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6TH WINTER SCHOOL 

EXTREME EXTENSIONS OP POSITIVE OPERATORS 

BY 

Z. LIPECKI 

The results we present here are taken from the author's 

papers [23 and [3.U the first one being a joint work with 

D. Plachky and W. Thomsen (Munster). 

Throughout we adhere to the terminology of Schaefer's 

monograph [63. We use the following notation. X stands for 

an ordered real vector space, M for its vector subspace and 

Y for an order complete real vector lattice.NGiven T* 

L+(Mf Y) (i.e. a positive linear operator from M into Y), 

we put E(T)~ {ScL+(X, Y): SIM=T}. We shall be concerned 

with the extreme points of E(T). 

THEOREM 1 (131 $ Theorem 1). If M is a majorizing (i.e. 

cofinal) subspace of X, then extr E(T) * 0. 

This is an improvement of a classical result of L. V. 

Zantorovic* ([7]» Theorem X.3.1-. or [2], Theorem 1) who 

proved that E(T) * 0. 

THEOREM 2 (C23, Theorem 3). Suppose X is a vector lat­

tice and S€E(T). Then Se extr E(T) if and only if 

inf {S(lx-z}) : z € M } =0 for each x € X. 

We shall give a number of applications of Theorems 1 

and 2. 
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In the first two corollaries X is assumed to be a vec­

tor lattice and IS its vector sublattice. We denote by 

H(M
t
 T) the set of all lattice homomorphisms of U into T. 

COROLLAET 1 (L33, Theorem 2). Suppose T€H(Mt T). 

(a) extr E(T)cH(Xt T). 

(b) If inf £iy-T(z)l . Z€M}=0 for each ycT t then 

E(T)r*H(Xt T)cextr B(T). 

COROLLAET 2 (C31. Corollary 2). If M is majorizing, 

then any lattice homomorphism T: U —T extends to a lat­

tice homomorphism S: X—T. 

As another application we shall give a characterization 

of the extreme points of certain sets of operators between 

vector lattices of measurable functions. Let (.Ô  £\» n o ­

where i=l f 2, be positive finite measure spaces. Denote 

*>y L.(ni) the (order complete) vector lattice of (*--i-

equivalence classes of) real-valued measurable functions 

on -Q.i and by s(n.i) its vector sublattice consisting of 

all simple functions. The following corollary generalizes 

Propositions 1.4*3 and 4 in C6] on stochastic matrices* 

It is also akin to some results of Phelps ([4], Theorem 

2.2) and Iwanik (Cl]t Lemma 2 and Proposition 2). 

COROLLAET 3 (C3J. Theorem 3). Let X be a vector sub-

lattice of L.(/ucJ containing s(^) and let T be an order 

complete vector sublattice of L^(/-0# Suppose that given 

X€X t there exist xn€s(A4.,)t V€X + and t„€R+ with »x-xj 

4 E„v and *„* 0. Then for each S€L+(Xt T) with SI = 1 
•Sic., S l . ^ 

the following three conditions are equivalent: 
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(i) Seextr {T€L^(X, T) : T1 Q = 1 }. 

(11) S takes characteristic functions into characteris­

tic functions, 

(iii) S€H(X, T). 

It can be proved that the assumptions of Corollary 3 

are satisfied for X = L (jm ), T-^LfjO, where 0 .*p , p 

.<oo( 

Finally, we shall apply Theorem 2 to additive set 

functions. Let n. and -S be rings of sets with -R. c -S • 

We say that /-. : a-*y is a content provided it is addi­

tive and p.(C)^.0 for all C € JL. Given a content p..3L—T, 

we denote by E( p> ) the set of all contents on *5> extend­

ing H- . The following is a generalization of a theorem 

due to Plachky (C5]t Theorem 1). 

COROLLART 4 (L2J, Theorem 4). Suppose v e E(/u.). Then 

v€ extr E(/UL) if and only if inf { v (A*C): C € X } = 0 

for each A e i . 
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