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FOURTH WINTER SCHOOL (1976) 

ON CLOSED IATTICBS 

by 

Jan PAVELKA 

Let T be a set. Consider the contravariant hoa-functor 

T ( - ): Set — > Set. 

For an ordinal number cc there is the natural isomorphism 

tf^T1** <-v (T° 6) X 

defined 

C^ x(f f ! ^ < o c )3 x • (ff x I f -*oc >-

If we are now given an cc -ary operation o*: T**—^ T on T 

there is a natural way to define operations Cy on the sets 

TX; we put 

x s ^ * ̂ ^x • 
In this context the word "natural" has a precise meaning, 

namely: for any map f: x — > Y the map T : T — ^ T T carries 

a homomorphism between the algebras < T f c-» > f < x tcrx > ; 

in other words, the maps cYx form a natural transformation 

d ftl-h* > T(-\ (0.1) 

Moreover, by Yoneda lemma any transformation (0.1) is in

duced in this way by the operation 

tf'ijoC (p j t f < <x: ) 

on T, where p^ : T * — > T are projections from the carte

sian power of T. 

It is in the above sense that the power set P X ^ 2 ^ 
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of a set X owes its natural structure of a complete boole

an algebra to the two-point boolean algebra 2 « Thus, if 

we want to follow the idea of Zadeh and replace 2 by ano

ther set T of membership degrees to obtain " T-fuzzy sets", 

then the crucial oroblem is to devise an algebraic structu

re on which would yield the moat fruitful generalisation 

of the 8et-theoretical calculus. 

Aa the present state of affairs indicated, the struc

ture of a closed lattice, which is the topic of this in

troductory article- is one of the most likely candidates. 

1. Closedness structures on lattices 

The general theory of closed categories aa developed 

in C22 deals with the following.situation: on a category 

<fc bifunctors 

® : & x & —-> &, ->,-J : "ft*** & —-> ft/ (1.1) 

are giTen, together with an adjunction in two variables 

*XIZ: foK® Tt z ) « * t t , rzZ.3 ). (1.2) 

Here we shall be concerned with the special case that ari

ses when $J is small, thin, and skeletal; i.e. a partial

ly ordered set. 

For a partially ordered set P, a couple of adjoint bi

functors (1.1) reduces to a couple of binary operations 

such that 

(1.3) ® : P x P — » P is isotone in both variables, 

(1.4) E->--l • P x P — > P is isotone in the second and 

antitone in the first variable, 
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(1*5) the adjoin^ness condition 

x © y £ Z i f f x * £y*3 

holds for a l l x , y , z « P . 

Alternatively, (1*5) can be expressed as 

(1.6) for a l l x,y «P, x ^ Cyfx»S y j and Cxy3 €> x £ 

The strength that (1.5) possesses as a link between 

© and f-, - 3 i s perhaps best illustrated by the fo l 

lowing 

1.1. Proposition (c f . [6 l ) . Let ® , C - f - ] be as abo-

Te and l e t e € P. Then the following are. couples of equiTa-

lent conditions on P: 

(Tl) (x® y)<8> *£x<g> (y© *) I y*3 * ZZxyl t x*33 (HI) 

(T2) x ® e = X x « Cex3 (H2) 

(T3) e<g>x^x x^y i f f e & IxyJ (H3) 

(T4) x ® y « y ® x x 6 [y«1 i f f y ^ Txx3 (H4) 

(T5) (x® y ) © z » x ® (y© «) Tx® y,z3 « T x t y a 3 3 (H5) 

In accordance with 12] we shall use the term "monoidal 

closed (shortly, MC) structure on P " to designate a triple 

<®, T-,-3., e> where © , E>,-3 satisfy CU3) - CU5) and 

® , e satisfy (T2),(T3), and (T5)^ If, moreorer, ® sa

tisfies (T4), we shall speak' about a symmetric monoidal clo

sed (shortly SMC) structure on P. 
/ 

Obserre that 

(i) (Tl) together with (T4) already imply (T5) so that an 

SMC-structure is also defined by axioms (Tl) - (T4). 

(ii) (T4) together with (H5) imply 
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(H40 CxCy*31 * CyCx*33 , 

which therefore holds in any SMC-structure* 

(iii) For a general MC-structure the condition (H5), ia 

Tiew of (H3)| implies (1,5) and can be understood to 

oxpress the adjointness "inside P ** 

(iv) (H4) says that the antitone functions J> > x 3 are 

right self -adjoints* A remark analogous to (iii) can 

be made about (H4I). 

For any couple of adjoint operations <®> E->-3> ** 

also haTe 

(TO) the functions - © xi P—vP; x€P preserTe all supre-

ma that exist in P, and 

(HO) the functions fxf- J; P —> P; xcP preserTe all infi-

ma that exist in P. 

