with the continuous convergence structure (see [1]), the ${\rm T}_{\rm Z}{\rm -completion}$ is isomorphic to the inductive limit of the family { $a^{n}(A) : n \in \mathbb{N}$ }, taken in the category of all convergence spaces.

A convergence space will be always a convergence space in the sense of H.R.Fischer (see [1]). An R-vector space E endowed with a convergence structure λ is called a convergence vector space (cvs) iff the algebraic operations are continuous. This can be described internally: A convergence structure λ on an \mathbb{R} -vector space E is a convergence vector space structure iff $\forall x \in E$ the family λx of all filters converging to x has the following properties:

1. $\Phi + \Psi \in \lambda \circ \forall \Phi, \Psi \in \lambda \circ$

2. αΦ € λο ∀α € \R, ∀Φ € λο

3. $\Psi \Phi \in \lambda_0 \quad \forall \quad \Phi \in \lambda_0$, where Ψ is the neighborhood filter of o in \mathbb{R} 4. $\Psi x \in \lambda_0 \quad \forall x \in \mathbb{E}$

5. $\lambda x = x + \lambda o \forall x \in E$

For a subset U of a cvs E we define the adherence a(U) to be the set $\{ y : y \in E, \exists a \text{ filter } \phi \text{ converging to } y \text{ with } U \in \phi \}$ and $a^{n+1}(U) := a(a^n(U)) \forall n \in \mathbb{N}$. U is called dense in E if a(U)=E, and closed if a(U)=U. The closure of U is the smallest closed subset of E containing U. A cvs E is called regular if for all $x \in E$ and for all filters ϕ converging to x, the filter $a(\phi)$ generated by $\{ a(U): U\in \phi\}$ also converges to x. A T_3 -cvs is a separated regular cvs. We denote by L(E,F) the set of all continuous linear mappings of a cvs E into a cvs F. A mapping $T \in L(E,F)$ is called an isomorphism from E into F if T is injective and $T^{-1}: T(E) \rightarrow E$ is continuous. The cvs E and F are called isomorphic if there exists an isomorphism from E onto F. All cvs considered in this paper are vector spaces over \mathbb{R} .

II. Construction of a T₃-completion

Let us begin with the usual definition of a Cauchy filter.

Definition II.1: A filter Θ in a cvs E is called a <u>Cauchy filter</u> if $\Theta - \Theta$ converges to \circ in E. A Cauchy filter Θ in E is called <u>bounded</u> if WO converges to \circ in E where W is the neighborhood filter of \circ in R. A cvs E is called <u>complete</u> if every Cauchy filter in E converges.

Since every Cauchy filter of a complete cvs F is bounded, it is a

necessary condition for a cvs E to be a subspace of a complete cvs that every Cauchy filter is bounded. We now give an example of a T_3^- cvs E for which not every Cauchy filter is bounded.

Example II.2: Consider $E := \bigoplus_{i \in \mathbb{N}} R_i$ with $R_i = \mathbb{R} \quad \forall i \in \mathbb{N}$, where the direct sum is taken in the category of all cvs. $\forall m, n \in \mathbb{N}$ define $F_{m,n} := \{ (x_j)_{j \in \mathbb{N}} : (x_j)_{j \in \mathbb{N}} \in E, x_1 = \dots = x_n = 0, |x_j| \leq \frac{1}{m} \forall j \in \mathbb{N} \}$ Let F be the filter generated by $\{ F_{m,n} : m, n \in \mathbb{N} \}$, and let λ be the convergence structure on E defined in the following way: A filter Φ converges to x in $(E,\lambda) \iff x - \Phi - F$ converges to o in E. It is not hard to see that (E,λ) is a T_3 -cvs for which every bounded Cauchy filter converges. But the sequence $(x_r)_{r \in \mathbb{N}}$, defined by $x_r = (x_{r,j})_{j \in \mathbb{N}}$ with $x_{r,j} := \begin{cases} \frac{1}{j} & \text{if } j \leq r \\ 0 & \text{if } j > r \end{cases}$, is an unbounded Cauchy sequence in (E,λ) .

<u>Definition II.3</u>: A complete T_3 -cvs \hat{E} is called a \underline{T}_3 -completion of a T_3 -cvs E if the following holds:

- 1. There exists an isomorphism i from E into \hat{E} , such that \hat{E} is the closure of i(E).
- 2. \forall complete T_3 -cvs M and $\forall T \in L(E,M) \exists \hat{T} \in L(\hat{E},M)$ such that $T = \hat{T} \circ i$.

