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Combinatorial properties of uniformities 

Jan Pelant, Prague (Czechoslovakia) 

In [Ŝ » A.H.Stone raised a question of whether each uniform space has 

a basis consisting of locally finite covers (recall the A.Stone theo

rem asserting that each metric space is paracompact).It is shown easi

ly in jjQ that the existence of a basis consisting of locally finite 

covers is equivalent to the existence of a basis consisting of point-

-finite covers. Stone's problem is restated in [l̂ [ and other related 

problems are pointed out (e.g. the problem of when the Ginsburg-

-Isbell derivative forms a uniformity, see [pj,[PPV]). The negative 

answer to Stone's problem was given independently by E.SSepin and 

myself in 1975. Hence the class of all spaces with a point-finite ba

sis forms a "nice*1 proper epireflective subcategory of UNIF. However, 

it appears that even spaces having point-finite bases are very wild 

and that perhaps the best uniform spaces are those having bases con

sisting of (T-disjoint covers. (A Gf-disjoint basis implies the exi

stence of a point-finite base (see e.g. Q®3't^ll ' b u t t h e c o n v e r s e 

is not true, (see [Pgl^* This paper illustrates the use of "combina

torial" (or discrete) reasoning, as opposed to Mcontinuous" reason

ing, in the theory of uniform spaces. This approach seems particular

ly applicable to problems dealing with covering properties of unifor

mities. 

We are going to estimate point character of some uniform spaces. Fi

nally, we show that the properties of cardinal reflections in UNIF 

depends on set-theoretical assumptions. 

Notation: Let A be a set and let 00 be a cardinal. We define: 

^(A) = { B | B C A } 

[A]<* = {BCAllB|<f*} , LAl"« tBcA| |B |**J 
[A]* = { B C A | 1 B | =<*}; the meaning of [A3>(* and [A]-* is obvious, 
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Definition: Let OJ be a collection of s e t s . 

1) The order (ord (L ) of d i s defined by ord (b = 9up [l&t i&fcL&J , 

n&* 0} . 
2) The degree (deg (b ) of ^ is defined by deg #/ = max (^, 

eup{|Ari ̂ c ^ , HA* 0}-
Remark: Following [I], if a uniform space (X, ̂ ) has a basis con

sisting of cover3 of order at most (n+1), (n is a non-negative in

teger) and does not have a basis consisting of covers of order at 

most n, then (X, V) is said to be n-dimensional (A^X,!^) =- n)« 

If there exists no integer n such that .AcRX, V ) & n, then we set 

A(J(X, V) = — . 
Definition: The point-character pc(X,V0 of a uniform space (X, V) 

is defined to be the least cardinal <& such that (X, If) has a ba

sis consisting of covers whose degrees are at most cO . 

Basic notation: Let p be a positive integer and let M be a non

empty set. The 3ymbol XP(M) denote9 the 3et of all sequences 

{Cii^=l s u c h t h a t Cr>cM a n d ^ic''i+l» j=1> •• •»P""1* The members 

of XP(M) are called cornets (of length p on a set M). 

If Cfey^M), then C., jsjl,. . .,p}, denotes the j t h coordinate of 

the cornet C, i.e. C = {c.}? -̂  

If VfcJCp+1(lI)f we define U(V) = {c ̂ X P(M) |Vj c Cj cV.+1 , j=l,.. 

...,p} . 
Now let {̂ ilfi=i> Je\li •••!?} be a sequence of sub3ets of Id. Let 

C f c X P W . We define C - { p . } ^ to be the cornet CfeXp(M) 9a-

tisfying C+ = C+ - {J D. , t=l,...,p . 

Let Vc X P + 1 (M). We define V S ^ D J { S 1 = {c €. %P(II)!C 6 IUV-$>.} j=1) 

and C-f! D.̂  = 0, i=l,...,j}. 

