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REMARKS ON TRANSFINITE DIAMETERS) 

E. HILLE 

New Haven 

1. Introduction. The transfinite diameter is a set function introduced by MIHALY 

FEKETE in 1923. It was originally defined for bounded closed sets in the complex plane. 
It coincides with the Cebysev constant and with the logarithmic capacity of the set. If 
the set is a continuum and its complement is connected, then the transfinite diameter 
also coincides with the exterior conformal mapping radius. It is possible to define 
similar notions in any Euclidean space and even in arbitrary metric spaces. 

In this direction G. POLYA and G. SZEGO took up the study of the three dimensio­
nal case and various other extensions in 1931. The important investigations of F. LEJA 

started in 1933; he examined in particular the conformal mapping aspects of the 
problem, various associated sequences of polynomials, extensions to the space of two 
complex variables, aed to general metric spaces. Elliptic and hyperbolic metrics for 
complex numbers were considered by M. TSUJI (1947). The notion of capacity has 
been much extended by G. CHOQUET, but he does not seem to have considered possible 
connections with transfinite diameters. 

There is an extensive abstract theory of mean values going back to A. N. KOLMO-

GOROFF and M. NAGUMO (1930) that has an important bearing on our problem. 

2. Transfinite diameters. The general notion of a transfinite diameter involves 
four essential elements: 

[1] A metric space X. 
[2] An averaging (mean value) process s$. 
[3] An extremal problem. 
[4] A limiting process. 

Let £ be a compact set in X. Take any w, n > 1, points Pu P2, ..., Pn in E and 

form the distances 

(1) 8Jk = d(Pj, Pk), \<j<k<n, 

which are 

N = \n(n - 1) 

in number. This is the first step. 

i) This research was supported in part by a grant (DA-ORD-12) from the U. S. Army Rese­
arch Office (Durham). 
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The second step involves the averaging process J / . Here it is convenient to impose 
the conditions of Kolmogoroff:2) 

(i) si assigns a positive average to every finite set of positive numbers {xj}. 
(ii) A(xl9 xl9..., xm) is a continuous symmetric function of its arguments and A 

is strictly increasing as a function of each of them. 
(iii) A(x9 x9..., x) = x. 
(iv) A(xl9x29...9xk9xk+l9...9xm) = A(y9y9 ...9 y9xk+i9 ...9xm) 

if y = A(xl9...9xk). 

As a consequence of (ii) and (iii) we have the important inequality 

(2) min Xj ^ A(xl9 xl9 ..., xm) ^ max Xj , 

where equality holds if and only if all Xj are equal. 
It should be observed that A(xl9 ..., xm) decreases to a nonnegative limit if one or 

more of the variables decreases to zero, so we can define ,4(0, x29..., xm) by continuity. 
It is clear that ,4(0, 0, ..., 0) = 0, but it may happen that A is zero if one of its argu­
ments is zero. In particular this happens for what in Section 4 below is called the na­
tural averaging process in En as soon as n > 1. It is clear that in (ii) we must restrict 
ourselves to strictly positive values of the argument. 

A. N. Kolmogoroff and M. Nagumo proved that conditions (i) — (iv) imply that A 
has a particular form: there exists a continuous strictly monotone function F(u) such 
that 

m 

(3) mF[A(xl9x29...9xm)] = YJF(xJ). 
1=i 

We shall not use this representation. For our purposes it is just as convenient, if not 
more so, to work merely with the assumptions (i) —(iv). Since mean values defined by 
(3) have already been used in the theory of transfinite diameters by F. Leja, we cannot 
expect to produce any new results, but the method of proof based on the abstract 
postulates offers some advantages. 

We return to the set of IV numbers 5jk and apply stf to this set. We write 

(4) A(5lu8l2,...,dn_u„) = s/(5jk). 

It follows from (2) that 

(5) 0 < s/(8Jk) = 5(E), 

where 5(E) is the point set theoretical diameter of the set E and equality holds if and 
only ifdjk = 5(E) for all I and k. It follows that the set {stf(5jk)} is bounded when the 
points Pj range over E. The set has a supremum and, since E is compact, there is at 
least one choice of the points for which 

(6) j / ( g = s u p ^ H ) = 5,(E). 

2 ) I am indebted to Professors C T. IONESCU TULCEA and SHIZUO KAKUTANI for reminding 

me of the literature on mean values. I had rediscovered some of the results. [I am also indebted to 
Professors Z. FROLIK and V. JARNIK whose valuable observations led to a revision of the manu­
script in November 1961.] 
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We have S2(E) = 8(E) and for all n > 1 

(7) 0 < S„(E) ^ 8(E) . 

M. Fekete worked with the geometric mean, G. Polya and G. Szego mostly with 
the harmonic mean. Other cases have been considered by them and by F. Leja. 