<u>Remark</u>: A T_3 -completion of a T_3 -cvs E is uniquely determined if it exists, and for every separated topological vector space F, the usual topological separated completion of F is also the completion of F in the category of all T_3 -cvs.

Every subspace E of a complete T_3 -cvs F has the following property: (*) A filter ϕ converges to o in E $\iff \forall$ complete T_3 -cvs M and \forall T $\in L(E,M)$, the filter $T(\phi)$ converges to o in M. Since the property (*) is a necessary condition for E to have a T_3^- completion, we define:

Definition II.4: A separated cvs E is called <u>a-regular</u> if it has property (*).

<u>Remark</u>: Every a-regular cvs E is a T_3 -cvs and every Cauchy filter in an a-regular cvs is bounded. As example II.2 shows, there are T_3 -cvs being not a-regular.

Let E be an a-regular cvs. We now show that E possesses a T_3 -completion. For this purpose let C be the set of all Cauchy filters in E. On C we define a relation ~ by

 $\Phi \sim \Psi \iff$ the filter $\Phi - \Psi$ converges to o in E. Since for all $\alpha, \beta \in \mathbb{R}$ and for all $\Phi, \Psi \in C$ the filter $\alpha \Phi + \beta \Psi$ is a Cauchy filter in E, the quotient $E_c := C/_{\sim}$ carries a vector space structure in a natural way. Define a linear mapping i : $E \to E_c$ in the following way: $i(x) := \mu(\dot{x}) \forall x \in E$, where $\mu : C \to C/_{\sim}$ is the quotient mapping and \dot{x} is the filter generated by $\{x\}$. Since E is a separated cvs, this mapping i is injective. We now want to construct a convergence vector space structure on E_c such that the mapping $i : E \to E_c$ is continuous. For every subset $U \subseteq E$ let us denote by U_c the set $\{\mu(\Psi) : \Psi \in C, U \in \Psi\} \subseteq E_c$. Let H be a filter on E_c . We define:

H converges to $\mu(\Psi)$ in $E_c \iff \exists$ a filter Θ converging to o in E such the filter Θ_c generated by { $U_c : U \in \Theta$ } is coarser than $\mu(\Psi)$ -*H*. Due to this definition, E_c is a convergence vector space. Since E is a T_3 -cvs, E_c is a separated cvs and the mapping $i : E \rightarrow E_c$ is an isomorphism from E into E_c . For every $\Phi \in C$, the filter $i(\Phi)-\mu(\Phi)$ is finer than the filter $(\Phi-\Phi)_c$ generated by { $(F-F)_c : F \in \Phi$ }, which implies that $i(\Phi)$ converges to $\mu(\Phi)$ in E_c . <u>Propsition II.5</u>: For every a-regular cvs E the cvs E_c has the following properties:

- a. There exists an isomorphism i from E into ${\rm E}_{\rm c},$ such that i(E) is dense in ${\rm E}_{\rm c}.$
- b. For every Cauchy filter Φ in E the filter $i(\Phi)$ converges in $E_{_{\rm C}}.$
- c. If E is a separated topological vector space, ${\rm E}_{\rm C}$ is the usual separated topological completion of E .
- d. V complete T_3 -cvs M and V T $\in L(E,M) \exists T_c \in L(E_c,M)$ such that T = $T_c \circ i$.

<u>Proof</u>: We will only prove property d. Let M be a complete T_3 -cvs and $T \in L(E,M)$. For every $x \in E_c$ we define $T_c(x)$ to be the limit of the filter $T(\Phi)$ in M, where Φ is any Cauchy filter in E with $x = \mu(\Phi)$. For all subsets $U \subseteq E$ the subset U_c of E_c has the following property: $y \in U_c \iff \exists \Phi \in C$ with $U \in \Phi$ and $y = \mu(\Phi)$. This implies $T(U_c) \subseteq a(T(U))$, and therefore T_c is continuous.

<u>Proposition II.6</u>: For every a-regular $cvs \in there exists an a-regular <math>cvs A(E)$ with the following properties:

- a. There exists an isomorphism i from E into A(E) , such that i(E) is dense in A(E).
- b. For every Cauchy filter Φ in E the filter $i(\Phi)$ converges in A(E).
- c. If E is a separated topological vector space, A(E) is the separated topological completion of E.
- d. For every complete T_3 -cvs M and for every $T \in L(E,M)$ there exists an operator $A(T) \in L(A(E),M)$ with $T = A(T) \circ i$.

