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SELECTED RESULTS ON MEASURABLE SELECTIONS 

Siegfried Graf 

0. Introduction: 

During the last decade measurable selection results have been 

proved by numerous mathematicians and the field has become so ex­

tensive that it seems almost impossible to give a complete survey. 

It was a great achievement of Wagner ([57] and [ 5 8 ] ) that he, never­

theless, gave an almost complete account of the results proved 

before 1979. For guidance to the literature, historical remarks, 

and statements of many of the known selection results we refer the 

reader to Wagnerfs articles. In the present paper we will limit 

ourself to explaining very few basic principles concerning the 

existence proofs for measurable selections and try to point out 

that a large class of selection results can already be obtained 

from these principles. In a first preliminary section we introduce 

the basic notions and facts about selections. In the second section 

we prove the fundamental selection theorem (due to Rokhlin [50] (in 

a special c a s e ) , Kuratowski-Ryll-Nardzewski [37], and Castaing [ 6 ] ) 

and show that many classical selection results (as, for instance, 

the Jankov-von Neumann measurable choice theorem and the Fillipov 

lemma of control t h e o r y ) can be deduced from this theorem. Although 

all results in this section are well-known it seems worthwile to 

include them here because there seems to be no easy accessible 

account of the classical measurable selection results together with 

their proofs. Moreover, the method of proof we have chosen for the 

fundamental selection theorem, in our opinion, quite clearly reveals 

the conditions for the existence of measurable selections for 

correspondences with metric range, and, therefore, immediately leads 

over to the generalizations discussed in section 3. While for the 

classical selection theorems the range spaces of the correspondences 

in question are always separable the results in section 3 deal with 

correspondences taking closed values in a non-separable metric space. 

To obtain these results we have to assume that the measurable spaces, 
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which are considered, satisfy some additivity condition stronger 

than a-additivity. Inspired by results of Hansell [26] and Maitra-

Rao [45l we show that there is a common principle behind many of 

the known selection results in the non-separable metric case (for 

instance, behind the results of Kaniewski-Pol [35], Frolik-Holicky 

[191, and Fremlin [ 1 6 ] ) and the fundamental selection theorem. 

Section 4- deals with a rather unusual method for constructing 

measurable selections using an existence theorem for dominated 

Boolean homomorphisms. The idea for the main theorem in this section 

originated in the technique of dualization for Boolean corresponden­

ces as developed in [20]. The theorem mentioned above enables us to 

prove measurable selection results for correspondences whose range 

space is neither metrizable nor separable. Kupka [36] pointed out 

that these results are very useful in the framework of topological 

group theory. We shall summarize some of Kupkafs results along with 

results of Sion [5-4-] and Hasumi [28] which are all consequences of 

the main theorem in section -* . 

The paper contains only very few hints to applications of 

measurable selection theorems. It also completely leaves out the 

topic of parametrizations of correspondences. Inspite of these 

disadvantages we hope that the paper will be useful to those who 

want to apply measurable selection results. 

The author would like to thank the organizers of the 10th 

Winter School on Abstract Analysis for inviting him to give a talk 

on the subject of the present paper and for creating the pleasant 

atmosphere which made the conference so very successful. 
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1. Preliminaries. 

Let X and Y be sets. 

1.1 Definition: 

A map F: X -> *tL (Y) : =?|K Y )\{0} is ; called a correspondence (or multi­

function or non-empty set-valued map). A map f:X •* Y is a selection 

(choice function) for F iff f(x)GF(x) for all x G X. 

A basic selection statement in mathematics is the 

1.2 Axiom of choice: 

Every correspondence has a selection. 

The following example introduces an important special case of a 

correspondence. 

1.3 Example and definition: 
* -1 

Let p: Y -> X be surjective. Then F: X -v Tft^Y), x -* p (x) is a 

correspondence and f is a selection for F if and only if pof = id,-. 

The selections for this special F are called sections for p. 

1. M- Definition: 

Let F: X -* >t£(Y) be given. Then 

Gr(F):= {(x,y) 6 X X Y|y 6 F(x)} is called the graph of F. 

By ny:Gr(F) -> X and ny:Gr(F) -* Y we denote the canonical projections. 

1.5 Remark: 

g: X ->» Gr(F) is a section for ny if and only if nY°g --
s a selection 

for F. 

1.6 Definition: 

Let Ol c »|£(x) and & C *p(Y) be given. A map f: X -»- Y is called (!-&-

measurable iff f" (B) 6 & for all B e & . 

1.7 Remark: 

If OL and *s are topologies then OL-Js-measurability is just continuity. 

The most general form of the problem we are going to consider is 

the following. 

1.8 Measurable selection problem: 

Let QIC fi(X) a n d 3 & C r p , ( Y ) be given. Under what conditions does a 
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correspondence F: X -> T&(Y) have an (X- immeasurable selection ? 

In what follows we almost always know that 0Land & are a-fields, in 

which^case we are looking for selections which are measurable in 

the usual sense. 

Simple examples show that, without imposing some kind of "measura-

bility" assumption on the correspondence F.,there is no hope for the 

existence of a measurable selection for F. 

The following definitions provide the basic notions needed for the 

formulation of a first positive result. 

1.9 Definitions: 

Let 0L C»p,(x) be given. 

By 0L we denote the collection { U A |A G O L } , by 0L the collection 

{ fl A |A G Ot } and by Ot* the nG(N collection Ol\{0}. 
n £ N n n 

For A C X let Ac stand for the complement X^A of A in X. 

Otis called a field iff 0,X G(X,A,Af G Ot implies A \J A1 G <X, and 

A e Ot implies Ac G 01 for all A,A' . 

01 is called a a-field iff Ot is a field withd= Ot . By a(00 we 

denote the a-field generated by Ot . If Ot is a a-field then (X,0t) is 

said to be a measurable space. 

By a measure on a measurable space (X,Ct) we always mean a countably 

additive map y : Ot -> 5T = [o,+»J. 

