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PROJECTION SPECTRA AND DIMENSION

B. PASYNKOV

Moscow

1.

1. We shall consider for a bicompactum X three types of inverse spectra S =
= (X, m3):

a) Combinatorial spectra — the X, are finite complexes (= finite Ty-spaces),’)
and the projections are continuous mappings of T,-spaces.

b) Polyhedral spectra: the X, are polyhedra, the projections 7% are continuous
(“into™).

c) Simplicial spectra: the X, are polyhedra, each projection 7% is a simplicial
continuous mapping of the polyhedron X,. (with a certain triangulation) into the
polyhedron X, (also with a certain triangulation).

2. Let us define the dimension of each spectrum S = (X, n2) as

ind S = supind X, ;
aeS
thus for a bicompactum X there result the combinatorial dimension dim, X, the
polyhedral dimension dim, X and the simplicial dimension dimg X, each defined as
the minimum of dimensions ind S of all spectra of the given kind (combinatorial,
polyhedral, simplicial) having the bicompactum X as limit space.

It is known that every bicompactum is the limit space of a simplicial spectrum
(with projections which are in general not onto) — this is proved in the monograph
[1] of S. EILENBERG and N. STEENROD; there are still older results of P. ALEXANDROFF
and A. KUROSCH stating that every bicompactum is the limit space of a combinato-
rial spectrum (whose elements are finite simplicial complexes in the classical sense with
projections onto); the Alexandroff-Kurosch theorem has been generalized to para-
compact spaces by V. PONOMAREV (see his communication).

3. The following results seem to be new (for the proofs see [ 2] to appear in the
Matematiceskij Sbornik).

I. There exist bicompacta which cannot be represented as limit spaces of poly-
hedral (a fortiori of simplicial) spectra with projections “onto”.

1y Every finite Ty-space can be realized as a finite simplicial complex in the general sense:
a face of a simplex of the given complex may not belong to this complex.
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II. The following relations hold for every bicompactum:
dim X £ dim, X < dim; X,
Ind X < dim, X <dim; X .
If dim, X < 1 then moreover
Ind X < dim, X .
II1. There exists a bicompactum X with

dimX =ind X =Ind X = dim X = |

and
dim, X > 1.
IV. For n = 1, 2, 3, ... there exist bicompacta X, with
dim X, =ind X, = Ind X, = dim_ X, = |
and

dim; X =n.

These results shows a certain analogy with the beautiful results of P. VOPENKA
(concerning dim X, ind X, Ind X).

V. The “dimensional sum theorem” for a countable number of summands holds
neither for dim, X nor for dim, X; it does not hold for dim, X even for two sum-
mands.

The following questions remain open, as far as [ know:

a) Does there exist a bicompactum X with

Ind X < dim, X .

b) Is the sum theorem true for dim, X and dim, X in the case of a finite numbers
of summands.

2.

By means of inverse spectra of the form S = (X,, nﬂ), where the X, are Haus-
dorfT spaces (and the projections are continuous) the following theorem can be proved
(see [3], [4]).

Theoremz). Let G be a local bicompact group and H a closed subgroup of G.
Then for the quotient space X = G/H the following identity holds:

indX =Ind X =dimX =ind G — ind H.
(As a corollary we obtain that
ind G =1Ind G =dimG, indH =Ind H = dim H).

For the case ind X <oco (which includes the case ind G < ), as well as for the
case ind H <oo I gave a direct proof of this theorem; in the infinite dimensional case
the following theorem of E. SKLYARENKO [5] has been used: If dim X =0, then X
contains a topological image of the infinite dimensional Hilbert cube.

2) This theorem answers a problem raised by E. MICHAEL.
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