USA 7

Bohuslav Balcar; F. Franěk
Independent families on complete Boolean algebras

In: Zdeněk Frolík (ed.): Abstracta. 7th Winter School on Abstract Analysis. Czechoslovak Academy of Sciences, Praha, 1979. pp. 10--14.

Persistent URL: http://dml.cz/dmlcz/701138

Terms of use:

© Institute of Mathematics of the Academy of Sciences of the Czech Republic, 1979

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

INDEPENDENT FAMILIES ON COMPLETE BOOLEAN ALGEBRAS B. Balcar and F. Franĕk

We present definitions and lemmas concerning a proof of the following fact, without any set-theoretical assumptions. Theorem. Every infinite complete Boolean algebra contains a free subalgebra of the same cardinality.

This solves the Question 44 of [$V D, M, R$]. The history of this problem and a survey of partial solutions ($[\mathrm{Ko}],[\mathrm{Ky}]$. [M$]$) is given in [Bla].

The theorem extends the classical result of Hausdorff and Pospišil concerning complete atomic BA's (= $\mathcal{P}(K)$) to arbitrary cBA's .

Let us summarize some well-known consequences of the Theorem. In what follows, B denotes an infinite cBA and X denotes an infinite extremally disconnected compact (e.d.c.) space.

C1 Let $U(B)$ be the set of all ultrafilters on E, then card $(U(B))=2^{\text {card }(B)}$; equivalently, card $(X)=2^{w(X)}$. where $w(X)$ is the weight of X.
C2 There are many $(=|U(B)|)$ ultrafilters on B which have the character ($=$ the least cardinality of a set of generators) equal to $|B|$.

The consequences C1 and C2 solve problems raised by Efi$\operatorname{mov}[E f]$.
C3 If C is a cBA with $|C| \leq|B|$ then there is a homomorfism $f: B \xrightarrow{\text { onto }} C$ equivalently, for an e.d.c. space Y $w i t h \quad w(Y) \leq w(X)$ there is an embedding of Y into X.

C4 There is a contin문 mapping $f: x \xrightarrow{\text { onto }}\{0,1\}^{w(X)}$.
C5 The space X contains a copy of itself as a nowhere dense subset and therefore X is not homogeneous. $[F]$.,

Notations, definitions
For a $B A B$ let $B^{+}=B-\{0\}$. For $u \in B^{+}$let B_{u} denote a "partial subalgebra" of B with the universe $\{v \leq u$; $\mathbf{v} \in \mathrm{B}\}$.
(i) Part $(B)=\left\{p \subseteq B^{+} ; V p=1\right.$ and the elements of p are pairwise disjoint $\}$.
(ii) $P \subseteq$ Part (B) is called an independent family of partitions if for any finite set of partitions $\left\{p_{0} \ldots \ldots, p_{n-1}\right\}$ $\subseteq P$ and every mapping $f: n \longrightarrow U\left\{p_{i}, i<n\right\}$ with $f(i) \in p_{i}$ we have $\Lambda\{f(i), i<n\} \mu 0$.
(iii) B is semifree if there is an independent family of partitions P on B with $|P|=|B|$.
Hence the theorem is equivalent to the statement "every infinite cBA is semifree".
(iv) $D \subseteq B^{+}$is dense in B if $\left(\forall v \in B^{+}\right)(\exists u \in D) u \leq v$;
$d(B)=\min \{\operatorname{card}(D) ; D$ is dense in $B\}$.
(v) sat $(B)=\min \{\nu:(\forall p \in \operatorname{Part}(B))(|p|<\nu)\}$ (! less than) Trivially, sat $(B) \geq$ sat $\left(B_{u}\right), d(B) \geq d\left(B_{u}\right)$ for $u \in B^{+}$. Hen-. ce for a cBA B there is a partition p such that $B=\sum_{u \in P} B_{u}$ (a product in the category of BA's) and all $B_{u} \cdot s$ are homogeneous in sat and d.
(vi) (Erdös, Tarski). If B is infinite then
sat $(B)=\sim K^{+} \quad(K$ infinite $)$

- weakly inaccessible (> w^{r}).

A Let $\left\{x_{i}, i \in I\right\}$ bo a family of sets. A set $Y \subseteq \prod_{i \in I} X_{i}$
is called a finitely distingueshed family (FDF) if for any finite $y_{0} \subseteq \mathscr{Y}$ there is an $i \in I$ such that $\left|\left\{f(i) ; f \in y_{0}^{\prime}\right\}\right|=\left|\varphi_{0}\right|$.
$\underline{L} 1$ If X_{i} 's are infinite, then there is a FDF $\varphi \subseteq \pi x_{i}$ with $|\varphi|=\left|\pi x_{i}\right|$.

Consider $B=\mathcal{P}(K)$ for infinite K. We can obtain vary easily an independent family $\mathcal{P}_{0} \subseteq$ Part (B) such that $\left|J_{0}\right|=\|$ and $|p|=K$ for $p \in \mathcal{I}_{0}$. Using $L 1$ and \mathcal{P}_{0} we obtain the well-known fact ($[E K],[K c],[K u]$), namely, there is an independent family of partitions $\rho \subseteq$ Part $(P(K))$ such that $|\rho|=2^{K}=|B|$ and $(\forall p \in O)|p|=K$. Corollary. If B is a $c B A$ and $B=\sum\left\{D_{u}, u \in p\right\}$ and $B_{u}{ }^{\prime} s$ are semifree then B is semifree, too.

