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, A univereal convex eet in Euclidean epace 

Ryezard Grzqalewicz 

Profeesor C. Ryll-Nardzeweki haa raired the queetion whet

her there exiete a compact convex set Q in IR such that eve-

ry compact convex set with non-empty interior in IR is afflne 

isomorphic to some intersection of Q with a plane. 

In this note we present an example.of a compact convex set 

Q in IR (n--tl) such that every closed convex subset of the 

unit ball B of lRn is an intersection of Q with sons k-di-
n+2 

nsnsional affine subspace of IR • 

Let 2 denote the space of all closed non-empty subsets 

of B endowed with the Hausdorff distance 
dist (Ait,A9) » max (sup d(x,A9), sup d(y,A-)) 1 * . xGA1 * yGAg x 

where d stands for the Euclidean metric d(x,y) «• | x-y || • 

• *V <x-y,x-y > in IRn . It is well known that 2 is compact. 

It i8 also easy to see that if dist (An*
A
0) — * ° and d ( x

n »
x
0 ) - * 

— * 0 as n—*a> with x^EA.,6 2 , thsn xft£Aft . 
n n o o 

Lemma. The set £ of all convex sets in 2 is a locally arc-

wise connected metric continuum. 

Proof. Let a sequence An of elements in € converge to A Q E 2 

and suppose xGA Q . Then clearly there exists a sequence (x^) 

with x^GA-^ converging to x • This implies that if x,yEAQ 

then Ax + (l-^)y€A Q for every 0-£/\-£l f so AQ is convex. 

Thus C is a closed subset of 2 , so compact. 

Now we prove that "£ is locally arcwlse connected. It is 

sufficient to show that for every different AQ , A 1 € C there 
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/ exists an arc AQA1 with diameter < diet (A f A^ (see [ l ] f 

p. 242). We denote At - tA± + ( l - t )AQ - { ty + ( l - t ) x : xGAQ f 

y G A 1 } e t . . 

Let xGAQ f yEAj and let xQGA0 f yQGA1 be such t h a t ^ 

d (x f y 0 )<d i8 t (AQfA1) and d (y f x 0 )<d is t (AQfA1) . For 0 < t < 

< 8 < 1 we have 

d(sy + ( l -8 )x f A t )<d(8y + ( l -8 )x f ty + (1- t ) [ £ f x + f ^ x j ) -

• || (8- t ) (y-xQ ) | < | s-t | dl8t (AQfA1) and. analogouslyf 

d(ty + ( l - t ) x f A 8 ) < | s - t | dist (AQfA1) . 

Thus for t f e € [ p f l ] we have 

diet (A t .A8) < | s-t | diet (AQfA1) . 

Let X
1#X2^A0 and y 1 ,y 2 GA 1 be such that 

sup d(yfAQ) - d(y l fAQ) - d(y1#x1) and sup d(x fA1) « d(x2#A1) -
y£A^ x ^ ^ o 

- d( x
2»y2) • 

Then sup d(ty + ( l - t )x f A Q ) -^d(ty 1 + ( l - t ) x ± f A ) - td (x l f y ± ) . 
xGAQ|yGA1 

For any- yG\ we have || ( Ay + ( 1 - ^)y 2 ) - x
2 | - I y2"x2 I f o r 

every A e [ o f l ] f so < y - y 2 , y 2 - x 2 > > 0 . For any x€AQ 

there exists Y 3 ^ A i auch that d(x,y3) < d(x2 ,y2 ) f then 

I y3-y2*y2-x2+X2-x I2 " I V3-x I2 * I V2"x2 f ' 8 ° II y3-V2+x2-x f * 
+ 2 < y 3 - y 2 . y 2 - x 2 > £ 2 < y 2 - x 2 - x -x 2 > . Because 

<y 3 -y 2 # y 2 - x 2 > > 0 'we have < y2"x2» x"x2 ^ - ° • T h i 8 inpliac 

that sup d(z,A.)->d(x2.A ) - inf || ty + ( l - t ) x - x2 || -
zeAQ * x e A Q , y ^ A 1 

- inf | |t(y-y2) + ( l - t ) ( x - x 2 ) + t ( y 2 - x 2 ) | > 11| y 2 -x 2 | and 
xGA0#y^A1-s __ 

dist (A0§At)>max ( t d ( x l f y 1 ) f td (x 2 f y 2 ) ) - t dist (AQfA1) f so 

dist (AQfAt) • t dist (A0,A1) andf analogously, dist (A t fA1) • 

• (1 - t ) dist (AQfA1) . Therefore for any 8 , t E [ o , l ] we obtain 

dist (A8 .A t) - | s-t | dist (AQfA1) f 
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eo the arc AQAX - {A ( : Q<t<l) has diameter<diet (AQ#A1). 

Theorem. For every n>l there exists a compact convex set Q 
n-fc2 

in R such that every closed subset of Bn can be obtained 

a8 an intersection of Q with some k-dimenelonal affine subspa-

ce of IRnt2 . 

Proof. By the Lemma and the Peano Theorem ([l]. p. 246) it fol

lows that there exists a continuous function \p from the inter

val [o,l] onto Z . For tG[ovl] we define 

Ct - y(t)*{(coe t# ein t)}ClR
n+2 

and put 

conv J<J ,0. . 
t€[0#l] * 

The oet Q ie compact. Indeed, let xk • (xk#...#xk , coe tk , 

sin tk)EQ . Because of | *k |[-̂  Y ^ # there exists a subsequence 

*k, of * k converging to some xQ • (xo#...0x
n « cos tQ,sin tQ)£ 

eiRn+2 . Obviously tk/-*tQ and yk, • (xk, #... .x£)€R
n con

verges to yQ • (x0#...#x
n)ElRn . We have \^iGy{t^) and 

di8t (^(tk),
/Vl(tQ))—*• 0 # By the remark preceding Lemma this 

impliee that yf0€V
/(tQ) • so tcQ€Q . 

Since y is an onto mapping, for every convex subset D 

of BR there exists t€[o,l] such that y(t) • D and for 

the k-dimenelonal affine subspace Ht of IR defined as 

Ht •IR
nx{(co8 t, ein t)} , we have 

QOHt - Dx{(cos t# sin t)} . 

Indeed, let xEQHH, # then there exist elements x.GC. and t i r± 

real numbers _4± , iniv#0,ffm euch that Z^i • 1 Q n d 

x • Z.01 !*!.'-• In.particular ^cC^cos ti# sin t^) • 

• (cos t# ein t) • By the etrict convexity of the unit disc in 

IR this implies (cos t±# sin t±) • (cos t, sin t) # i.e. 
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tj, • t for i«-lf...,m . Thue «i^ c
t * so *€Dx(cos t, sin t). 

Since the reverse Inclusion is obvious, the proof is complete* 

Let us observe that by an easy application of the Peano 

theorem together with some of the above arguments (for n • 2) 

the set 

P - tGrV^1((x1.x2,t) : (xlfx2)Gy(t)}ClR
3 

satisfies the condition: Every closed convex est in R with 

diameter ^ 1 can be obtained as the Intersection of P with 

some plane (note that P is not convex). 

Wo still do- not know whether there exists a compact convex 

set in IR with the above property. 
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