MoreoTer, if P is a complete lattice (as we shall assume from 

now on) then 

(i) any isotone bixmry operation ® satisfying (TO) 

has a right adjoint, uniquely determined by @ f whose Ta-

lues are giTen by the formula 

Ey*3 « V-fxlx®y-*x* (1.7) 

(ii) Any antiisotome-isotome binary operation C-,-3 

satisfying (HO) has a left adjoint, uniquely determined by 

E -f-3 9 whose Talues are giTen by the formula 

x ® y * f[\%\ x* E y O ? (1.8) 

Thus any isotone associatire operation ® with a two-

sided unit e on a complete lattice L is a part of an KC-struc-

ture on L iff it satisfies (TO). In 111 a complete lattice 
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endowed with such an operation is called a cl-aonoid pro Ti

ded it also satisfies 

(TO)* the functions x ® - : L*—>L; xcLpreaerre All 

suprema* 

Remark: Unless ® is commutatiTe, (TO)* doest not 

follow from (TO). What can be proTed is that it is equira-

lent to 

(HO)* the functions C -,x3 : L—> L;z6L transfer all su

prema to infima. 

Indeed, assume (TO)** and let XcL, zeL. Since C - f O 

is antitone we haTe t yYfx3 if AClfx 3 • Hence it suffi

ces to show that the converse inequality also holds in order 

to proTe (HO)* . 3y (1.5), AC*,* 3 £ T V Y , * ! iff 

ACr,*3® )IT£Z. 3y (TO), ̂ C*,z3® V* * 

= V -% ̂  C X* "3 ® y I y€Y} .Because ACT* 3 ® y £ C y * 3 ® y £ 

£s holds for any y€Y this part is complete. The proof of 

(HO)*«=•-> (TO)*" is analogous. 

Still, it is useful to assume (TO) for non-commutatiTe 

® - it guarantees that the opposite multiplication 

x ® * y 3 y ® x 

also has an adjoint, say £-,- 3* ,% and allows us t© treat 

both resulting MC-structures simultaneouslyf as it is done 

in E43. TriTially one then has 

x^Cy*3 iff y £ C x » 3 * 

so that each C -,« 3 is again a contraTariant adjoint on 

the right. If ® is commutatiTe then C -»-3 *»«-- C-t-3* 

coincide and C -,*1 is self-adjoint, as was already noted. 
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1.2. Example: If a complete lattice L is completely 

distributive then < L,A,1 >, where A is the meet in L 

and 1 is the greatest element of I<, is a commutative cl-mo

no id and therefore a part of an SMC-structure on L: the so 

called Heyting algebra on L. The right adjoint to y\ is de

noted by y—-> z and called the Heyting operation on L. (Con

cerning terminology: a category fc is called cartesian clo

sed if it has finite products and the product functor is a 

left adjoint. Since XA.y is the categorial product of 'the ob

jects x,y£L, we have completely distributive = cartesian 

closed.) 

1.3. Example: Let K be an associative ring with unit. 

Let L denote the complete lattice of all two-sided ideals in 

R. The operation ^ 

3E ® %, -IjS^ a ^ l aclM ,^€9? fX>±* y.i 

makes L into a cl-monoid. Again, the unit coincides with the 

greatest element i - R of L. If % is commutative, so is ® 

In the sequel we shall restrict our attention to those 

MC-structures on a lattice L whose unit coincides*with the 

unit of L (for the reason see £7]) and call them, in accor

dance with Tl], integral MC-structures. 

The latter example, though rather esoteric from our 

point of Tiew, motiTated am inTestigation of integral MC-

structures on lattices carried out - long before the concept 

of a closed category was proposed - by B.P. Dilworth and II. 

Ward (see C3],l4]). Concerning terminology: 

in l3] f the operation Z -,-] is called residuatioa 
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and t x , y j is denoted by y:x. 

In [43 where non-symmetric structures are considered, 

r xyT i f y.x^1
 ) 

7 is denoted by <* * > and called 
[xy]*J

 l
x .yJ 

( left ) 
the 4 v residual of x with respect to y. 

1
 right* 

The above mentioned papers concentrate on the following 

questions. 

Q^; Do lattices with nice properties admit integral IfC-struc-

tures? 

Q
2
: How far does an integral MC-structure on L affect its 

lattice structure? 

We shall not go into much detail here, but let us at least 

touch Q-j. 

As to completely distributive lattices Q-> is settled in 

the affirmative (Example 1.2)
#
 Anyway, complete distributivi-

ty is not a necessary condition because we hawe 

1.4. Example: Let L be a complete lattice containing 

an element a with £he properties 

(i) * < 1 , 

( i i ) for any x€L either x£a"or x^a , 

( i i i ) the sublattice -fxl x £ a { i s a chain. 

Put 
( 0 if 

x ® y » \ 
xAy otherwise. 