For a a-field Ot and a measure y: Ot -*- 6T we denote by y the outer 

measure induced by y onT2»(X) and byCt the completion 

{A A N|A £ Ot and y (N) = 0} . A measure space ( X , 0 l , y ) is said to be 

complete iff 01= 01 • 

1.10 Notation: 

Let Y be a topological space. We denote by 

fc(Y) the topology of Y, 

S"(Y) the collection of closed subsets of Y, 

K(Y) the collection of compact subsets of Y, 

ffi(Y) the Borel a-field a ( fc (Y ) ) of Y. 

By abuse of notation the sets in fc(Y). are called Gr-sets. 
o o 

1.11 Definitions: 

Let X beaset and Y a topological space, F: X •> *t£ (Y) a correspon­

dence, and O l c f U x ) . For B C y the set F"1(B):= {X G X | F ( X ) 0 B t 0} 

is called the inverse image of B w.r.t. F. 
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F is said to be weakly- QL -measurable (resp. QL-measurable) iff 

F^CR) e 01 for all -B e 0.(Y)(resp. CE> G 3F(Y)) . 

If X is also a topological space then F is called upper semi-conti­

nuous (u.s.c) iff, F is 7(X)-measurable. 

1.12 Examples: 

Let Y be a topological space. 

(i) If X is a topological space and p: Y -*• X is surjective then p 

is closed if and only if F:=p is u.s.c. In particular 

F=p is u.s.c. if X is a Hausdorffs Y a compact Hausdorff 

space, and p is continuous. 

(ii) If X is a set and O L c ^ l ( X ) and if fc(Y) C ^ ( Y ) then every OL' 

measurable correspondence F: X -•^(Y) is weakly (X -measura­

ble. 

(iii) If X is a set and 0 L c ^JKY) and if Y is metrizable then every 

*<5 weakly 0L -measurable correspondence F: X •»• 3<i(Y) is OLj-measu-

rable. 

2. Some classical measurable selection theorems. 

The aim of this section is to show that many of the classical 

selection results are direct consequences of a fundamental selection 

theorem due to Rokhlin [49] (in a special c a s e ) , Kuratowski-Ryll-

Nardzewski [37], and, independently, Castaing [6], This seems to be 

a well-known fact and has, for instance, been worked out by Magerl 

[43]. 

2.1 Theorem: (Rokhlin [50], Kuratowski-Ryll-Nardzewski [37], 

Castaing [6]) 

Let (X,0L) be a measurable space, Y a Polish space, and F:X "*" 7 (Y) 

weakly OL-measurable. Then there exists an 0L"©(Y)-measurable 

selection for F. 

Proof: For a weakly OL-measurable correspondence G: X •*• •> (Y) and 

an open cover DL = ('U ) ^XT of Y we define 
n n£N 

G ^ : X ->5*(Y) by n_, 

G (x)= G(x) n U n if x 6 G (U )\ U G ""-(U ) 
™" v = l 

Then G^ has the following properties: 
uv 

(i) sup diam G(x) ^ sup diam (U„) 
xex *• nEN 
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(ii) Vx G X: G (x) C G ( X ) _ -
Dl ., ., n ~ l _i 

(iii)VV G S(Y):G"±(V)= U [G"X(VnU ) \ U G (U )] G Ot, 
^ nGN n v=l V 

Now, for every n G IN, we choose a countable open cover U of Y with 

diam (U) -- i for all U G Dl and define 
n n 

Since Y is complete and, for each x £ X, (F (x)) ,__. is a decreasing 
n n^H 

sequence of closed sets whosevdiameter tends to zero we know that 
n F t * ) is a singleton. The map f: X •*• Y defined by 
nGN n 

f(x) e n F (x) is obviously a selection for F. To prove that f is 
nQN n 

Ot-<B(Y)-measurable let V G fc(Y) be given. We set V . := (y G y| 
1 ^ 

dist(y,Vc) > — },Then V is open and we will show J n n * 

f_1(V)= U F _ 1(V_), 
- r * T n n 

ne[N 

hence f"1(V) G OL. 
nc": Let x G F (V) be arbitrary. Then there exists an n G JN with 

dist(f(x),VC) > - , i.e. f(x) G v . Since f(x) G F (X) we deduce 
n _ 1 n n 

F (x) n V f 0, i.e. x G F (V ). Thus we have n .. n 1 n n 
f"1(v) c u F " 1 ^ ) . 

n ^ n n 

"-,": For x G F_1(V ) we have F (x) n V i 0 . 
n n 1 n n 

Since diam (F (x))-- — the definition of V implies F (x)nVc= 0 , 
n n n n 

hence f(x) 6 F (x) C V, which proves U F (x) C f _ 1(v). 
n nGiN n 

Our first corollary is due to Castaing [6](see also Castaing-

Valadier [7], p.67), but has a predecessor by Novikov[46a]. 

It characterizes weak measurability of a correspondence in terms of 

the existence of "many" measurable selections. 

2.2 Corollary: (Castaing [6]) 

Let (X,0O be a measurable space, Y a Polish space, and F:X •+*$ (Y). 

Then the following statements are equivalent: 

(i) F is weakly Ot-measurable 

(ii) There exists a sequence (f)
ncfl of (X"(B(Y)-measurable maps 

from X to Y such that 

F(x)= { f
n
( x ) ' n є

 N> 
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for all x e X . 

Proof: 

(i) -> (ii): Let (B be a countable base for the topology of Y. For 

1> 6 (B define F^: X -> T*(Y) by 

1F(x) 0 B , x 6 F"1(B) 

F(x) , x & F" 1(B). 

Eor U G &(Y) we have 

F:E>-
1(u)r F"1(Bnu) u ( F " 1 ( U ) \ F - 1 ( B ) ) e <X 

so that F_ is weakly Ol-measurable. According to Theorem 2.1 there 

is an (X -(B( Y) -measurable selection f- for Z* . Obviously 

F(x) = {fB(x) |2> 6 ©} holds for all x 6 X. 

(ii) => (i): For U e &(Y) we obtain 

F"1(U) = {x 6 X|3n GIN: f (x) 6 U} = U f_1(U) 6 C3^ 
n .-*T T-

n6N 

so that F is weakly Ol-measurable. 