<u>Proof</u>: Let M be the category of all complete T_3 -cvs and [M] the class of all objects of M. Let E_c be the cvs constructed in proposition II.5. For all M ϵ [M] and for all T ϵ $L(E_c, M)$ let us denote by $\lambda_{M,T}$ the coarsest convergence vector space structure on E_c for which T is continuous. Since $\lambda_{M,T}$ is coarser than the convergence structure of E_c , there exists a coarsest convergence vector space structure λ which is finer than $\lambda_{M,T}$ for all $M \in |M|$ and all $T \in L(E_c,M)$. Let us denote by A(E) the vector space E_c endowed with this convergence structure λ . Since for every $o \neq x \in A(E)$ there exists an $M \in |M|$ and $T \in L(A(E),M) = L(E_c,M)$ with $T(x) \neq o$, it is easy to see that A(E) is a-regular. Let us now prove that the mapping $i : E \rightarrow E_c$ is also an isomorphism from E into A(E). For this purpose let Φ be a filter in E, such that $i(\Phi)$ converges to o in A(E). For every $M \in |M|$ and $T \in L(E,M)$ there exists a map $T_c \in L(E_c,M)$ with $T = T_c \circ i$. Since T_c is also a continuous mapping from A(E) into M, the filter $T_c(i(\Phi))$ converges to o in M. From $T = T_c \circ i$ it follows that $T(\Phi)$ converges to o in M. Since E is a-regular, Φ converges to o in E. The other properties, described in proposition II.6, follow from the corresponding properties of E_c in proposition II.5.

<u>Theorem II.7</u>: A T_3 -cvs E possesses a T_3 -completion if and only if E is a-regular.

<u>Proof</u>: Let E be an a-regular cvs. We define $E_1 := E$, $E_{n+1} := A(E_n)$ and we consider E_n as a subspace of E_{n+1} for all $n \in \mathbb{N}$. The inductive limit \hat{E} of the family { $E_n : n \in \mathbb{N}$ }, taken in the category of all cvs, is a separated and complete cvs. To show that \hat{E} is a regular cvs, we consider a filter Φ converging to o in \hat{E} . By definition of \hat{E} , there exists an $m \in \mathbb{N}$ and a filter Ψ in E_m , converging to o in E_m , such that the filter generated by Ψ in \hat{E} is coarser than Φ . Take $V \in \Psi$ and $x \in a(V)$, the adherence of V built in \hat{E} . There exists a filter Θ with $V \in \Theta$ which converges to x in \hat{E} . One can find an $r \in \mathbb{N}$, $r \ge m$, such that $x \in E_r$, $E_r \in \Theta$ and $\Theta_r := \{ U \cap E_r : U \in \Theta \}$ is a filter in E_r which converges to x in E_r . Since E_m is a subspace of E_r , the filter $\Theta_m := \{ W \cap E_m : W \in \Theta \}$ is a Cauchy filter in E_m , and since every Cauchy filter of E_m converges in E_{m+1} , x is an element of E_{m+1} . Therefore we have $a(V) = a_{m+1}(V)$, where $a_{m+1}(V)$ is the adherence of V taken in E_{m+1} . This implies that the filter $a(\Phi)$ generated by { $a(V) : V \in \Phi$ } has a basis in E_{m+1} and converges to 0 in E_{m+1} , since E_{m+1} is regular. Therefore \hat{E} is a complete T_3 -cvs which contains E as a subspace, because E is a subspace of E_n for all $n \in \mathbb{N}$. E_n is a dense subspace of $E_{n+1} \forall n \in \mathbb{N}$, which implies that \hat{E} is the closure of E. Now let M be a complete T_3 -cvs and $T \in L(E,M)$. We define $T_1 := T$ and $T_{n+1} := A(T_n) \forall n \in \mathbb{N}$. If we put $\hat{T}(x) := T_n(x)$ if x lies in E_n , we get a continuous linear mapping $\hat{T} : \hat{E} \to \mathbb{M}$ with $\hat{T}(x) := T(x) \forall x \in E$.

In the definition of a T_3 -completion, a very strong property was required, namely the existence of an isomorphism i from the cvs E into its T_3 -completion \hat{E} . If one is only interested in the existence of a continuous linear mapping i : $E \rightarrow \hat{E}$, one can show that every cvs E possesses a " T_3 -completion". In the language of category theory, this can be formulated in the following way:

<u>Proposition II.8</u>: There exists an epireflector V from the category \mathcal{L} of all cvs into the category M of all complete T_z -cvs.

