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EIGHTH WINTER SCHOOL ON ABSTRACT ANALYSIS (1980) 

Approximation theoretical properties of M-ldeals (Abstract) 

Ehrhard Behrends 

lb Two Observations ',.'/. 

Let K be a compact Eausdprff space and A e K a -closed subset. 
By I A we denote the closed ideal of all f € CK which vanish 
on A . . ' -"' 
If X is any Banach space- and 'I-' a. closed subspace of X , then 
for. x € X , Pjtx) means the.set of best approximation from X 
to x f i.e. P1(x)-- {y|y € I f d(x,X) - II x-yll } , . 
We observe that . ' " "•'".* 

1* I A .is a complemented ideal iff A > Is clopen (this is 
veil-known) 

' ' " ' • ' ' " ' ' • • ' : 

2. PT <f) is a ball for every f € CK, iff A is clopefi 
A • " y % . . ' < - , : • 

(this can easily be .proved) • 

In the sequel we will present some results which can be thought 
of as a general Banach space formulation of these two observatior 

2. M-ideals • - . « • " , . • ; - ' • 

.Let X be a Banach space and 'X a closed subspace of X v 
We say that 

- - v " •. :•*'. •-•• . - ^ • • lx 
a) I is an M-stmimand if there is a closed subspace I* of 

£ such .that X isvthe iT-sum of„I "and "x^ • 
* ". - ,. i • ' • • " * • * . * ^ * • . '• : ' • 

• ~ b) I is an L-summand if there 1B a closed subspace - I of 
X such that X is the L1-sum ofn X and .X* • 

c) X is an M-ideal' if lv'\ the annihilator of I in . X»* , 
' is an L-summand* - ". , „ ,; 

• • . • * • ' • • ' • ' ' . . . . ' * s 

" . , , ' • • . • ' 

Examplesi. ^ « \ . ' \ - •• •*' "/'/; -A * ,.% 
X. The'M-idealB lii at ^arevpreciseiy the spaces X. V iK " i» an 
-''. -M^summand Iff A". is clopen » ~ \, * 
2. More'generally*; in V C*ralgebra the k-ideals/are precisely 

. •• * • •.* -i . • * - * 
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the closed two-sided ideals • 

We note that for M-ideals I the sets Pj<x) are "great" in 
general: P.-.(x) spans I for every x $ I . (For more details 
we refer the reader to E. Behrends: "M-Structure and the Banach-
Stone theorem". Lecture Notes in Mathematics 613, Springer-Verlag)• 

3. The M-complement of an M-ideal 

Let I be an M-ideal of the Banach -space X • By I"1, (-» the M-
complement of ' I') we mean the collection of all y € X such that 
II x+yll - maxCH.xll ,. II yll } . for. every ,x € I . 

Theorem: For x € X the following are equivalent 

(i) x € I 1 

(ii) p(x) - o for every p € (I*)1 

(iii) p(x) -= o for every extreme functional which does not vanish 
• on i . 

(iv) Px(x) is the ball1 with radius d(x,X) .and center 0 in I 

(v) Px(x) = - PI(x). 

It follows that I 1 is a closed subspace of X which easily im
plies that I is an M-summand of I + I (this space is in fact 
the greatest subspace Y of X. such that I is an M-summand of 
Y ). 
The elements of I + I1 may be characterized as follows: 
x € I + I 1 iff PjCx) is a ball iff PI(x) is symmetric (i.e. 
there is an xQ e PI(x) such that xQ +

:y €.Px(x) implies 
xQ - y € PI(x) for y € I ) .. 

Corollary (Evans 1974); Let I be a closed subspace of X . Then 

I is an M-summand iff the following intersection property holds: 
n D i n I * 0 for every family (D^ of closed balls such that 
n D. + 0 and D, n I + 0 for every i • 
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Proof: It follows from the intersection property"that PT(x) is 
i I 

a closed ball for every x so that I + I = X . 

Corollary: Let I be an M-ideal in X . Then I is an M-summand 

iff all Pz(x) are symmetric iff-all P-j-fx) are closed balls. 

We note that this corollary contains the two observations of the 

introduction as a special case. 

* 
4. The case of C -algebras 

It can be shown that, if X is a C -algebra, the sets I are 

also M-ideals. It has been pointed out that I is just the set 

{xlxy = yx = o for every y € 1} which is denoted by '{0} : I 

in the theory of C*-algebras. This gives rise to some natural 

generalizations to arbitrary Banach spaces of the notion of 

"quotient ideals" which we omit to describe here • 
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