The following special case of Theorem 2.1 can, essentially, already 

be found in Saks [51], p.282, Lemma 7.1. 

2.3 Collary: 

Let X and Y be compact metrizable spaces and p: Y -*• X a continuous 

surjective map. Then there exists a (B( X)-(B( Y)-measurable section for 

P-

Proof: Apply Theorem 2.1 to F= p" . 

The compactness condition on Y in the above corollary is essential . 

This was, for instance, shown by Christensen [ 9. ] » p. 82 who pro­

ved that t.here is a Polish space Y, a compact metrizable space X, 

and a continuous surjective map p: Y -> X without any (B(X)-(B(Y)-

measurable section. Nevertheless any such p admits a section with 

slightly weaker measurability properties. For the statement of the 

corresponding result we need the notion of analyticity for topolo­

gical spaces. 

2,-r Definition: 

a) A Hausdorff space is called analytic (or Suslin) iff it is the 

continuous image of a Polish space. 

For a Hausdorff space X we denote byJV(X) the collection of all 

analytic subsets of X. 

b) Let (B (X) be the^-field of all universally measurable subsets 
u 
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of the Hausdorff space x, i.e. (B (X) is the intersection of all 

completions (B(X) where V runs through all finite measures on 

<B(X). 

Some basic facts about analytic spaces are collected in the next 

lemma, whose proofs can, for instance, be found in Hoffmann-J/rfrgensen 

[30] or Schwarz [53]. 

2.5 Lemma: 

(i) If X is a Hausdorff space then all analytic subsets of X are 

universally measurable and«A(X) is closed w.r.t. countable 

unions and intersections, 

(ii) If X is analytic then all Borel subsets of X are analytic, 

(iii) A continuous map from a Hausdorff space X to a Hausdorff space 

Y maps analytic sets onto analytic sets, 

(iv) A map p from an analytic space Y to an analytic space X is 

(B(X )-(B( Y)-measurable (i.e.Borel m e a s u r a b l e ) iff G r ( p ) is 

analytic. 

Our next result is the celebrated measurable choice theorem due7 to 

Jankov [3M-] and, independently, von Neumann [56]. 

2.6 Corollary: (Jankov [34], v. Neumann [ 5 6 ] ) 

Let X and Y be analytic spaces and p: Y -*- X continuous and surjecti-

ve. Then there exists a (Bu(X)-ffi(Y)-measurable section for p. 

Proof: Since Y is analytic there is a Polish spaceZ and a continuous 

map q from Z onto Y. The correspondence F= q op is obviously 

closed-valued and for U 6 &(Z) we have 

F"" 1 (U )= p o q ( U ) 

which, according to Lemma 2.5 ( i ) & ( i i i ) , belongs t o A ( X ) Q B (X). 

Thus F is weakly (B (X)-measurable and, due to Theorem 2.1, has a 
u 

(B ( X )-(B( Z )-measurable select ion g .Obviously qog is a section for p 

with the desired properties. 

2.7 Remark: 

As the proof shows the section in the above corollary can be chosen 

a(ijUx) )-(B(Y)-measurable. 

2.8 Corollary: 

Let X and Y be analytic spaces and let F: X -*- 'p, (Y) have analytic 
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graph. Then F has a (B (X )-(B(Y)-measurable selection. 

Proof: The canonical projection ir : Gr(F) -»• X is continuous and sur-

jective. By Corollary 2.6 it, therefore, has a (B ( X)-(B(Gr( F) )-mea-

surable section g. If ir • Gr(F) -*• Y denotes the canonical projection 

onto Y then ffyog is obviously a (B (X)-(B(Y)-measurable selection for 

F. 

The following corollary is one of the possible variants of the 

famous Fillipov lemma (see [15]) in control theory. It can also be 

interpreted as a generalization of a measurable implicit function 

theorem special cases of which have already been proved by Lusin 

[42] and Novikov [-+6], 

2.9 Corollary: 

Let X,Y and Z be analytic spaces, f: X X Y •* Z a (B(X X Y )-(B( Z) -mea-

surable map, and ft: X •*- 12. (Y) a correspondence with analytic graph. 

Moreover, let u: (B(X)-^ be a measure and g: X •+ Z (B(X)-(B(Z)-mea­

surable. Then X Q : = {X € x|g(x) 6 f(x,ft(x))> belongs to <B(X) and there 

exists a (B(X ) -(B(X )-measurable selection u) for ft with 
o u 

g(x)= f(x,to(x)) for all x 6 X Q . 

Proof: Since (B(Z) is countably generated as a a-field (cf . Hoffmann-

J^rgensen [30], p.Ill, Thm.3) there exists a set N G (B(X) of u-mea-

sure 0 such that gi X v N is (B(X^N)-(B( Z)-measurable (cf. [24], p.70, 

Lemma). Since what happens inside a u-nullset does not effect our 

claim we may, without loss of generality, assume that g is (B(X )-(B( Y .Im­

measurable. Define F: X -**|2XY) by F(x)={y 6 ft(x)|g(x)= f(x,y)> 

Then GrF= Gr(ft) f| Ux,y) G X X Y | f ( x,y) =g( x ) } is analytic, 

since Gr( ft) is analytic and {(x,y) € X X Y|f(x,y)= g(x)} is Borel, 

hence analytic (see Lemma 2.5 (i) & (ii)). Thus X =n (GrF) is also J o X 
analytic (see Lemma 2.4 (iii)), hence belongs to (B(X) (see Lemma 

2.5 (i)). By Corollary 2.8 there exists a (B (X )-©(Z)-measurable 
u o 

selection a) for F iY . Obviously to has the desired properties. ІX o 

Dubin-Savage [ll](p.38, Lemma 6) used optimal selections in game 

theory. A generalization of their result is stated below and turns 

out to be a special case of Fillipov
f
s lemma. 

2.10 Corollary: 

Let X and Y be analytic spaces, ft: X •*• *p,(Y) a correspondence with 

analytic graph, and f: XX i +IR a (B(X X Y)-measurable map such that 
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f(x, ) attains sup f(x,Q(x)) for all x G X. Moreover let u be a fi­

nite Borel measure on X. Then g: X -*• (R defined by g(x)=max f(x,F(x)) 

is (B(X) -measurable and there exists a (B(X) -ffi( Y )-measurable selec­

tion w for Q with f(x,w(x))=g(x) for all x G X. 