Remarks; The definition of C - {D.T ia really correct. Vp^^D^^C 

C U t V - ^ } j g ) where T±* D-UD-^, i=2,...,j , Tj+1« D.., Tx= D1. 
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Notation: Let Q be a set, F<£^(Q), C G ^ F ( M ) , je^l,...,pj. Let 

r : Pi%P(M))—• r(Q) be a mapping and let £ be an infinite re

gular cardinal less than |Mj. A(p,j,F,C) denotes the following for

mula (where the sets X. and Y. in A(p,.j,F,C) are members of 

Dl 2VX 1DX L : P((C - { ^ i } ^ 1 ^ {
X i } i = l ) c P • 

Basic lemma: Let n be a positive integer. Let M be an uncountable 

set and let £ be a regular infinite cardinal less than |M|. Let Q 

be a set. Let r : f C%/n(M))—> f (Q) be a mapping. If the follow

ing conditions (0), (1) are satisfied: 

(0) for each pair X,Y : if XcYc;%n(M), then r(X)c.r(Y), and 

(1) there exist J0e{l,*..»n] and C^ftn,KL(M) with IC-J = |M| 

such that the formula A(n,j ,F,C) is not valid for any 

Fs[Q]-£ (i.e. 3 O 0 V C V F : non A(n, J0,F,C)), 

then there is C4LX,n+1(lf) such that | r(7>6(C) )|>£. 

In addition, we may suppose that C. = C.̂  for all i > j • 

Proof: The Basic Lemma can be found in [?^\. We omit the proof due 

to its length and complexity. 

Point-character of uniform box-product 

We are going to show that there is a very simple construction of an 

tfC-box product which yields uniform spaces of large point-character. 

Definition: Given a uniform space (X,2^), an infinite cardinal &j , 

and a non-empty index set I, we define a uniform tft-box product 

1^ X -B (X , 1£ ) as a uniform space whose underlying set is X and 

the basis of the uniformity 1# is formed by all covers of the 

form: Ag V^lP) where Sa [i]«* and U 1/ . 

Remarks: 0) The uniform &-box product of a zerodimensional uniform 

space is O-dimensional . 

1) |^+ R (where R denotes the uniform space of real numbers) in-
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duces the usual uniformity on A^O*), ( .A^t^)^ Br) . 

2) One can define the uniform ^-box product in a more general sett

ing: it is not necessary to suppose that all coordinate spaces are 

equal to each other. Even then the following theorem remains valid 

(the assumption of the following Theorem would then read that at 

least 00 coordinate spaces are not O-dimensional). 

Theorem: Let (X, W) be a uniform space that is not O-dimensional. 

Let oO be an infinite cardinal.If I 11 -£<& then pc( \, + X ) > f for 

each regular cardinal & <<%/ . 

Proof: The following lemmas are needed. 

Definition: A finite sequence {Mi}i-i °"̂  3ets *8 a cha*n of length 

n if: 1) M..flM. * 0 iff ji-ji ̂  l , 
i1 J 

2) M.^. - |J 1L / 0 for i=l,...,n-l . 
1 1 t=l z 

Lemma 1: Let (X, V) be a uniform space. The following conditions 

are equivalent: 1) (X,1^) is not O-dimensional; 

2) there is U&. ty such that for each !/c ty , there is a chain 

i s . ^ . of members of \f such that S, U S n is not contained in any 

member of v \ 

3) there is a cover v€± u such that there is (r<s. 1/ f f<. u such 

that for each $JG- ty f f\j<< f and each ife. ty , if< fJ there is a 

chain {SjJ?^ of elements of f/ such that st (S^ ̂  )fl st (Sn, f ) = 

= 0 . 

Proof of Lemma 1: (3)=-?(l) is selfevident as non(l) ==^non(3). 

(2)-=->(3). Take tPe-V , /P^v where & is the cover guaranteed 

by (2). 

(1)«^(2). We show: non(2)=-=>non(l). Suppose that for each fl& V 

there is &~&ty such that for each chain {Si}i=i
 of elements of 

&*>% S-.US is contained in some member of (P • Choose U&- u • We 

show that there is a uniform refinement of if of order 1. Choose a 
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uniform cover J 3uch that * ̂  if # Consider *V . We define a re

lation fc X»X by (x-jjXj-J^j7 iff there is a chain { s j ^ ^ of 

elements of it^ so that XnS-S-,, x 2 ^ S n • Evidently, f is reflexi

ve • Its symmetry and transitivity is given by the following 

Lemma 2: Let { T ^ ^ be a system of sets satisfying: Ti A Ti+i ? 0t 
f k 

i-=l,*-*,n-l • Let x e T p y e T
n
# Then th^re is a chain ( S . r ^ such 

that [s. |j=l, •••,kJc{Ti| i=l, ...jn} and x^.S1, y^S^ . 

