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FCURTH WINTER SCHOOL (1976)

ON CLOSED IATTICES

by
Jan PAVELKA

Let T be a set. Consider the contravariant hom-functor
(=) Set —> Set.
For an ordinal mumber o there is the natural isomorphism
3f.x('rxf° a (1o)X
defined
loy(fc 1§ <o )l x=(fexlg =)
If we are now given an <« -ary operation o': T¥—> T on T
there is a natural way to define operations ox on the sets
Tx; we put
o = oX . Py .
In this context the word "natural® has a precise meaning,
namely: for any mep f: x —>Y the map 'rfé 'I‘I-—> Tx carries
a homomorphism between the algebras (’I‘!, oy > ,< Tx, ox 2
in other words, the maps o'y form a natural tramsformatiom
o (1% 5 2(=), (0.1)
Moreover, by Yoneda lemma any tramformation (0.l) is in-
duced in this way by the operatiom
O (P £ b § <o)

on T, where p. : < —>7T are projections from the carte-

¥
sian power of T.

It is in the above sense that the power set PX:::ZX
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of a set X owes its natural structure of a complete boole-
an algebra to the two-point boolean algebra 2 ., Thus, if
we want to follow the idea of Zadeh and replace 2 by ano-
ther set T of membership degrees to obtain " T-fuzzy sets"®,
then the crucial oroblem is to devise an algebraic structu-
re on vhich would yield the most fruitful generalization
of the set-theoretical calculus. '

As the present state of affairs indicates, the struc-
ture of a closed iattice, which is the topic of this in-
troductory article, is one of the most likely candidates,

1, Closedneas atrucﬁ:res on lattices

The general theory of closed categories as developed
in [2] deals with the following.situation: on a category
R bifunctors '

Ri1AxR—> R, [--]1: R* <R —- & (1.1)
are given, together with am adjumctiom im two variables

Tyrpp: REOYZ) »R(X, [Y2]). (1.2)
Here we shall be concerned with the special case that ari-
ses when R is small, thim, and skeletal; i.e. a partial-
1y ordered set.

For a partially ordered set P, a couple of adjoint bi-
functors (1.1) reduces to a couple of bimary operatious

such that
(1.3) @ : PxP—>P is isotome in both variables,
(1.4) [-,-] : PxP~> P is isotone im the second and

antitone in the first variable,
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(1.5) the ad.ioi.nt,ness‘ condition

 x@®y4Z iff x & Cys]
holds for all x,y,z&P. )
Alternatively, (1.5) can be oxpréssed as

(1.6) for all x,yeP, x‘sty,xe ¥y] and [xy2 @ x2£
£ Y. ’

The strength that (1.5) possesses as a link between
® and [-,~-] is perhaps best illustrated by the fol-
‘lowing '

1.1. Proposition (c¢f.[61). Let ®,[-,-]1 " be as abo-
ve and let e ¢ P. Then the following are. couples of equiva-
lent conditions on P: . '

(M) @ y)® 32x® (y@ 2) [y2) ¢ [Cxyd [x2)] (m1)

(T2) x@P e =X x =[ex] (H2)
(T3) e®x=x _ . Ly iff e £ [xy] (H3)
(T4) xy=y8&x ‘ xe’[yz'l irf y< [xz] (H4)

(15) x@y)®:2=x0 y®z) [x@ y,2] =Ix[yz]1]1 (8S)
In accordance with [2] we shall use the term "monoidal
closed (shortly, ll(r:) structure on P * to designate a triple
<{®, [, -1, e> where @, [~;—] satisfy (1,3) - (1.5) ana
@, e satisfy (T2),(T3), and (T5)« If, moreover, ® sa-
tisfies (T4), we shall speak about a symmetric momoidal clo-
sed (shortly SMC) structure on P.
Observe that ! ]
(1) (T1) together with (T4) already imply (T5) so that an
SMC-structure is also defined by axioms (T1) - (T4).
(i1) (T4) together with (H5) imply
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(H41) (xlyz]) = (y(x3]3 ,
which therefore holds in any SMC-structure.