Proof: If we can show that g is ffl(X) -measurable then Corollary 2.9 

yields the other conclusions of the corollary. For a 6 (R we obtain 

{x 6 X|g(x)>a}={x e X|3y G fi(x): f(x,y) > a} 

= nv(Gr(fl) n {(x,y) G X X Y|f(x,y)>a})6jl(X)QB(X). 
A U 

Thus g is (B(X) -measurable. 

2.11 Remark: (Examples of applications) 

Measurable selection theorems have been applied in many fields. It 

would take to much space to list them all. We must be satisfied with 

some examples: 

a) von Neumann proved his measurable choice theorem for use in the 

theory of W -algebras. It was the main tool in his proof of the 

fact that the commutant of the direct integral of W -algebras is 

isomorphic to the direct integral of the commutantsof the single 

factors (see von Neumann [56], p.452, Lemma 7 and p.459, Lemma 

13). 

b) That measurable selections play an important role in the general 

representation theory of C -algebras can be seen by reading 

pp.81-101 in Arveson's book [l]. 

c) Using measurable selections Azoff and Gilfeather [3] have shown 

that reductive operators are normal if every operator has a non-

trivial invariant subspace. 

d) Fillipov [15] used his lemma in control theory to show that if a 

system-admits any control then it also has a measurable control. 

For further use of selection results in control theory see for 

instance Rockafellar [-.-9 1. 

e) Aumann [2] used a variant of the measurable choice theorem to 

show the existence of so-called preference orderings in mathe­

matical economics. For further use of measurable selection re­

sults in mathematical economics see the book of Hildebrand [29]. 

2.12 Remark: 

The results considered above have been generalized in several 

aspects. We will not quote any of these generalizations and instead 

refer the reader to the survey papers of Wagner [57], [58]. Let us 

only dwell on one aspect of possible generalizations: The conclusion 
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of the fundamental selection theorem (Theorem 2.1) still holds if 

one replaces the condition of Y being Polish by other conditions ; 

for instance, the theorem obviously remains true if Y is a metriza-

ble a-compact space. Saint-Raymond [52] has shown that a metrizable 

space Y which is a Lusin space (i.e. a continuous injective image 

of a Polish space) has the property that for every measurable space 

(X,0l) and any weakly (X-measurable correspondence F:X "*"^F(Y) there 

exists an 0L-ffi(Y)-measurable selection for F if and only if Y is the 

union of a Polish space and a a-compact space. 

This leads to the following problem: 

2.13 Problem: 

Characterize the (metrizable) topological spaces Y such that for 

every measurable space (X ,(X) and every weakly (^-measurable corres­

pondence F:X -v 5* (Y) there exists an 0L-(B(Y)-measurable selection 

for F. 

3. Selection theorems for correspondences with non-separable metric 

range. 

The proof of the fundamental selection theorem (Theorem 2.1) uses 

the separability of the range at a crucial point. Nevertheless an 

analysis of this proof leads to selection results for corresponden­

ces with non-separable metric range: By imposing some "additivity" 

assumptions on the measurable space (X,0l) the step from a measurable 

correspondence F to a smaller one, of the same kind, say F„ , whose 

values are contained in the sets of a given covering 1JL of the range 

space, is made possible again. What we mean by "additivity" is made 

precise in the following definitions. 

3.1 Definitions: 

Let X be a s e t , % c »£( x) , and ( H
x ) X 6 A f c

a family in X . 
a ) ( H I ) I Z - A i s c a l l e d ^ - a d d i t i v e i f U H, G t fo r a l l /lf C A*. 

A A6A. XGAl X 

b) (H-.K,- A is Called weakly %-heriditarily additive (weakly % - h . a. ) 

if, for every'It-additive family (D.)._. , the family (D.nH.)._ A 

A A C / X A A At IJ» 
is *K~additive. 

c) (H
x)Xc is said to be It-reducible if there exists a weakly •JC-h. a. 

family ( H ' ) W A of pairwise disjoint sets with U H.= U Hj and 
A A * l * - \ tZ k A I C A A 

Hi c „ XGA. X6A. 
X n

X-
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3.2 Remark: 

A family which is X-heriditarily additive in the sense of Hansell 

[26] is weakly*-h.a. 

3.3 Examples: 

(i) Let X be a set, *& C ̂ ( X) , Y a topological space and F:X+1{L(Y) 

weakly-Tt-measurable. If (U> )-,/=* i s a family of open sets in Y 

then ( F~ 1( u
x)) x e A isTt-additive. 

(ii) If (X,̂ jl) is a measurable space and (H
xKp/v

 i s a countable 

family in *3t then (H. ).p , is weakly IJL-h . a . and 3£-reducible . 

3. -4- Definition: Let X be a set, *3t c *R( X) , Y a topological space, 

and F: X -^^(Y) a correspondence. F is called *3C-reducible if there 

exists a base & for the topology Y such that for every open cover 

(Uj.p.of Y by sets from & every ̂ -additive cover (H^)>c A °-r X 

with Hx c F"
1(UX) isfc-reducible. 

The following theorem is in the spirit of the results proved by 

Hansell [26] , and was also influenced by the work of Maitra-Rao 

[45]. 

3.5 Theorem: 

Let X be a set „ *J£ C *p,(X) ,Y a complete metric space, F:X -*3*(Y) 

weakly^-measurable andX-reducible. Then there exists an It -&(Y)-

measurable selection for F. 

Proof: Let & be a base for the topology of Y having the properties 

described in Definition 3.4. Let *\)1= (U. ). _ . be a covering of Y by 
„ A At /\. 

sets from&,G:X -•^(Y) weakly^-measurable with G(x) C F(x) for 

all x e X. Then (G~ (U.)).-. is an X-additive cover of X with 
A. AtA. Є/V 

G
_ 1
( U

X
) C F ~

X
( U

X
) . Since F is 'K.-reducib le we know that ( G " "

1
( U

X
) )

X 

is ^-reducible • Hence there exists a weakly *3C-h. a. family (
H

X
) X P A ° ^ 

pairwise disjoint sets with j^v
 H

x

 = x
 and HJCG---(U

X
). Define 

G
\Jl

: X
 *

 T
*

(
Y ) by 

G
u
(x)= G(x)nU

 x
 for x 6 Hj[. 