Next we show that the sequence {8n(E)} is never increasing. To prove this, let us 
choose n + 1 points Pj such that 8n+1(E) is the ^-average of the distances d(Pj, Pk). 
It is immaterial if we take the \n(n + 1) distances d(Pj, Pk) with j < k or the n(n + 1) 
distances with j + k. This follows from (iv). We choose the second alternative and 
proceed to separate the elements into groups in two different ways. First we separate 
the 8jk into n + 1 groups of n elements each, the elements in the j-th group being the 
distances from Pj to the other points. Let the average of the distances from Pj to the 
other points be denoted by rjj so that 

(8) A(8jtl, ...,8jj_uSjj+1, ...,5jn+1) = tfj. 

By property (iv) we can replace each element in the j-th group by r\j. In other words, 
8n+ t(E) is the average of rjl9 rj2,..., rjn+1, each repeated n times. Using (iv) again, we 
see we can contract this average to the average of rji9 rj2, ..., r\n+1 taken singly so that 

(9) <5„+lvE) = A(rjl9rj29...,nn+^). 

We can now apply (2) which says that either all the rfs are equal to each other and 
hence to 8n + 1 or else 

(10) min rjj < 5n+1(E) < max rjj . 

Next we group the n(n + 1) quantities 8jk in a different manner. We separate the 
2n elements involving a distance from Pj in one group and lump the remaining 
n(n — 1) distance into the other. The average of the first 2n elements is rjj by (iv) and 
(8), while the average of the remaining elements is at most 8n by the definition of the 
latter. It follows that 5n+1(E) cannot exceed the j/-average of n(n — 1) quantities 5n 

and 2n quantities rjj9 or again contracting with the aid of (iv) 

(11) <5n+i = A(dn,8n,...,Sn,rjj,rjJ)9 

where 5n is repeated n — 1 times. Here we want to apply (2). Either all the rf$ are 
equal to 8n + 1 in which case the inequality gives 

(12) 8n+1 ^ A(8n9 5n9..., Sn9 8n + l9 8n+1) , 

or we can find an rjj < 8n+1. For this value of j , formula (11) again gives (12), but now 
as a strict inequality. Next, either 5n = Sn+1 or 

A(5n9 dn9..., 5n9 Sn+l9 5n+1) < max (5n9 8n+ x) . 

In the latter case 
5 r t+1 < max (5n9 3n+i) 

which implies that ™ 
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Thus, in any case 

(13) Sn+l(E) g d„(E) 

as asserted. 

We can now define 

(14) <50(£) = lim 6n(E) 
H-+00 

as the transfinite diameter of E with respect to the average stf'. 

The set function <50(F) has important p roper t i e s of monotony and continuity. 

I. If Ex and E2 are compact and if Et c: F2, then 

S^E,) S S0(E2). 

This follows from the def in i t ion : any average of distances between points of Et 

is also an average of distances between points of E2 so that the supremum of s^(8jk) 
with respect to Et for a given n cannot exceed the corresponding supremum with 
respect to E2. It may very well happen that 50(E1) = S0(E2) even though Ex is a very 
small subset of £2 . Thus if 8E denotes the (outer) boundary of E, we often have the 
relation 

(15) 50(dE) = S0(E) . 

II. If Ez is the set of points whose distance from E does not exceed e, and if E 
and Et are compact, then 

(16) lim S0(EC) = b0(E) . 
£~>0 

This is essentially a consequence of the continuity and monotony properties of A. 
The argument given by M. Fekete for the plane case carries over with minor modificat­
ions. 

3. Cebysev functions. The original problem of Fekete is closely related to the 
theory of Cebysev polynomials. Similar structures can be introduced in any metric 
space and for any averaging process satisfying the above conditions. 

Let E be a compact set in a metric space X. Let P l 9 P2, ..., Pn, and P be arbitrary 
points of X and form the average of the distances from P to the points P,. Set 

(17) f(p) = A[d(P, PO, d(P, P2),..., d(P, P„)] . 

For fixed points Pl9 P2, ..., Pn, not necessarily distinct, this is a continuous function 
of P which tends to a nonnegative limit when P approaches any one of the points Pj. 
The functionf(P) has a supremum on the given compact set E and this value is reached 
for at least one choice of P in E. As the points Pj range independently of each other 
over X, the corresponding maxima m[f] form a set of nonnegative real numbers. This 
set has an infimum which may be zero. In any case the infimum is attained, that is, 
there is at least one choice of̂ Jpse points Ql9 Q2,..., Qn such that if 

(18) Cn(P) SE A[d(P, QO, d(P, Q2), ..., d(P, Qn)-] , 
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then 

(19) max Cn(P) = min maxf(P) = Mn(E) . 
PeE PeE 

We call Cn(P) a Cebysev function for E of order n. It is immaterial for our purposes if 
<?„(P) is unique. In the case studied by Fekete 

(?n(p) = iT„(z)r«, 

where Tn(z) is the unique Cebysev polynomial for E of degree n. 