Then it is easy to check that ® makes L into a commuta-
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tiwe integral cl-monoid* 

The aboTe example suggests that the answer to Q^ de» 

pends primarily on the behaTior of L *in the Ticinity of 1". 

Indeed, let L admit an integral MC-structure and let © be 

its multiplication* Then by monotony of ® 

(1.9) x ® y*-(l© y)A(x(8D * xAy 

and by (TO) 

(1.10) for any XeL, y&L: Vx * 1 «=» 

*=* y = ()/X)® y « V-tx®y| X€X? ^ Y-UA'irlxsX?, 

Now obserre that this already disqualif ites the modular lat

tice 

0 

(X = ix^fx2i and y fail to satisfy the necessary condition 

(1.10)). 

2. Special lattices: chains and boolean algebras 

We haTe already noted that if the lattice L in question 

is completely distributee, questions Q, and Q2 cease to be 

interesting. On the other hand, new problems arise such' as: 

Q-,: How many integral HC (or, in particular, SMC) structu

res does L admit? Can they be described and classified in 

a reasonable way? 

Q^: For two integral MC-structures S[.><0 f t-,*]^> 9 
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l^a < © 2 , E - , - 3 1 > on L put 

^ £ ^ S ^ x ®^ y * x ®£ y for a l l x,y c L 

( this condition i s equivalent to .txy3^£ Lxy3^ f a l l 

x9ye.L), (1.9) eays that the Eeyting algebra on L i s the 

greatest element of the resul t ing par t ia l ly ordered set 

€*>(L)« What else can be prored about ^>(D? 

Qc*» GiTen an SMC-structure on L, the function Cf«-£-tO] 

has the following properties; 

(i) <? sends all suprema to infima, 

(ii) g>xix—>0 for all x«L f 

(iii) x .6 <p §> x for all xeL. 

GiTen a function g>: L.—>L satisfying (i) - (iii), 

does there exist an SMC-structure on L with 5P*I-,Ol ? 

We shall end this article by several results in this direc

tion. 

2.1. Proposition (C33). Erery boolean algebra admits 

exactly one MC-.structure. 

Proof. First we realize that a completely distributers 

lattice is a boolean algebra iff x v(x—>0) * 1 holds for 

all xeL. New suppose < ® , C-,- J> is an integral MC-

structure on L. For any xeLwe haTe x * (xv(x—y0))O x = 

« (x© x)v((x-—>0)© x)£(x® x)v(Ixt03 © x) « x © x 

whence x A y . £ ( x A y ) € > (xAy)£x® y holds for all x,y e L. 

By (1.9), the proof is complete. 

On the other hand, there are 2 non-isomorphic SMC -

structures on the compact interval of reals (see [53) with 
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continuous mult ipl icat ion. To these, a theorem of Mostert 

and Shields can be applied to obtain a fa i r ly simple des

cr ipt ion of a l l p o s s i b i l i t i e s . Ihe c lass i f icat ion of gene

r a l SCfe-structures on I * £ o , l J seems to be an open pro

blem. 

2.2. Proposition. Denote by €>0<--«) the subposet of 

€£ (L) consisting of a l l symmetric elements, £rery nonempty 

chain in ^ 0 <^) has a supremum. 

Proof. Let 0 *V W be a chain in <S0 (L). fe* show 

that 

x g y * Hx&y U ® ^ - , - ) ) e » } 
defines the supremum of *€£ in <S?0(L). Since ^ is l.u.b. 

L)(L 

of the multiplicatiTe parts in L it suffices to proTe that 

it is a part of some SMC-structure on L. The equalities x « 
s x § 1 * 1<5 x, xT§ y s y ® x, and preserration of suprema 

are eTident. That leaves associativity to be proved. 

We have ixlg y ) « z -= ^ J ^ { ( ^ V ^ t x ^ y ) ) & z) -

*®«<et ©'fcW**®'* '® 8* ^ *T0** S i n c e * is a chain this 

equals Y ^ ( ( x © y ) ® z) - A V ^ ( x ® y ® « ) . By the same 

argument (we need (TO)*1 , but that i s taren care of by the 

commutatiTity of @ ' s ) , _ »«frfx® y ® * ) ^x-® (y <3> * ) . 

2.3* Proposition. If L is a chain then any q : L —> L 

with properties ( i ) - ( i i i ) is L-jGl for some SUC-struc-

ture on L. 

Proof: Put 
i f x £g>y 

x ® y •{ 
* XAy 

otherwise 
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and check that it worts* 

In t->7 it i« shown that in case of L « C 0,1.3 And y 

an antiisomorphism of L there is an SMC-otructure isomorph

ic with < Max (0
f
x • y - l)

f
 Min (1,1 - y + z)> such that 

g>« f - , o i . 
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