For U
 c
 Y open we obtain 

S L 1 ( U ) = AeA.G~ 1 ( u n lV n H x -
Since ( G "

1
( U n U

x
 ) ) x e . is fc-additive and ^ \ \ e / , i s

 weakly *£-h. a. 

the family (G~1(UnUx )nHĵ  \ e K is ̂ -additive, hence G^"(U) 6 9£. 

Thus G is weakly-lC-measurable. Moreover we have G (x)CG(x) and 

diam (G (x)) ̂  sup d(U.). With the obvious modifications the proof 
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can now be finished as the proof of Theorem 2.1. 

3.6 Remark: 

If T C C ^ X ) is a field, Y a Polish space, and F:X -•^(Y) is weakly 

Ifcg-measurable then F is '^-reducible: Take for & any countable base 

for the topology of Y. Thus Theorem 2.1 is an immediate consequence 

of Theorem 3.5. 

3.7 Definitions: 

Let X be a uniform space . 

a) A family (A ),c» in^(X) is called discrete iff, for every 

e > 0, there is a uniformly continuous pseudo-metric p on X such 

that for X, X? E A with \ A f one has p(A ,A t) > e. 

b) A family (A K C A --n T*XX) is called a-discretely-decomposable 

(a-dd) iff there exists a family (A. ) , . <.e-AV»T such that, for 
A. ,n (. A. ,n jtriXtJ 

every XEA. , A = U A and, for every n G IN, (A, ^\e/\. ^s 

. . ^ nGU n n 

discrete. 

c) A family ( A , ) . . ^ * in*t>.(X) is called a-discretely base-like 

ref ina KLe (a-db) iff there exists a^C*Jl(X) which is the union 

of a countable number fif discrete families and satisfies 

A X = U(B e &|B c A X> 

for every X, 6 /V. 

3.8 Remark: 

Obviously a-dd. implies a-db. 

3.9 Lemma: 

Let X be a uniform space and let *JLCtL(x) have the following proper­

ties 

(i) 1 t = ^ 

( i i ) VA,B e%: An B e x 
( i i i ) V(An ) N i n X 3 ( B

n ^ n ^ M p a i r w i s e d i s j o i n t i n *#- . 

B C A and U B = U A 
n n C*T n CAT n 

ncN nQN 
( i v ) Y ( C . ) . C T d i s c r e t e i n X: U C. G >&, 

i i e i i G I i 

( v ) T ( X ) C >JC 

Then e v e r y a - d b f a m i l y i n *3C i s ^ - - r e d u c i b l e . 
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Proof: Let (HJ.^^ be a a-db family in %. Then there exists a 

£ c l L ( x ) and a sequence ( t n ) _T of discrete families with U *&U -& 
n E N nQN 

such that, for each \ G A, 

Hx = U(B e & | B C Hx} 

and , w.l.o.g, each B 6 £ is contained in some H.. 

By the axiom of choice we can find a map 3* -*• A-, B ->• \_ such that 

B C H X B 
For \ G A- and n G ttí d e f i n e 

-Iv, 

" " ^ . - -n. . .. 
LS-

HXn= U
{B n H X|X B=X, B e ^T} C H?̂  

Since -according to (v) and ( i i ) - (B n Hx'XB = X » B E & ^ is a dii 

crete family in *3C we deduce from ( i v ) that H, ^ dv . For the same 

reasons we have 

V = ,yA
 H\n = u { B n H X|X G /V,B eitn

s xB= x} e X 
XEA 

According to ( i i i ) there is a sequence (B ) of pairwise disjoint 

sets in X with B C H and n n 

nGlN nGN 

Now define 
HX := u (H, n B ) C HA. 
* nQN X n X 

According to ( i ) and ( i i ) HJ belongs to 2C It follows immediately 

from the definition that (Hj[ Kc/\_ is a family of pairwise disjoint 

sets with 

U H! = u H = U(B n H l\ G A ,B G & , X =X} 
\GA X nGN n * B 

= U H. . 
\GA * 

That (H.J ),CA is weakly X-h.a. can be seen by repeating the argu-s 

ments used above. 

3.10 Lemma: 

Let X be a uniform space and *3Ccni(x) a G-field satisfying proper­

ties ( i v ) and (v) of Lemma 3.9. If (D,).-. is a a-db family in *& and 
\ \EA. 

(H ) p» is an It-additive family with H. c D for every \ G A then 

(H\)\GA i s ^- r e d u c i b l e-
Proof: According to our assumptions there exists a £ crJl(x) and a 

sequence (& ) C.T of discrete families withfe = U «& such that, for 
nGIN 
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each \ e A., D^ = U<B G & | B C Dx>.Now let ^ be a well-ordering on A 

and define for X £ A. and n 6 IN 

H = u(5 n(H, \ u H.,)|B e & n } , 
Xn A x t < x A 

Since (H. ) . C A is ̂ .-additive and {If|(H.\U H. , ) IB G & n} is discre-
A AtA. A .. . . A 

te it follows from (iv) and (v) that 
H. belongs to % . The proof is then finished in almost the same way 
A n 

as that of Lemma 3.9. 

3.11 Remark: 

It would be interesting to know whether the conclusions of Lemma 

3.10 hold under the assumptions of Lemma 3.9. 

3.12 Definitions: 

Let X and Y be uniform spaces and let F: X -> ̂ ( Y ) be a correspon­

dence . 

F is said to be inverse a-dd (a-db) preserving iff (F (Ax^xex ^ s 

a-dd (a-db) for every a-dd (a-db) family ( A > ) x e A in Y. 

3.13 Remark: 

It is easy to see that every inverse G-dd preserving correspondence 

is inverse G-db preserving. The following corollary of Theorem 3.5 

is a modification of a result due to Frolik-Holicky [19] (p.656, 

Lemma 1). 

