USA 7

A. Pełczyński

Commutative harmonic analysis and Banach spaces

In: Zdeněk Frolík (ed.): Abstracta. 7th Winter School on Abstract Analysis. Czechoslovak Academy of Sciences, Praha, 1979. pp. 48--52.

Persistent URL: http://dml.cz/dmlcz/701147

Terms of use:

© Institute of Mathematics of the Academy of Sciences of the Czech Republic, 1979

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project $D M L-C Z$: The Czech Digital Mathematics Library http://project.dml.cz

COMMUTATIVE HARMONIC ANALYSIS AND BANACH SPACES

> A. Pelczyński

Preliminaries. Let G be a compact abelian group, Γ its dual, m-the normalized Haar measure on G. The symbols $C(G), L^{P}(G)$ $(0<p<\infty)$ denote as usual the spaces of the continuous scalar valued functions 0.1 G , respectively of m-equivalence classes of measurable p-absolutely integrable functions on G . For $a \in G$, τ_{a} denotes the operator of translation by a acting on functions on G by the $r s^{\prime a} \tau_{a} f(x)=f(x-a)$.

A linear space X of (equivalence classes of) functions is called translation invariant if $\tau_{a}(X) \subset X$ for all $a \in G$. A linear operator acting between translation invariant spaces is translation invariant if it commutes with all τ_{a}

A translation invariant Banach space is regular if
(a) X consists of equivalence classes of absolutely integra le functions on G; the inclusion $X \hookrightarrow L^{1}(G) \quad 23$ a one one continuous operator:
(b) $\quad \tau_{a}: X \rightarrow X$ is an isometry for all $a \in G$.
(c) Given $f \in X$ the map $a \rightarrow \tau_{a} f$ is a co sinuous fiction from G into X.

The elements of Γ are called characters. A trigonometric polynomial is a finite linear combination of the characters. "Measure" means here a complex valued Bored measure on G whose total variation is bounded. For $f \in L^{1}(G)$, resp, for a measure μ the Fourier transforms are the functions $\hat{\mathbf{f}}$, resp. $\hat{\mu}^{\mu}$ on Γ defined by $\hat{f}(\gamma)=\int f \bar{\gamma} d m$, resp. $\hat{\mu}(\gamma)=\int \bar{\gamma} d \mu \quad$ for $j \in \Gamma$.

For a $\Lambda \subset \Gamma, C_{\Lambda}$ denotes the closed linear subspace of $C(G)$ generated by Λ.

Lecture I
Theorem 1.1. Let $\mathcal{L} \subset \Gamma$. Then
$1^{\circ} \Lambda$ is a Cohen set (i.e. there is a measure whose Fourier transform is the characteristic function of Λ) iff C_{Ω} is an α_{∞} space in the sense of Lindenstrauss and Pelczyński [LP].
$2^{0} \Lambda$ is a Sidon set (i.e. there exists a $k>0$ such that for every trigonometric polynomial $f=\sum_{\gamma \in \Omega} c_{\gamma \gamma}$. $\left.\|f\|_{\infty} \geq \sum_{\gamma}\left|c_{\gamma}\right| k\right)$ iff c_{Λ} is an α_{1} space in the sense of $[L P]$.

Part 2^{0} is due to Varopoulos $[V]$. The proof presented in the Lecture bases on the following (cf. [KP]). Proposition 1.2. Let C_{Λ} be such that every finite dimensional operator from the dual space of C_{Λ} into C_{Λ} factors through a Hilbert space. Then Λ is a Sidon set. Corollary 1.3. (cf. $[K P]$ and $\left[P_{i}\right]$). $\Lambda \subset \Gamma$ is a Sidon ct iff C_{Λ} is a Banach space of cotype 2 (cf.e.g. $[M]$ for the defini tion of the cotype).

Lecturc II

Theorem 2.1. Every regular translation invariant Eanach pace X has the invariant uniform approximation property; preciscly for every $\in>0$ thero is a function $m \rightarrow q_{\in}(m)$ such that $g i-$ von a finite dimensional translation invariant subspace $E \quad 0$ X there exists a translation invariant operator u_{E} such that (1) $u_{E}(e)=e$ for $e \in E$.
(2) $\left\|u_{E}\right\|<1+E$.
(3) $\quad \operatorname{dim} u_{E}(X) \leq q_{E}(\operatorname{dim} E) \quad$.

