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EIGHTH WINTER SCHOOL ON ABSTRACT ANALYSIS (1980) 

The uniform bounded approximation property with 

respect to the Haar basis 

B, Toraaszewski 

Let us recall that a Banach space X has the uniform 

bounded approximation property if and only if there exists a 

function k : fN~-*fN and a constant C > 0 such that for every 

finite-dimensional subspace FCX there exists a subspace 

ECX and a linear operator S : X—*E such that EDF , 

S|F « IdF and J S JrSC , dim (E) :£ k(dim (F)) . 

Boiejko and Pejfczynski Tlj showed that the space L (G) , 

where G is a compact abelian group, has an analogue of the 

uniform bounded approximation property* Exactly, they proved 

this property for the translation invariant operators and 

translation invariant subspaces. 

Now, we shall prove a similar property for the Haar basis 

in the space L , Let us denote by U the set of elements 

of the Haar basis and for AC.1I! let us denote 

L* « ( f G L 1 : f = YLax » X a n d ax a ° f o r p£A}-

For fiGld l e t 1 ^ « { x G l : ;fc(x) / o } , where I -* [ o , l ] . 

We sha l l say that for ^ 1 , jL2G1l) element y± i s less than 

element fi2 ( x ±<y2) i f f L Q i , 

Theorem. For every f i n i t e subset AC10 there exists a sub-

set BCW and a l inear operator S : LA—.*LQ such that 

BDA , | B | ^ 9 . | A [ , S|LJ; * I d L l and | Is | |^5 . 
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Proof. We shall construct the set B at first. Let us add to 

the set A all elements ft of the set V such that the both 

branches of elements less than p contain elements of the set 

A . We obtain some set B* -= H(B) . We shall prove, by the in

duction method, that |B*|-^3.|A| . 

Actually, let the element ;£ be minimal in the set B . 

We apply the inductive hypothesis to the set B a B N*{./^O} • 

We have | B* J » | H(BQ)[ ̂ 3.| BQ [ . Moreover H(B)CH(BQ)U 

^ \7o' 7l' T'Z) w n o r o 7± ar,d ft 2. a r e the e3-eraent:s follow

ing in the order relation the element ft . So 

| B*|:£[B£ | + 3 <> 3.|B Q[ + 3 = 3.[B [ . 

m 
Let B* -s It B"? be a partition of the set B onto its 

components (maximal connected subsets in the order relation). 

Let H (j-=l,2,... ,m) be the set of all elements of It) , 

which are greater than all elements of B. . Let us take the 

set G. of minimal elements of H. and define the set B » 

m . . 
» B*U!^J G. . From the construction it follows that ( B | ^ 

j«l J 

^ 3 . | B * | . 

The set B has the following properties: 

1. B D A , [ B j<9.| A [ . 

m 
2. B » \^J B where the sets B. are disjoint and con-

j=l 3 J 

nected. 

3. For every element B. j-=l,2,... ,m both elements 

X* and ft£ following ft in the set V belong to 

B. or both these elements don't belong to B. . 

4. For every maximal element ft in B. only one of two 
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branches of elements less than y, may contain ele

ments of the set B . 

Now we may define an operator S . Let S(*x ) =- 0 for 

JCQ^B , S( pQ) = JCQ for /^0&Bj not maximal in B, . For 

X 0 G B , maximal in B. let us consider two branches of the 

elements of V less than jtQ . Let us take this branch, which 

contains elements of the set B . If such branch does not exist, 

we choose an arbitrary branch. 

Let us take an arbitrary element % from the chosen 

branch and a = J Y -e~dt , where e-̂  is the characteristic 
I l 

F(e-x) 
function of the interval I.y . We define s ( ^ 0 )

 a - ' 'a' $ 

where F is a projection F ( Y T a - . £ ) e $3 , saY. X. 

7-zv * r r^c^W 
This definition does not depend on the element 76 * Since the 

set B, is connected, we have ][ F ]] --* 2 . 

We shall prove that || S | ££ 4 . For this purpose it is 

sufficient to show that [[ S(ey ) [] <± 4. j|e v [} for X&U . 

Let us denote P = {j£*€:B : v*e^dt / o } . We have S(e - ) = 
I 

jn, 
85 23 s(Fi (e% )) where F, (for j-1,2,... ,m) are projec-

1=-1 J / J 

tions F4 ( 73
 a ^ * ^ ) s 23 a v • X - Moreover, by the def i-

nition, S(F,(ev )) = 0 if there is an element yc in P grea

ter then all elements of B.PlP . But the set P is a chain, 

so only for one number j it may happen that S(F,(e->/,)) /- 0. 

So let S(e^) » S(F, (e^)) and let Y. be maximal element 

1 1 of POB, and P : L —-*L be a projection 
Jo 
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P( JZ a ^ . ; . ) = S f , 8 , . / . We have S(F. ( e „ ) ) -
^(SU • r / G B ^ X ^ J A / j 0 7. 

- a . S ( ^ 0 ) + S(P(e.£)) - a . S ( ^ 0 ) + PJe^ ) where a = 

B J 7-o'e]tdt ' So 

I 

i |s(e ; t ) || - J S(FJo(o?. )} 1 £ a . | |s (^ 0 ) || + J P(e^ ) 1 £ 4 . || > J 

since HP 11 £-2 . a . | | ^ 0 H ^ | | e ? , I | and | S( ?Q) \ < 2.|| fQ || . 
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