3.1-1 Corollary: 

Let X be a uniform space, It C *V(X)(a a-field) satisfying conditions 

(i) to (v) of Lemma 3.9. Moreover, let Y be a complete metric space 

and F:X -*• *J (Y) a weakly Tf-measurable correspondence which is in­

verse a-dd(a-db) preserving. Then there exists an ̂ -fcC Y) -'measurable 

selection for F. 

Proof: Since Y is metrizable there exists ac-discrete base *&t for 

the topology of Y. For every cover ( U A r * °? Y by sets from t we 

have -according to our assumptions- that (F ^ \ ^ > ( = A , ^S °~&d 

(resp. fc-db). Since every family ( A x ) x 6 / V with A ^ C F (U^) is again 

&-dd £t follows from Lemma 3.9 and Remark 3.13 (resp. Lemma 3.10) 

that F is ̂ -reducible. The conclusion of Corollary 3.13, therefore, 

follows from Theorem 3.5. 

3.15 Remark: 
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Using the theory of non-separable analytic spaces developed by 

Frolik and Holicky ([17], [ 1 8 ] ) one can use Corollary 3.14 as a 

tool to derive other selection results in the non-separable case 

just as-the fundamental selection theorem in section 1 was used to 

deduce selection results for the separable case. The corresponding 

results have first been obtained by Frolik-Holicky [19]. 

To apply the above results to more concrete situations we shall 

need the following deep result due to Kaniewski-Pol [35] and Hansell 

[27], which has recently been generalized by Frolik-Holicky [19a]. 

Its proof can be found in [ 3V5 ] , p. 1045. Let us recall that a family 

x(A. ),£... in X is said to be point-finite (point-count able) iff,, for 

every x 6 X, the set {X G ll|x £ A. } is finite (at most c o u n t a b l e ) . 

3.16 Lemma: (Hansell [27], Kaniewski-Pol [ 3 5 ] ) 

If X is a metrizable analytic space then every point-finite <JV(X)-

additive family is a-dd. 

3.17 Definitions and remarks: 

Let X be a metrizable space. 

a) Define C. := &(X) and for an even ordinal a > 0, 

Then a ̂  a* implies H c G , . 

Define, moreover, 

î Q , a even 
<j a i 

& a ( X ) = 1 
{Ac | A e C }, a odd 

Then, for a > 0, we have T(X) C ^ ( X ) Ccft(x) . 

b) Let Y be any topological space. A map F:X -^^(Y) (resp. f: X -*• Y) 

is said to be of class a iff F"1(U) e tl-L (resp. f~1(U) G<ft ) for ^ a 
all U £ fc(Y) . 

Using these notions we obtain the following consequence of Corollary 

3.14. 

3.18 Corollary: (Kaniewski-Pol [ 3 5 ] ) 

Let X be a metric analytic space, Y a metric space, and F:X •+• *& (Y) 

of class a > 0. Then F has a selection of class ĉ  . 

Proof: It is known that & (X) satisfies conditions ( i ) to (v) of 
a 

Lemma 3.9. Without loss of generality we may assume that Y is 
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complete, otherwise we take the completion. We claim that F is in­

verse a-dd preserving. To prove this it is enough to show that for 

every discrete family ( U . ) . _ . °-= open sets in Y the family 

(F - 1(U X) ) is a-dd. Since ( F " 1 ( U
X ) ) X G A is cft(X)-additive and 

point-finite (F(x), being compact, intersects only finitely many of 

the U. s) we obtain this conclusion from Lemma 3.16. Thus the 

corollary follows from Corollary 3.14. 

Let us mention the following problem which seems still to be open. 

3.19 Problem: Let X and Y be as in Corollary 3.18. 

Does every weakly-(B( X)-measurable F:X •+• ^T (Y) admit a Borel measu­

rable selection ? 

3.20 Remark: 

Quite recently Jayne and Rogers [ 34-a] have proved the following 

astonishing result: 

Let X and Y be metrizable spaces and F: X +*$ (Y) u.s.c. Then F has 

a selection of the second class. 

Fremlin [l6] has investigated selection problems for correspondences 

with values in a non-separable metric space. We will now show how 

his results are related to our approach. 

3.21 Definition: 

Let X be a set and'It C >p,(x) . 

(X ,*Jt) satisfies the (point-finite ; point-count able) reduction 

property iff every (point-finite, point-countable) It-additive fa*mily 

is ̂ -reducible. 

3.22 Corollary: 

Let X be a set, % C >|L( X ) , Y a complete metric space, and F:X ->d*(Y) 

weakly-X-measurable. Then F has anlt -&(Y)-measurable selection in 

each of the following cases: 

(i) (X,TL) has the reduction property 

(ii) (X,X) has the point-finite reduction property and F(x) 6 3C (Y) 

for all x e X. 

(iii) (Xj/Jt) has the point-countable reduction property and F(x) is 

separable for all x E X. 

Proof: It is easy to see that F is ̂ -reducible in each of the above 

cases. Thus Theorem 3.5 yields the statement of the corollary. 
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3.23 Definition and remark: 

Let (X,0t) be a measurable space and 4v a a-ideal i n ^ C X ) . Define 

0^:={ A C X|3A
1 9
A

2
 e « : A1 C A C A

2
 and A

2
~A

1
 e /uJ. Then 01^ is 

a-field. 

The following theorem collects some of the results of Fremlin L16 J 

without giving the proofs. 

3.24 Theorem: (Fremlin [16 ] ) 

( І ) iMartin's axiom! Let (X,0t) be a measurable space. If there is 

a c-ideal *v in *Ji(X) with % C 01 such that QL/Mt satisfies the 

countable chain condition (CCC) and there exists a countably 

generated cj-f ield Q. withOL = (0L )^, then (X ,01) has the point-

countable reduction property. 

(ii) LMartin
f
s axiom! Let X be a Hausdorff space, U a finite Radon 

measure on X, and Olthe 0-field of P-measurable sets. If 

Ofџ-l (0) 
is of power less or equal to the continuum then 

(X,(l) has the point-countable reduction property. 