{iii) For a general MC-structure the condition {H5), in
view of (H3), implies (1.5) and can be understood to
express the adjointness “inside P *,

{iv) (H4) says that the antitone functions [~,XxJ] are
right self-adjoints. A remark analogous to (iii) can
be made about (H4l1),

For any couple of adjoint operatioms <@, I=,=1p we
also have

(TO) the functions -@® x: P—>P; x€ P preserve all supre-
ma that exist im P, and

(HO) the functions {x,-]: P—> P; x¢P preserve all infi-
ma that exist in P,

Moreover, if P is a complete lattice (as we shall assume from

now on) then
(i) amy isotome bimry operation @  satisfying (TO)

has a right adjoint, uniquely determined by ® , whose va-
lues are given by the formula
[yel = Jfx|x@y£s$ 1.7
(11) Any santiisotome-isotome binary operatiom [=-,-]
satisfying (HO) has a left adjoint, uniquely determined by

[ -,-], whose values are given by the foryula

x@y = Aislx<[yz1? (1.8)

Thus any isotome associative operatiom @ with a two-
sided unit e on a complete lattice L is a part of an EC-struc-
ture on L iff it satisfies (TO). In [1] a complete lattice
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endowed with such an operation is called a cl-monoid provi-
ded it also satisfies

(TO)* the functioms x® = : L~>L; x€L preserve all
suprena.

Remark: Umless & is commutative, (T0)* doest not
follow from (TO). What can be proved is that it is equiva-
lent to '

(HO)* the functioms [ -,x] : L—> L;x €L transfer all su-
prema to infima.,

Indeed, assume (T0)* and let YcL, seL. Since C-,3)
is antitone we have [ VY,2] ¢ Afy,2] . Hence it suffi-
ces to show that the converse inequality also holds in order
to prove (HO)* . By (1.5), A[Y,s1 < [YY,27 irr
ALY,21@ V x4z, By (T0), ALY,z1®@ VY=
= Y$SACY218® ylyeYl . Becouse ALYz1® y£[y:]1® yz
£z holds for any y€Y this part is complete, The proof of
(HO)* ===> (TO)* is analogous. '

Still, it is useful to assum (TO) for non-commutative
V) - it guarante’es that the opposite multiplication

x@* y=y® x

also has an adjoint, say [-,- J* , and allows us te treat
both resulting MC-structures simultameously, as it is dome
in [4]. Trivially one then has

x£0ys] iff y&[msl*
so that each [ -,2] is again a contravariant adjoint om
the right, If ® is commutative then [ -,~] anmd [-,-1*
coincide ard [ -,2]1 is self-adjoimt, as was already noted.
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1.2, Example: If a complete lattice L is completely
distributive them { L,A,1)>, where A 1is the meet in L
and 1 is the greatest element of [, is a commutative cl-mo-
noid and therefore a part of an SMC-structure on L: the so
called Heyting algebra on L., The right adjoint to A 18 de-
noted by y —> z and called the Heyting operation on L. (Con-
cerning’ terminology: a category 8 is called cartesian clo-
sed if it has finite products and the product functor is a
left adjoint. Since xAy is the categorial product of ‘the ob-
Jjects x,y& L, we have completely distributive = cartesian
closed.)

l.3. Example: Let R be an associative ring with unit.
Let L denote the complete lattice of all two-sided ideals in
R. The operation o '

R '{;?-4 aibil nelN ,a, 6% ,be Y3
makes L into a cl-monoid. Again, the unit coincides with the
greatest element i = R of L, If R is commutative, so is ®@ .

In the sequel we shall restrict our attention to those
MC-structures on a lattice L whose unit coincides-with the
unit of L (for the reason see [7]) and call them, in accor-
dance with 1], integral MC-structures.

The latter example, though rather esoteric from our
point of view, motivated am investigation of integral MC-
structures on lattices carried out - long before the concept
of a closed category was proposed - by R.P. Dilworth and M.
Ward (see [3],[4)). Concerning terminology:

in [3], the operation [ -,~] is called residuatioa
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and [ x,y] is denoted by y:x.
In [4] where non-symmetric structures are considered,
[ xy] ,','.x"1

[xy]*} is denoted' by § x'l.y and called

left
the residual of x with respect to y.
right

The above mentioned papers concentrate on the following
questions,

Q;: Do lattices with nice properties admit integral MC-struc-
tures? ’

Q,: How far does an integral MC-structure on I &ffect its
lattice structure?

We shall nqt go into much detail here, but let us at least

touch Ql'

As to completely distributive lattices Ql is settled in
the affirmative (Example 1.2). Anyway, complete distributivi-
ty is not a necessary cond‘ition because we have

1.4, Example: Let L be a complete lattice containing
an element & with the properties

(i) a<1,

(ii) for any x €L either x<a'or xz&,

(iii) the sublattice fx| x2a} is a chain.