Theorem 2.1 follows immediately (in fact is cquivalent to)
from the next one

Theorem 2.2. For every $\in>0$ there is a function $m \rightarrow q^{(m)}$ such that given a finite set $M \subset \Gamma$ there is a trigonometric polynomial g_{E} such that
(i) $\hat{\mathbf{g}}(\gamma)=1$ for $\quad \gamma \in M$:
(ii) $\left\|g_{E}\right\|_{1}<1+\in$.
(iii) $|S(g)| \leq q_{\in}(|M|)$.

Here $S(g)=\{\gamma \in \Gamma: \hat{g}(\gamma) \neq 0\}$ and $|A|$ denotes the number of elements of a finite set A.

Theorem 2.1 and 2.2 are taken from the paper by M. Bozejko and A. Pelczyński [BP].

Lecture III
Definition 3.1. A set $\Omega \subset \Gamma$ is a Marcinkiewicz set if the orthogonal projection $P_{\Lambda}: L^{2}(G) \rightarrow L^{2}(G)$, defined by $P_{\Lambda} f=$ $=\sum_{\mu \in \Lambda} \hat{f}(\gamma) \gamma$, regarded as the operator on trigonometric polynomials is (1,p) bounded for some (equivalently for all) p with $0<p<1$, i.e. there is a $k>0$ such that

$$
\left(\int_{G}\left|P_{\Lambda}(f)\right| P_{d m}\right)^{\frac{1}{p}} \leq k \int_{G}|f| d m \quad \text { (f-trigonometric polynomial) }
$$

Recall that an operator $u: X \rightarrow Y \quad(X, Y$-Banach spaces)
is said to be p-absolutely summing ($0<p<\infty$) if there exists a constant $C>0$ such that for every finite set $F \subset X$

$$
\sum_{x \in F}\|u x\|^{p} \leq C \sup \sum_{x \in F}\left|x^{*}(x)\right|^{p}
$$

where the supremum is taken over all x^{*} in the unit ball of the dual of X.
Theorem 3.2. [KP]. If Λ is a Marcinkiewicz set then every translation invariant operator $u: L^{2}(G) \rightarrow C_{\Omega}$ has the one--absolutely summing adjoint.

Theorem 3.2 can be regarded as a generalization for translation invariant operators of Grothendieck's "Fundamental Thea-
rem in Metric Theory of Tensor Products" (cf. [G].[LP]). The proof presented in the lecture bases upon the following fact essentially proved in $[K P]$.
Theorem 3.3. Let Λ be a Marcinkiewicz set, $0<p<1$, X-a regular translation invariant Banach space. Then every pabsolum tely summing translation invariant operator $u: C_{\Lambda} \rightarrow X$ is integral: preciscly there exists a bounded linear operator v : $L^{1}(G) \rightarrow X$ such that the diagram

is comnutative, where j is the natural isometric embedding and 1 is the natural injection which assigns to each f in $C(G)$ its m-equivalence class in $L^{1}(G)$.

Refererices

[BP] M. Bozejko and A. Pelczyński: An analogue in commutative Harmonic Analysis of the uniform bounded approximation property of Banach spaces, Seminaire d'Analyse Fonctionelle 1978-9, Exposé No. IX, Ecole Polytechnique, Palaiseau 1979
[G] A. Grothendieck: Résumé de la théorie métrique des products tensoricls topologiques, Bol.Soc.Matem., 8 (1956). 1-79
[KP] S. Kwapień and A. Pelczyński: Absolutely summing operators and translation invariant spaces of functions on compact abelian groups, Math.Nachr., to appear: Inst. of Math. Polish.Acad.Sci. Preprint, Warsaw 1978
[LP] J. Lindenstrauss and A. Pelczyński: Absolutely summing operators in χ_{p} spaces and their applications, Studia Math.. p 29 (1968), 275-326
[M] B. Maurey: Théorèmes de factorisations pour les opéfateurs linéaires à valeurs dans les espaces L^{p}. Asterisque, 11 (1974)
$\left[P_{i}\right]$ G. Pisier: Seminaire d'Analyse Fonctionelle 1977-8, Ecole Polytechnique, Palaiseau 1978

Institute of Mathematics Polish Academy of Sciences, Śniadeckich 8, I p. , 00950 Warszawa, Poland