The numbers Mn(E) are nonnegative and they do not exceed 3(E) for any n. In 
order to prove that the sequence {Mn{E)} tends to a limit, we find it convenient to 
impose an additional, possibly redundant, condition on the averaging process s/. 

(v) The average of n entries a and one entry b tends to a when n becomes 
infinite. 

Let us denote this average by an. Then the sequence {an} is monotone. To fix the 
ideas, suppose that 0 < a < b9 so that the sequence becomes strictly decreasing. We 
note first that for all n 

a < an < b . 
We now form 

an = A(a9 ..., a9 b) = A(a9 an,i9 an„i9 ..., an„t). 

In the first average, a occurs n times, in the second an- t occurs n — 1 times. Equality 
between the two averages follows from (iv). We now observe that the second average is 
less than an-.x by inequality (2) since a < #„_,. It follows that 

(20) a„ < «„_- if a < b . 

Thus the sequence {an} is strictly decreasing so that it has a limit — a\ condition (v) 
asserts that the limit equals a. 

We now return to the numbers Mn(E). They satisfy two important inequalities, 
namely 

(21) Mn + 1=A[Mn9Mn9...9Mn9S(E)]9 

(22) Mm+nS max (Mm9Mn). 

Here Mn is repeated n times in (21) and m, n are arbitrary positive integers. For the 
proof we form functions of type (17) involving the base points of the Cebysev functions 
under consideration. In the first case, let 

F(P) = A[d(P, Qt), ..., d(P, Qn), d(P, Q)] , 

where Qlt ..., Qn are the base points of Cn(P) and Q is an arbitrary point in E. Since, 
by (iv) 

F(P) = A[Cn(P),...,Cn(P),d(P,Q)-], 

we see that the maximum of F(P) on E cannot exceed the right member of (21). On 
the other hand, this maximum is at least equal to Mn + 1. This proves (21). In the second 
case we form 
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G(P) = A[d(P, P.), ..., d(P, Pm), d(P, Q t), ..., d(P, Qn)] = 
= A[Cm(P), ..., Cm(P), C„(P),..., Cn(P)\ 

with obvious notation. The maximum of G(P) on E is at least equal to Mm+n and at 
most equal to 

A(Mm9 ..., Mm9 Mn9 ..., Mn) = max (Mw, MM) . 
This gives (22). 

Suppose now that the positive numbers {ck} satisfy 

(23) cm+n S max(cw, cn) 

for all m and n. Such a sequence need not be convergent. Thus if 

ck = am for k = 2mp , m = 0, 1, 2, ..., p = 1, 3, 5, ... , 

where {am} is a never increasing sequence of positive numbers, then {ck} satisfies (23) 
and there are infinitely many limit points if there are infinitely many distinct a's. In 
any case we have 

(24) lim c2w_ i = lim sup cn = p . 
m-* oo 

To prove this we note first that (23) implies that cn ^ ct for all n9 so such a se­
quence is necessarily bounded. Next, if there is a y, 0 < y, and an integer j such that 

Cj < y , c/+1 < y , 

then cn < y for all large n. It suffices that n > j 2 . Now if S > 0 is given, we can find 
an N as large as we please such that 

P — S < cN , P = lim sup cn. 
From 

P ~ 3 < cN ^ max (ck9 cN„k) , 

it follows that either ck or cN_k exceeds P — S9 where k = 1, 2, ..., N — 1. Since S and 
N are arbitrary, we conclude that 

P-Ch 

holds for at least half the positive integers. Moreover, since Cj < /?, cJ + 1 < /?, implies 
cn < P for all large n9 either 

(25) P ^ c2m for all m , 
or 
(26) P-C2m_i for all m. 

In the second case, (24) obviously holds. 

Now if cn has a unique limit, the latter must coincide with P and (24) holds a 
fortiori. In order to prove that (24) is always true, it is enough to show that (26) always 
holds. Suppose, then, that there is an odd integer 2k + 1 such that 

c2k + i < P • 
By (23) we have then for every positive integer p 

C(2k+l)p < P -
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This, however, implies that neither (25) nor (26) can hold for all m and we have seen 
that at least one of them must be true. This contradiction shows that (26) is always true 
and this proves (24). 

We can apply this analysis to the case ck = Mk(E). In view of the inequality (22) 
we see that 

(27) lim M2m-X(E) = lim sup Mn(E) = P . 

m-*ao n-*oo 

We shall show that condition (21) together with (v) implies the existence of 

(28) lim Mn(E) = X(E) 
n-* oo 

and the inequality 
(29) Mn(E) = x(E) 

for all n. In view of (27) it is sufficient to prove (29) in order to obtain (28). 