(iii) Let X be a Hausdorff space, y a finite Radon measure on X, 

and & the tf-field of V-measurable sets. Then (X,0l) has the 

point-finite reduction property, 

(iv) Let X be compact with CCC,CX:-.{u A K I U open, K of first 

category in x) the 0-field of Baire property sets. Then (X,Cl) 

has the point-finite reduction property. 

Our above considerations suggest the following problem. 

3.25 Problem: 

Give necessary and sufficient conditions (in terms of "additivity" 

p r o p e r t i e s ) on a measurable space (X,0l) such that every weakly-Ql-

measurable correspondence from X to the closed (compact, closed 

s e p a r a b l e ) subsets of a complete metric space has a Borel-measura-

ble selection. 

4. A Boolean homomorphism approach to measurable selections. 

The methods used in the proofs of the fundamental selection 

theorem (Theorem 2 . 1 ) and the main result of Chapter 3 (Theorem 3.5) 

seem to work only the case of correspondences with metrizable range. 

Here we shall discuss a method for proving measurable selection 

results in more general situations. This method was inspired by the 

following observations: A correspondence F: X + *t£(Y) is uniquely 
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determined by the inverse map F :*p.(Y) "•"'JKX). The same is true for 

a map f:X -*• Y and its inverse f :Tl(Y) "*Tl(X) which is a Boolean 

homomorphism. It is easy to see that f is a selection for F if and' 

only if f""1(B) C F_1(B) for all B erO( Y). 

The idea of the following considerations is to first find a Boolean 

homomorphism <P with <P(B) c F (B) and then show that <P is almost 

equal to f for some map f: X -* Y . OL -&-measurability of f amounts 

-roughly speaking- to <P (&) C Ql. 

To carry out this program we need some more definitions. 

4. 1 Definition : 

Let X and Y be sets, 01 c >£( x) and % C>p,( Y) closed under finite 

unions and containing the empty set and the whole space. 

A map *: Ha—• Ql is called a U-homomorphism if it satisfies 

(i) *(0)= 0 , •(Y)= X 

(ii) VB,B» e&: * ( B U B')= *(B) U *(B') 

If OL and & are Boolean algebras then (p: 4 •»- H is called a Boolean 

homomorphism if it satisfies (i) and (ii) and, in addition, 

(iii) VB,B' e & : *(B fl Bf)= *(B) n $(Bf) 

4.2 Examples: 

a) If F: X -»-|L(Y) is a correspondence then F"1:,p(Y) ->>U(X) is a 

U-homomorphism. 

b) For a map f: X -*• Y the map f :Tl(Y) •+'p,(X) is a Boolean homomor­

phism . 

4.3 Definition: 

Let It be a field on X and K a cardinal number, ^ is said to be 

K-complete iff each family (H.)._ in *3L with card I -* vc has a 

supremum \/{H. |i 6 1} in *&. ^ i s said to be complete iff it is 

iC-complete for every cardinal \c. 

4.4 Remark: 

In g e n e r a l one h a s \ / { H . | i 6 I} , U H. . 
I F i 6 I 1 

We are now able to state the following lemma whose proof can, for 

instance, be found in [23] . 

4.5 Lemma: 

Let 01 and & be fields of subsets of X and Y respectively, $: & + OL 
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a U-homorphism, and (X K-complete for all K < card ̂  . Then there 

exists a Boolean homomorphism cp: $£-* OL with cp (B) C $(B) for all 

B G &. 

-t-. 6 Definitions: 

a) For a set X, K . c ~ } p . ( X ) , and K a cardinal denote by 

Tt={ U H.|(H.K family in * with card I -ic} 

b) For a regular Hausdorff space Y, a base ffi for the topology of Y, 

and an open set U c Y let^K.(ffi,U) be the smallest cardinal tc such 

that there is a family ( V . ) . in ffi with card 1= vc and 

U= u V.= U v". 
iGI iGI 

Now we can formulate the main theorem of this section and sketch 

its proof. 

1,7 Theorem: (Graf [ 2 3 ] ) 

Let X be a set, *J(, c TL(X) a field, Y a regular Hausdorff space which 

has a base ffi for its topology such that % is K-complete for all 

K < card ffi. F: X -»>K(Y) a correspondence, and $ ̂ ( Y ) -> *& a U -homo­

morphism with *(A) C F~ (A) for all A G ^ C Y ) . Then there exists a 

selection f for F with f ~ 1 ( U ) E It^r^ -^for all U G G(Y). 

Proof: Let &- be the field generated by ffi. According to our assump­

tions *it is ic-complete for all K < card i . The map l":l->X defined by 

*(B)=$(B) is obviously a U~bomomorphism. Thus Lemma 4-. 5 yields the 

existence of Boolean homomorphism cp : & -> 3t with 

(p(B) C f ( B ) = $ ( B ) G F " 1 ^ ) ( * ) 

for all B E £ . For x € X define 7 = {B 6 Sr|x 6 <p(B)}. Then J is 
x # — x 

an ultrafilte'r in % and it follows from ( ) that F ( x ) f. B i 0 for 

all B £ h . Since F ( x ) is compact *3r converges in F ( x ) . If we define 

f: X -* Y by f(x)= lim 5" then f- is obviously a selection for F. 

To show that f satisfies the desired measurability condition let 

U 6 &(Y) be given. Then there is a family (V. ) , £ I in ffi with 

K.(ffi,U)= card I and U= U V.= U V*. • We claim that f""1(U)= U <p(V. ) f 

i€I x iGI X 161 
-1 -1 

hence f (U) &%x(n u)* I f x b e l o n S s t"° f ^u^ then we can find an 
i G I with f ( x ) G V.. Since J converges to f ( x ) there exists a 

1 x -1 
B G 5 with B C v., hence x G <p(B) C <p(V.) which shows f (U) c 

x i --
U (P(V.). 
iGI 
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Conversely let x £ U <P(V.) be given. Then, for some i 6 I, 
iGl x 

x £ <p(V.) which implies V. E 3 and,therefore, f ( x ) = limT E V. C 

U, which proves U <p(V.) C f _ 1 ( U ) . 