:

By { 0 ir

>

XAy otherwise.

Then it is easy to check that @ makes L into a commuta-
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. tive integral ¢l-monoid.

The above example suggests that the answer to Q, de-
pends primarily on the dbehavior of L "in the vicinity of 1°.
Indeed, let L admit an integral MC-structure snd let & bde

ite multiplication, Then by monotony of &
{1.9) x@y<(1® y)l\_(x@l) = XAY
and by (Tﬁ)
(1.10) for amy XeL, yeL: Yx=1 = '
=y = (y{X)® ¥ = V-i x®@ylxext « Y{xa¥lxex?.
Now observe’ that this already disqualifités the modular lat-

tice

}\

0
(X = {xl,xzi and y fail to aatigfy ‘the necessary conditiom
(1.10)). '

2, Special lattices: chains and boolean algebras
We have already noted th§t if the lattice L in question
is completely distributive, questions Q, and Q, cease to be
interesting. On the other hand, new problems arise such as:
Q3: How many integral MC (or, im particular, SMC) structu-
res does L admit? Can they be described and classified in

a reasonable way?

04: For two integral MC-structures 94 = <91v t‘:‘l‘ >
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$2<&,,I-=1,) o Lput
949 =,4x®; y€x @, y for all x,yel
{this condition is equivalent to I[xyl, 2 Lxl, , a1
x,yel). (1.9) says that the Heyting algebra on L is the
greatest element of the resulting partially ordered set
& (L), ¥hat else can be proved about & (L)?
Qz: Given an SMC-structure on L, the functiom g=[-,0]
has the following properties:
(i) @ sends all suprema to infima,
(i) @x2x~>0 for all x6L,
(iii) x & @ x for all x€L.
Given a function @ : L—L aati?fying ‘(i) - (iii),
does there exist an SMC-structure on L with ¢ =[-,0] ¢

¥e shall end this article by peveral results in this direc-
tion,

2,1. Proposition ([3]). Every boolean algebra admits
exactly one MC-structure. . :

Proof, First we realize that a completely distributive
lattice is a boolegn algebra iff x v(x-—>0) = 1 holds for
all x€ L. Now suppose <@, [-,- 1> is an integral MC-
structure on L. For any x€L we havé x = (xv(x—»0))@ x =
= (x@ x)v((x—>0)® x)£ (x@ x) v ( x,03 @ x) *x® x
whence xAy < (xAy) @ (xAy)fx@ y holds for all x,y€L.

By (1.9), the proof is complete., o
On the other hand, there are 2? non-isonorphic SXC -

structures on the compact interval of reala (see [5]) with
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continuous multiplication. To these, a theorem of Mostert
and Shieids can be applied to obtain a fairly simple des-
eription of all possibilities. The classification of gene-
ral SCM=-structures on I = [O,l] seems to be an open pro-
blem.

2.2, Proposition. Denote by éo(b) the subposet of
& (L) consisting of all symmetric elements, E£very nonempty
chain in so(L) has a supremum.

Proof, Let § 4 €  be a chain in &, (L), We show

that
By = [{x8yi<®, -~ e}

defines the supremum of € in S,(L), Since & is l.u.b,
of the multiplicative parts in LI‘*L it suffices to prove that
it is a part of some SMC-structure on L, The equalities x =
=x®1=1®x, xPy =y® X, and preservation of suprema

are evident. That le aves associativity to be proved.

We have (x@& y)® 2z =®Z%"(s'v¢d(xe ¥y z) =

=®‘Vu e,v‘v‘((xe'y)s\ z) by (TO). Since €t is a chain this
equals eyeﬁ((xe Y)® 2) = ® ‘Va(x@ 7® z). By the same
argument (we meed (T0)¥ , but that is taken care of by the
commutativity of @& ’s), @Q\/q}xe y®32)=x®GD 2.

2.3, Proposition. If L is a chain thenany 4 : L—1L
with properties (i) - (iif) is [-40] for some SMC-struce
ture on L.

Proof: Put

0 ifx<oy
x@y = {
xAY otherwise
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and check that it works.

In {5] it is shown that in case of L = [0,11 ana g

an antiisomorphism of L there is an SMC-structure isomorph-
ic with < Max (O,x +y - 1), Min (1,1 =y + 2)D> such that

¢= [-,01.
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