Hence Q is an equivalence relation that induces a partition S) of 

X • Evidently, # ^ < $, 30 S/e v and it is easy to check that 

$)<!/ (use r*tf )• QED. 

Lemma 3: Let (X, V*) be a uniform space. Let &&. 1/ be a cover of 

deg f - GO • There is f & W , ^ < P and M^W S U Ch that each 

member of )£j intersects less then <X/ elements of CL. 

Proof: Apply the concept of a strict uniform shrinking ([i]* Lemma 

VII. 3). 

Proof of Theorem: We proceed by contradiction* Suppose that (©) : 

pc(i^ • X ) ̂  I for some regular cardinal £ ̂  °^ • Choose M HcI, 

|MW| s <k • Let VG v and ^ i7 be covers whose existence is gi

ven by Lemma 1 (3). Denote % = A fZ^(fi)f hence M& W}\ By © 
meMM m * 

and Lemma 3, there is a uniform cover % = /\ 7F"(<ft),M'e C 1 ] * ^ t 

v mcM* 

foe. If such that /U/<3h and there is 'Ve. #"j such that each We. 

e ̂  intersects less than £ elements of ̂  • Using Lemma 1 (3) and 

properties of a uniformity, we obtain a uniform cover w= /\ "lf~ (:/) 
m<?M 

We V*+ , such that t(^< y and V ^ f t ^ ' a n d there i s a chain 

l S i } i = l o f e l e m e n t s o f y s u c h * h a t s t ( S l f ^ )Oqt(Sn f ^ ) = 0 ( i t 

follows that the length of this chain i s at least 4) . Since w< 1M f 

MDM» Z>U"$ SO |M| = <X • Choose xQ€. X . We define Z = { y e X 1 ! 

((m^I-M)=»(ym = xQ)) and ((me.M)=*(yme \J S ^ ) } • 
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fП-l, Define tf: Z —*%n-vL(M) by tf(y) * C i ff C.= { m 6 M t y m e U S.J 

j=l,•••,n-l • 

Observation 1; iP is onto jf(
f

n
"
1
(M) . 

Proof: Use the properties of chains. 

Observation 2: Let Ve&
n
(M). For x,y <=L f^i'lKV)) and meM, the 

following holds: if x ^ S . and 7m^\ them |j-k|-£l#. 

Proof: Suppose j<k, hence j<:n-l . V.^D {leMjx G. I J s ^ , so 

m^Vi •But Vi c( l < s M l y^- tJ h}> hence ym^ sj+ i • 
Observation 3: For each cornet V£.%n(M), the set (/^(^(V)) in

tersects less than £ elements of % • 

Proof: Let n^ifT (Z6(V)). For each meM, choose i(m)<=, {l,... fn } 

80 that **[! T * 1 ( Si(*) ) # S6t Q , T i1(Si(a)> * Wx • E v i d e n t ly» 
W x c ^ . By Observation 2, ^ ( ^ ( V ) ) c st (Wx> VO . Now use '^^ ^ 

and the fact that each member of V intersects less than £ ele

ments of ty • 

Observation 4: Let V1, V2e &n(M) • If M'OCvJ - V2) * 0 (recall 

that U = /\ ]f~(^)), then there is no Ye.1^ satisfying: 

Ynii^Ct^V 1)) ^ 0 ̂  YO^'Vl^V 2)) . 

Proof: Put Y = O 7 "^(Rdn) )f R(m)e A/ for each m^Mf . Let xe 
mєM' m 

s i n i ^ ^ t ^ t v 1 ) ) . Let mQe (V1 - V̂ )f.M» . Then ^ «. Sx . Let 

y e Y n ^ C ^ U 2 ) ) . Then ym e. Sn - U S. * 0 . So R(mft)ns, / 0 s* 
' m o i = l o x 

n-1 
>* R(m„)OS„ - \) S . , which contradicts Lemma 1 (3) and f{j< <P . o n i = 1 l 

Now define a mapping r: /P (X n ' 1 (M))—> f CU) by r ( # ) = { Y C ^ | 

there i s D€.# such that f ^DJHI ?( 0 ] for ^ c X " * 1 ' - ) • 

Observation 5: If V<= X,n(M) sa t i s f i e s : | VJ = <& , VR = M' then 

A(n,n-l,P,V) does not hold for any F e [ y ] ^ . 
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Proof: Perform an easy prolonged computation using Observation 4# 

Hence the assumptions of the Basic Lemma are satisfied, so there is 

7eX n(M) such that |(r(U(V)))^| , which is a contradiction. 

