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FOURTH WINTER SCHOOL (1976).

POSITIVE DEFINITE FUNCTIONS ON ABELIAN SEMIGROUPS
by
Paul HEESSEL

The lecture concerns common vori, done in Kgbenhawvn by
Ohristien BERG, Jens Peter Reus CHRISTERSEN and myself.
Let (S,+) be an abelian éemigroup with neuiral element O .
Def. f£: S—> R is positive definite iff £ is boun-

ded and
"~

Ag= 1

' Y (tq,000,t,) € S™
VYrelN .
@:s—>L-1,111is a semicharacter:

%*((1) @) =1
2) s +t) = pBI@E(t) Ys,tes.

§:= {@ : @ is semicharacter on S} & [-1,];\3 is a com-
" pact abelian semigroup in the topology .of pointwise conver-
gence, ' .
Example: S = N :=90,1,2,...} with addition.
~
[-1,11 — N,

_ is a topol. semigroup {somorpﬁisr..
a —> (n—pa")
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P = P(sS)i=42: ¢ is positive definite on S 3
P = i2c P :£(0) =1}

letma: fe¢ P ¥ a\sxp 1£(s)l = £(0). In particular
8

we get that O is closed and Jnl is commct. Of course

A

Theorem. P, is & Choquet simplk x and extr (P;) =
A )
= S, In particular V£ e 3 | Radon measure
A . N .
i ¥, (S) giving the desintegration

te) = [ @(e) aul@g) ~ V ses.
% .
Def, ¥:S—> C O,cbf is called negative definite
iff
(¥ (o) + y(s;) - ‘V(gi + s:i):fl..i=i,.---,n '
is pos, semidef., V (sl,...,sn)e s®, Vne N .

Proposi tion. Let 9¥: S —> [0,0[ .Then the follo-

wing are equivalent:

(1) reoN
(11) eV e P Y t>0 ,
m :
(iii) %. ac{'ap- - ‘;i oy ol (sy + eé)£0.

Here N' denotes the cone of all neg. def. functions,

Theorem,” Let 14 € J* . Then there are uniquely de-

termined
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1) ¢ &0,
2) h: S—>» 10,00l additive

3) a non-negative Radon measure ¢ on §- $1% such
that .
(@ =c+h@+ § (1-p@@6)au@E) Vses.
¥ : LB\ ¢ «r®
Here ¢ = 4 (0) and h(s) = 1lim ﬁ%él
N~y CO

Let f: 8 —» (0,00L , a),...,8,€S,
V.t (s;a,)i= £(s) = £(s + a)
an(S;al,...,a:n)':i vn-lf(s al,noo,an_l) -
- Vo e +asa,.,a ) ' '

‘Def. (CHOQUET)

£ is called monotone of infinite order:

* v nf(s;al,....,'a'n)zo )

£ is called alternating of infinite . order:
* v‘nf(asaljo.o'%)‘.o

V 8, 81....,%8 S and V ne€ N .

Theorem, a) M c P , M is an extreme subcone of P, /
b) . \AvSJr'AI L " X

¢) If s is 2-divisible (i.e. V.seS 3 teS: s = 2t)
then ' '

M= and'.ﬁz_=.}/‘-
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Here M. (A) stands for the cone of monotone {alterating)
functions of infinite order.

Theorem, Iet 4f ¢ &' have the representation
{8) =c + h(s) + (1~ @()dm @)
¥ ?.\Iu; § e

Then W € A iff @ is concentrated on 8 -413 ), .

Applications,.

1) The classical Laplace-Transformation.

Theorem. £: R’: —» R is laplre-Transform of a fi~
nite non-neggtive measure on R’: iff £ is continuous and
positive definite. '

2) The semigroup (0,1}, A ).

Proposition. a) £ is positive definite ¥ £20 amd
£ is increasing

b) £ is negative definite <& £20 and £ is decreasing.
3) The semigrowp (L (L0,11), = ).

We pean the unit ball in L® with multiplication of
equivalence classes and the & (1% ,Ll) - topology. It is a
compact metrizable space, but the semigroup pperation is on-

ly separately continuous. 4
¢ : (Lo, —>R , g:= [ r(1)at

is continuous and pos. def., but the unique representing

)

prob. measure on L, can be shown to be concentrated on
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a compact subset of the semicharacters, none of which is
continuous in the neutral element of L . ‘

Open Problem: Is this pathology impossible, if the
semigroup is for ex. compact (or locally compact) and the

addition is Jjointly continuous ?
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