<u>Proof</u>: Let us denote by IMI the class of all objects of M and let E be a cvs. Let G be the vector space E, endowed with the coarsest convergence vector space structure for which $T : G \to M$ is continuous $\forall M \in |M|$ and $\forall T \in L(E,M)$. Since $H := \bigcap \{ T^{-1}(o) : M \in |M|, T \in L(E,M) \}$ is a closed subspace of G, the quotient $F := G/_H$ is an a-regular cvs. We define V(E) to be the T_3 -completion of F. Let μ_E be the natural mapping from E into V(E). For every cvs F and $T \in L(E,F)$ let us define V(T) $\in L(V(E), V(F))$ to be the uniquely determined mapping from V(E) into V(F) with $V(T) \circ \mu_E = \mu_F \circ T$. Now it is not hard to see that V is an epireflector from \mathcal{L} into M.

III. Vector sublattices of $C_{c}(X)$

In this section we will describe the T_3 -completion of a vector sublattice of $C_c(X)$, the algebra of all continuous real valued functions on a convergence space X endowed with the continuous convergence structure (see [1]). For any subset A of $C_c(X)$ let us denote by c_AX the set X carrying the coarsest convergence structure such that the mapping $i : X \rightarrow C_c(A)$, defined by $[i(x)](f) := f(x) \forall x \in X$ and $\forall f \in A$, is continuous. It is easy to see that A is not only a subspace of $C_c(X)$, but also a subspace of $C_c(c_AX)$.

<u>Proposition III.1</u>: Let B be a vector sublattice of $C_{c}(X)$, which separates points in X and contains the constant functions. Then the cvs B_{c} and A(B), constructed in section II, are isomorphic to the adherence a(B) of B, taken in $C_{c}(c_{B}X)$.

This proposition implies the following result:

<u>Theorem III.2</u>: Let X be a convergence space and let A be a vector sublattice of $C_c(X)$, which separates points in X and contains the constant functions. Then A is also a subspace of $C_c(c_A X)$ and the inductive limit \widehat{A} of the family { $a^n(A) : n \in \mathbb{N}$ }, taken in the category of all cvs, is the T_3 -completion of A, where $\forall n \in \mathbb{N}$ the spaces $a^n(A)$ are built in $C_c(c_A X)$.

From Stone-Weierstraß theorems which can be found in [1] and [3] it follows:

<u>Corollary</u>: Let A be a vector sublattice of $C_c(X)$ which separates points in X and contains the constant functions. Assume that X is a topological Lindelöf space with $X = c_A X$ or that X carries the coarsest topology, such that every $f \in A$ is continuous. Then $C_c(X)$ is the T_z -completion of A.

305

<u>Remark</u>: There exists a topological space X and a vector sublattice A of $C_c(X)$, such that $a^{n+1}(A) \setminus a^n(A) \neq \phi \forall n \in \mathbb{N}$. This shows that in general an a-regular cvs is not dense in its T_3 -completion.

Now we will construct a topological space X and a dense vector sublattice A of $C_{a}(X)$ such that $C_{a}(X)$ is not the T_{3} -completion of A.

Example III.3: Let us denote by $[o, \omega]$, resp. $[o, \Omega]$, the set of all ordinals less than or equal to the first countable, resp. first uncountable, endowed with the interval topology. In [0, Ω] we define a se- $\begin{array}{l} x_1 := 1 \quad \text{and} \quad x_{n+1} := \lim_{r \to \infty} rx_n \quad \forall \ n \in \mathbb{N} \ . \\ T_1 := \{[o, \Omega] \times [o, \omega] \searrow \{(\Omega, \omega)\}\} \times \{1\} \quad \text{and} \end{array}$ quence by Define $\mathbb{T}_n := \{[o,\Omega] \times [o,\Omega] \setminus \{(\Omega,\Omega)\}\} \times \{n\} \quad \forall \ 1 < n \in \mathbb{N}. \text{ In the topologi-}$ cal sum $T := \sum_{n \in \mathbb{N}} T_n$ identify $(x, \omega, 1)$ with $(x, \Omega, 2) \forall x \in [0, \Omega] \setminus \{\Omega\}$, $n \in \mathbb{N}$ $(\Omega, y, 2n)$ with $(\Omega, y, 2n+1)$ and $(z, \Omega, 2n+1)$ with $(z, \Omega, 2n+2)$ $\forall y, z \in [0, \Omega] \setminus \{\Omega\}$ and $\forall n \in \mathbb{N}$. Let Q be the quotient which arises from T by this identification, and let ψ be the quotient mapping. On P := $Q \{a\}$, where a $\notin Q$, we define a topology in the following way: For every $x \in Q$ let U(x) be a basis of the neighborhood filter of x in P, where U(x) is the neighborhood filter of x in Q, and for a ϵ P $\$ Q let { \bigcup $\psi(T_n) \cup$ {a} : n ϵ N } be a basis of the neighborhood filter of a. It is easy to see that P is a c-embedded topological space (see [4]). Define $y_m := \psi((x_m, x_m, m))$, $z_m := \psi((\Omega, m, 1))$ \forall m \in N and X := P \setminus { y $_{m}$: m \in N } . As a subspace of a c-embedded topological space, X is c-embedded. Now consider