Remarks: 1) The Theorem shows that pct./^Ox)) > f , where £ is a 

regular cardinal less than (A, ; in particular, pc ,iU> (^) -> U)0 • 

The point character of yt^iCO ) is an open problem, but we feel 

that it should soon be solved. 

2) By similar methods we have partially solved a problem concerning 

the preservation of Cauchy filters by reflections in Unif (see [P^* 

rp.-1). This problem is due to Z.Frolik and particular cases are men

tioned in |^lJ»[GI^* ®ur ma^n result says thet if F is a reflection 

preserving Cauchy filters, then the spaces in \ F( Jt/^oL) )l<* £ Cn \ 

do not have bounded point-character. 

Cardinal modifications 

Definition: Let ti)^ be a cardinal. We define a functor p* : UNIF—* 

—*UNIF by prt(X-V) = (X,p*tn where p* V consists of all covers 

fi €. ly such that there is a sequence {^n\nsx
C'^ w i t h l^iJ-*"^ 

for n=l,2,... and ^n^^n-l' n=1>2>*«* • 

Remark: p^ is a reflection that preserves underlying sets and topo

logy. Such reflections are called modifications. 

Definition: Let (X, V) be a uniform space. Let U)A be a cardinal. 

We define b*T = ^ e V\ \#\<> CO*} . 

Remark: Clearly, (Xjb^^) is a quasiuniformity in the sense of £l]» 

The difficulties are connected with star-refinements. If (X,b^Z^) 

is a uniformity, then (Xtb*V) = p*(Xf?T) • 

It is well-known that (X,b°T) and (X,b1 'l/ ') always form uniformi

ties. A more general theorem, proved in [V] and £K]5 says: if 

pc(X, 1K).£ (Q f then (X-.b̂ 'W) is a uniformity for any cardinal U)^ . 

On the other hand, A.Kucia proved under [GCHj • Let (X, ty) be a uni-
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form space. Then (Xfb*#0 forms a uniformity for any cardinal ̂  , 

Both these theorems are corollaries of the Folklore Lemma introduced 

below. Since there are uniform spaces with large point-character it 

is possible that the equality p*(X, V) - (X,b*^) depends on set-

-theoretical assumptions for # ̂  2. It is really the case. 

Notation: The symbol S (M) denotes the positive unit sphere in 

VoJW)* i'e* the subspace of ./^(M) on the set {f^/4o(M)J ||f || s 1 

and f(m)£-.0 for each m^.M J-. 

Notation: For each f e S (M) and a non-negative integer k , define 

C ( f ' k ) e X 2 (M) by c£f>k)= ^ ( J j i — i f !]j)f i=if#..,2
k. For 

V ^ L X/ 2 ^ ( M ) , put tWV) = {f*aS+(M)|clf'k)€ 16(V)} • 

Definition: For a non-negative integer k, we define f^ -{faT(V)! 

VeX2 +1(M)} . 
Proposition: ifvjv-n forms a basis for the norm uniformity on S (M)< 

Proof (see [P51)« 
(f k) 2 

Notation: The mapping which assigns C u ' ; e X 00 to each 

f£S*(M) will be denoted by Lfk . 

Let LO^ be an uncountable cardinal. ZB(6^) denotes the following 

assertion: There is ^L/c^&^J^ > |#/|>W » BXi irtfinite regular car

dinal J < cf A^ , and a cardinal K -̂  | d 1 such that \ 0 &* | -̂  | for 

each & G [ & ] ~ 

Remark: [GCH] implies that ZB(4fo) is false* 

Theorem: If ZB(W^) holds, then there is a uniform cover fi of 

S+(W*) such that \f\ - \ and & ^ f implies 1̂ 1 > AĴ  (i.e. 

• S * ( ^ ) ?- b*S+(W^)). 

The following lemma is needed. 