We know that (29) holds for all odd values of n. Suppose there is an even value, 
2k say, such that 

M2k(E) = y<p. 

In view of (22) we have then also 

(30) M2Pk(E)^y9 p = l , 2 , 3 , ... 

We now use (21) with n = 2pk and we replace 5(E) by a larger number rj. We have then 
certainly y < rj and (21) gives 

M2Pk+l(E) < A(y9y9 . . . ,y, i j) , 

where y is repeated 2pk times. By (27) the left member tends to /? when p ->oo and by 
condition (v) the limit of the right member is y < /?. This contradiction shows that 
(30) cannot hold for any k and p. It follows that (29) holds and this implies the uni­
queness of the limit of Mn(E). 

We call this limit x(E) the Cebysev constant of E. 

If A satisfies (i) — (iv) we have also 

(31) X(E) S S0{E) . 

This is proved as follows. We choose Pl9 Pl9 ...9PnmE so that 

5„ = d„{E) = s/(8Jk) 

and then P„+1 also in E such that 

A[d(Pn+l9P,),...9d(Pn + l9Pn)] = 
- max 4d(P, PO, ..., d(P9 Pn)] £ Mn(E) . 

PeE 

By the definition of Sn+x and property (iv) we have 

<S„ + i ^ A(5ll9 ..., <5„_1>n, <51>n+1, ..., Snn+1) = 
= A(dn9...,Sn9Mn9...9Mn), 
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where Sn is repeated ~n(n — 1) times and Mn occurs n times. By (2) 

Sn+i ^ min (5B, MB) = Mn 

since 8n ^ $n+i- This gives (31) when n ->oo. 

For most of the known cases equality holds in (31), but it is not always true. 

4. Euclidean spaces. Let 2C = $n be the Euclidean space of n dimensions, 
n _ 1, with its natural metric. We may ask if there is also a natural averaging process 
in such a space. This question is too vague to admit of an answer, but we could pos­
sibly accept a process sf as natural in in, if it gives S0(S) = R for a sphere S of radius 
R. Such an average exists and it is defined by formula (3) where the function F(u) = 
= Fn(u) is defined as follows: 

u , n = 1 , 

(32) Fn(u) = 
log - , n = 2 , 

u 

, n > 2 . 

Even without using the results of A. N. Kolmogoroff and M. Nagumo, we can prove 
that such an averaging process sfn satisfies conditions (i) —(iv). If n = 2, sf2 is the 
geometric mean used by M. Fekete and for n = 3, sf3 is the harmonic mean consider­
ed by G. Polya and G. Szego. In both cases it is known that 50(S) = R for a "sphere" 
of radius R. 

For n = 1 the following result is obtained. If S is a closed set, contained in the 
interval [a, b] and containing the points a and 6, then the transfinite diameter with 
respect to sfl9 that is, the arithmetic mean, is given by 

(33) 80(E) = \(b - a). 

A "sphere" in this case is an interval, so we have 50(S) = R as desired. In this case 
the boundary of E consists of the two points a and b and 50(dE) is also given by (33) 
so that formula (15) holds. The proof of (33) is elementary. We have 

n 

(34) 5n(E) = max £ (n - 2k + 1) xk, 

where 6 ^ xx = x2 = ... = x„ = a anc* e a c h xk belongs to E. The maximum is 
reached for xk = a or b according as n — 2k + 1 < 0 or > 0. In the limit we obtain 
(33). 

For n > 3 we have to delve into the theory of hyperspherical harmonic functions 
and related theories of capacity. The Cebysev function for the sphere 5 in Sn with 
radius JR and center at the origin is 

(35) C„(P) = d(F,0) 
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for all n so that x(S) = R. This is with respect to the average s/n. On the other hand, 
the integral 

(36) [d(P, Q)f-"dQ, 

ÔS 

extended over the surface of the sphere whose area is wn, represents a harmonic 
function of P (with respect to the n dimensional Laplace operator) provided d(P, Q) > 
> R and the value of this function is 

[d(P,Q)Y-. 

It follows that the double integral 

(37) Ú)n f[rf(P, Q)f-"dPdQ = R1 

es es 
But this is the energy integral corresponding to the equilibrium distribution on the 
sphere and it has been proved by OTTO FROSTMAN [4] that the the minimum value of 
the energy, corresponding to the equilibrium distribution, equals the transfinite 
diameter with respect to the average s/n. Frostman gives this only for n = 3 but the 
argument extends to higher dimensions. 

We have no assurance that the average s/n is the only choice for which 50(S) = R 
even though this seems plausible. There are some results of Frostman's for averages 
s/a9 where a need not be an integer, which enable us to compute S0(S) for S in En 

even if a + n. It seems likely that Frostman's assumption n = 3 can be generalized. 
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