A := { f : f $\in C(X)$, $f(z_{m+1}) = \lim_{k \to \infty} f(\psi((kx_m, kx_m, m+1))) \forall m \in \mathbb{N}$ } It is not hard to see that A is a point separating vector sublattice of C(X), which contains the constant functions. For every subset U of X let us denote by \overline{U}^A the closure of U in the coarsest topology on X for which all $f \in A$ are continuous. Now for all $p \in X$ and all filters Θ converging to p in X, the filter $\overline{\Theta}$ generated by $\{ \overline{\mathbf{U}}^{\mathbf{A}} : \mathbf{U} \in \Theta \} \text{ converges to p in } c_{\mathbf{A}}^{\mathbf{X}} \text{. This implies that the sequence} \\ (z_{\mathbf{m}})_{\mathbf{m} \in \mathbb{N}} \text{ convergies to a in } c_{\mathbf{A}}^{\mathbf{X}} \text{. The linear mapping } \zeta : C_{\mathbf{c}}(c_{\mathbf{A}}^{\mathbf{X}}) \to \mathbb{R}, \\ \text{defined by } \zeta(\mathbf{f}) := \sum_{\mathbf{n} \in \mathbb{N}} (\frac{1}{2})^{\mathbf{n}} \mathbf{f}(z_{\mathbf{n}}) \quad \forall \mathbf{f} \in C(c_{\mathbf{A}}^{\mathbf{X}}), \text{ is continuous. Since} \\ \text{A is a subspace of } C_{\mathbf{c}}(c_{\mathbf{A}}^{\mathbf{X}}), \text{ the restriction } \delta \text{ of } \zeta \text{ to A is continuous.} \\ \text{The set } \{ z_{\mathbf{m}} : \mathbf{m} \in \mathbb{N} \} \text{ is not relatively compact in } \mathbf{X}, \text{ therefore } \delta \\ \text{has no continuous extension from A to } C_{\mathbf{c}}(\mathbf{X}). \\ \text{Finally it is not hard} \\ \text{to see that A is dense in } C_{\mathbf{c}}(c_{\mathbf{A}}^{\mathbf{X}}) \text{ and in } C_{\mathbf{c}}(\mathbf{X}). \\ \end{array}$

References

- [1] <u>E.Binz</u>: Continuous Convergence on C(X), Lecture Notes in Mathematics, 469, Springer-Verlag (1975)
- [2] <u>S.Bjon</u>: Vervollständigung streng ausgeglichener Limesvektorräume, to appear
- [3] <u>H.-P.Butzmann</u>: Der Satz von Stone-Weierstraß in C_c(X) und seine Anwendung auf die Darstellungstheorie von Limesalgebren, Habilitationsschrift, Univ. Mannheim (1974)
- [4] <u>H.-P.Butzmann, B.Müller</u>: Topological, c-embedded spaces, General Topology and its Appl. 6, 17-20 (1976)
- [5] <u>S.Gähler, W.Gähler, G.Kneis</u>: Vervollständigung pseudotopologischer Vektorräume, to appear in Math.Nachr.
- [6] <u>R.J.Gazik, D.C.Kent</u>: Regular completions of Cauchy spaces via function algebras, Bull.Austr.Math.Soc. 11, 77-88 (1974)
- [7] <u>B.Müller</u>: Vervollständigungen von Limesvektorräumen, Habilitationsschrift, Univ. Mannheim (1975)
- [8] <u>B.Müller</u>: Locally Precompact Convergence Vector Spaces, Conference proceedings, Univ.of Nevada, Reno, 155-172 (1976)
- [9] <u>E.E.Reed</u>: Completions of uniform convergence spaces, Math.Ann. 194, 83-108 (1971)
- [10] <u>O.Wyler</u>: Ein Komplettierungsfunktor für uniforme Limesräume, Math.Nachr. 46, 1-12 (1970)