Folklore Lemma £P/]: Let (X,V) be a uniform space. Let K be an 

infinite cardinal. Let f = {Pa}a6A£. ̂  » |<f|< K • Let A/* 

* {Rb}b^B be a u n i f o r m star-refinement of ^ . For x & X put 



162 

S(x) ={a|a«s.A and st(x,^/)cPa}. For YcX, put I(Y) s {a|aeA 

and YcPfi} • A mapping t : X—>A aati3fying t(x)eS(x) for each 

xcX will be called a choice mapping. 

Aasertion of Folklore Lemma: There ia Cfe.'V', tff = {^Ja^A* s u c h 

that (&*<$ and lfb<<f iff the following condition (P) ia aati-

afied: 

(P) There ia a choice mapping t : X—>k and a partition {^J^eA 

of the index aet B auch that: t( U> \ ) - U t(Rb)o 
. . . . b«B0 be--L 

o U -<V - K u v • 
beBa b.Ba 

Proof of Theorem: For a e ^ , put a =- it eS +(^) |a^.coz f} . Defi

ne (P « V*lae<LL # Clearly> ^ is a uniform cover of S*(^). Suppo-

ae that there is a uniform cover Or » | Q J such that cy"^r . 

By the propoaition, there i3 a k*2 auch that ^ v ^ ^ * By the 

Folklore Lemma, there ia a choice mapping t : S (4^)—>4>^ such 

that st(ff ̂ k)c tTf) for each feS +(^) and a partition {B a} a €^ 

such that the following ia satiafied for each a ^ ^ : 

OO U t(U(V))c O I(U(V)) (I waa defined in the Folklore 
VeB VcB 

Lemma) • 

Clearly, for each feS (^), there ia ge.st(f, fi^) such that 

coz g = f""1(]l2""k>lj) = C
(^ k ); hence: (aince at(f, f )ct(f)): 
2-1 

(**) t(f)ec(f»k) . 
2-1 

Define r : ^ ( & 2 (fcfc)) —>^(44,) by r(0 ) = t({f e S+Ufc) |c(f »k)
€ 

•£.<#}) . We obtain from (**) and C*k»
k)

c V k for each f ; (*** ) 

r(1(/(V))cVk for each Vs %2 4l(4^) . Let & be a collection of 

seta whose existence is given by ZB(Co^ . For L e ^ , take a cor

net VL&%2 +1(&fc) such that V1^ - ty , ̂  = L and IV-J « ty,. 

It is clear from (**) that A(2k,2k-1,F,VL) does not hold for any 
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Fe[^]^» s o w e c a n u s e t h e B a s i c Lemma: there is VLe %l + 1(^) 

such that Iv1^ U ftL , VL = L and I r(V(VL))|.^ £ (we have used 

correspondence given by LP , ) . 

Since there is fe 1<̂ (V ) such that coz f = L we also have 

I('^(VL)) = L . 

Now cons ider the r e s t r i c t i o n of { B } . to ffi\h e-CL'} . Since 

\&\>£t)0{> t h e r e i s aQ such t h a t \ { L G d | VL£ Ba } | "̂  \d \ ± K . 
o 

Denote (h = J L € & | v L e B a } . B y (*) we have: 

u t(^(vL
)) = u r(^vL) ) c n i(^(vL)) = n L = n & f . 

Le&' L^a; Lt# L&a! 

According to ZB(^ ) ,|0 #/| < J , although | r ( ^ ( V L ) ) | ^ for each 

Le l j ! / , which is a contradiction-

Comment: We have mentioned that ̂ GCH^ implies the negation of ZB(lL^), 

One could doubt whether ZB(^) is consistent with ZPC Fortunately, 

|~B̂ j removes these unpleasant questions. 

Notation: AB( K, X,/t<;,V ) denotes the assertion: there is ^-^C^T^ 

such that |P|=X a n d |xOY|<y if X,YeP and X * Y . 

Theorem Baumgartner QB'J: It is consistent with ZPC to suppose that 

AB(K, A, ̂ , V ) holds, where V-£ K ^ A and V is regular. 

Remark: Clearly, AB(^,^,tx^, | ), where £ is a regular cardinal 

less than cf (0^ , implies ZB( l^) . 

So we see that the assertion: "For each uniform space (X,^) and 

each fl *> 2, p^(X,'llu) = (X-,b*V)M is consistent with and indepen

dent of ZPC 
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