B The following lemma is a straightforward reformulation of a result of Vladimirov and Monk ([V],[M]).
$\underline{L 2}$ Let B be a aBA and $\beta \subseteq \operatorname{Part}(B)$. For $p \in \mathbb{O}$ let $\overline{p^{\Sigma}}=\left\{V p_{1} ; p_{1} \subseteq p\right\}$. Let $\left(\rho^{\Sigma}\right)^{\pi}=\{\Lambda a ; a$ is a selector of $\left.\left\{p^{\Sigma} ; p \in f^{i}\right\}\right\}$.
If for every $u \in \cup\{p ; p \in \mathcal{P}\}$ the set $\left\{x \leq u ; x \in\left(f^{\Sigma}\right)^{\pi}\right.$ -

- $\{0 ;\}$ is not dense in B_{u}, then there is a partition $q=\left\{x_{0}, x_{1}\right\}$ such that $x \wedge u \neq 0$ for every $x \in q$ and $u \in \cup \cap$ C In the sequel we assume that all BA's are homogeneous in sat.
We use the following "disjoint refinement lemma" from [BV] in the proof of L 3. Let ν be a cardinal, $\nu^{+}<$ <sat (B). Then for any family $\left\{u_{\alpha}: \alpha<\nu\right\} \subseteq B^{+}$ there is a disjoint refinement, ice. a family
$\left\{v_{\alpha}: \alpha<\nu\right\} \subseteq B^{+}$such that $v_{\alpha} \leq u_{\alpha}$ and $v_{\alpha} \wedge v_{\beta}=$ $=0$ if $\alpha \notin \beta$.
$\underline{\llcorner } \mathbf{3}$ Let sat $(B)=K$ be a weakly inaccessible cardinal. Then there is an independent family O of partitions on B such that
(i) $|f|=K$
(ii) $\sup \{|p|: p \in \mathbb{O}\}=K$.

For a proof of the theorem it is sufficient to deal only with atomless cAA's. If B is not atomless then $B=B_{1} \oplus B_{2}$, where B_{1} is atomic and $B_{2}=0$ or B_{2} is atonies. If $|B|=\left|B_{1}\right|$, B is then semifree because B_{1} is by the classical result. Otherwise $|B|=\left|B_{2}\right|$ and B is semifree iff B_{2} is.

Let $B=\sum\left\{B_{u} ; u \in p\right\}$ be a decomposition of an atomless cBA B into factors homogeneous in the both cardinal characteristics sat and d. Then it is sufficient to prove that B_{u} 's are semifree.

Thus, let B be an atomless aBA homogeneous in sat and d.

Case 1. (Well-known before [Ky])

$$
\text { sat }(B)=K^{+} \text {and } d(B)=\lambda \text {. }
$$

Then $|B|=\lambda^{K}$ and we can use L 1, L 2 . Case 2. sat (B) $=K, K$ is weakly inaccess.

$$
d(B)=\lambda .
$$

Then $|B|=\lambda^{K}$ and we can use L 1, L 2, L 3.
 Leu ilote 'n ll.ch. 619, 5-5
[Bla] A. Blaszczy: 0 sip . . gs of extremally diccon ected compact spaces oito Gantor cibes. Proceedings of Colloquium on Topology (Budafe t 1978) (to appear)
$[\mathrm{CN}]$ W.W. Comfort, S. N Grapontis: The thecry of ult afilters. Springer-Verlag 194
LVD,M,R] E, van Douver, I, D. Monk, M. Rubin: Some questions about Boolean algebras (preprint)
[E] B.A. Efimov: Extrenally disconnectud compact spaces and absolutes, Trudy Muskov.Mat.Obsc. 23 (1.370), 235-276 (Russian)
[EK] R. Engelkin, M. Karlowicz: Some theorems of set theory and their topological consequences, Fund.Math. 57 (1965). 275-285
[ET] P. Erdös, A. Tarski: On families of mutually exclusive scts, Ann. of Math. 44 (1943), 315-329
[H] F. Hausdorff: Ober zwei Sätze von G. Fichtenholz und L. Kantorowich, Studia Math. 6 (1936), 18-19
[F] Z. Frolik: Fixed points of maps of extremally disconnected spaces and complete Boolean algebris. Bull.Acad.Polon. Sci. XVI, 4 (1968). 269-275
[Ky] S. Keslyakov: Free subalgebras of complete Boolean algebras and spaces of continous functions, Sibirski Mat. Zh. 14 (1973), 569-581
[Ke] J. Ketonen: Everything you wanted to know about ultrafilters - ••• , Doctoral dissertation University of Wisconsin 1971
[Ko] S. Koppelberg: Free subalgebras of comelote Boolisn algebras. Notices Amer.Math.Soc. 20 (1973). Am413
[Ku] K. Kunen: Ultrafilters and independent sets, Trans.Amer. Math.Soc. 172 (1972): 299-306
[M] I.D. Monk: On free subalgebras of complete Boolean algebras, Arch. der Math. 29 (1977), 113-115
[P] B. Pospišil: Remark on bicompact spaces, Ann. of Math. 38 (1937), 845-846
[V] D. Vladimirov: Boolean algebras, Nauka, 1989

Dept. OR, CKD - Polovodiče, 14003 Prague, Czechoslovakia Dept. of Math. University of Toronto, Toronto, Ontario, Canada