±ei 1 

The above theorem looks rather technical in its assumptions. Its 

usefulness becomes visible only in its applications some of which 

we will now discuss (others can be found in [ 2 3 ] ) . As a first 

application we shall reprove Sionfs selection theorem (cf. Sion 

[ 5 4 ] ) . For its formulation let us recall that a topological space 

is called stronlgy Lindelof iff each of its open subspaces is 

Lindelof. 

4.8 Corollary: (Sion [ 5 4 ] ) 

Let (X,0t) be a measurable space, Y a strongly Lindelof regular 

Hausdorff space of weight less than or equal to t<1 , and F:X -*- 3C (Y) 

OL-measurable. Then there exists an 0l-(B( Y) -measurable selection for 

F. 

Proof: With the notation of Theorem 4.7 let "X = 01 and let (B be a base 

for the topology of Y with card (B -* N- . As a a-fieldKis obviously 

tc-complete for all K < card (B. The application of Theorem 4.7 with 

F in the place of $ yields a selection f for F with f (U) G 

*̂ fcfm ID* S ; L n c e Y ^ s strongly Lindelof we have K.(&»U) £ N , hence 

îrfffi i n = ^ - ' anc* t n e coro----ary --s proved. 

4.9 Remark: 

Sion [54] has used the above corollary to prove a selection result 

for certain correspondences with K-analytic graphs. In particular 

the Jankov-von Neumann theorem (Cor. 2 . 6 ) can be deduced from 

Sion's result. 

As a second application of Theorem 4.7 we shall prove a general 

selection theorem for upper semi-continuous compact-valued corres­

pondences which is again the starting point for many other selection 

results. The crucial notion in the following considerations is that 

of a lifting as defined below. 

4.10 Definition: 

Let X be a set, QLc»p.(X) a field, and AV C 0l an ideal. Then a map 

0: (X -*• 01 is called a lifting w.r.t. Mr iff the following conditions 



108 SIEGFRIED GRAF 

are satisfied: 

(i) 0 is a Boolean homomorphism 

(ii) For all A,AfG 01 with AAA1 G V, the equality 0(A)=0(Af) holds, 

(iii) For A 6 & the set 0(A)AA belongs to it. 

If X carries a topology T with T C 0L then a lif t ing 0 : OL -*• Ol w. r. t. 

'Wis called strong iff 

(iv) 0(A)CA for all T-closed sets ACX, or equivalently, UCG(U) for 

all U G T. 

M-.ll Proposition: 

Let X be a topological space, -U- the ideal of nowhere dense subsets 

of X, and 

01= (UAN|U G fc(X) and N G *v} . 

Then OL is a field and there exists a strong lifting ©:(X->-(X w.r.t. M/ 

Such a strong lifting has the following properties: 

(i) O(Gl) is a complete field. 

(ii) If ( A i ) i e i isafamily in 01 and A:= U Q(k±) then A C A C A. In 

particular A belongs toOL. 

Proof: Using the fact that U\U is nowhere dense for any open set 

U c x it follows by standard calculations that Ol is a field. It is 

also easy to check that for U,Uf G ©(X) and N,NfG >Vt the equality 

UAN= UfA Nf holds if and only if U = Uf. Now define 6:01+01 by 

6(UAN)=U. Then 6 has the following properties: 

a) 6(0)=0, 6(X)=X 

b) 6(AnA' )= 6(A) fl <$(Af ) 

c) AAAf G M, ^ 6(A)= 6(Af ) 

d) AA6(A) 6 4v for all A,Af G 0l 

e) U C 6(U) for all U G G(X) 

For x G X define(lx={A G 0L | x G 6(A)}. Then Ol is a filter in 01, 

which according to a) and c) does not contain any nowhere dense set. 

Hence there is an ultraf ilter U in Ol with 0L clJt and tH fl *V = 0. 
x x x x 

D e f i n e 0 : 0 1 + TL(X) by 0 (A)= ( X G X | A E < D L X } . Then 0 i s a B o o l e a n homo­
m o r p h i s m w i t h 6(A) C 0 ( A ) C ( 6 ( A C ) ) C . A c c o r d i n g t o d ) 6 ( A ° ) \ 6 ( A ) l c ) ) c . A c c o r d i n g t o d ) 6(A C ] 

b e l o n g s t o ^ w h i c h i m p l i e s 0(A)G (X and 0(A)AA G 4v . I t i s a l s o 

e a s y t o c h e c k t h a t 0 (A) = 0 ( A f ) f o r a l l A,A f G 01 w i t h AAA1 G M, . S i n c e 

U C 6(U) c 0 (U) f o r U G &(X) w e , t h e r e f o r e , know t h a t 0 i s a s t r o n g 

l i f t i n g w . r . t . y\, . 

Because 0 is a Boolean homomorphism we know that 0(01) is a field. 

Let (A.).p. be an arbitrary family in Ol and define A= U 0(A.). Then 
iGI 
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U <$(A.) is an open set with U 6(A.) ̂  A -=> \j 6(A.). This proves 
i d X i6l X iGI X 

A G (X and A G A C A. Obviously 0(A) is the supremum of (0(A.)).cI 

in ©(&,), and the proof is completed. 

We are now ready to prove the following result. 

4.12 Corollary: 

Let X be a topological space, Y a regular Hausdorff space, and 

F: X +!K(Y) u.s.c. Then there exists a selection f for F with 

for all U G G(Y). In particular f is Ol-&(Y)-measurable. 

Proof: Let 01 and 4v be as in Prop. 4.11 and let 0: OC + 0L be a strong 

lifting w.r.t.-u,. With the notation of Theorem 4.7 let 3€= 0(&) and 

let <B be any base for the topology of Y. According to Prop. 4.11, ^t 

is complete. Define *: 5r(Y) -* % by $(A)= 0(F~ (A)). Since 0 is 

strong and F is u.s.c. we have *(A) C F~ (A) for all A 6 J ( Y ) . Thus 

Theorem 4.7 yields the existence of a selection f for F with f (U) 
e ^ K J m II} f o r a 1 1 U ^ ^(Y). It follows from condition (ii) in Prop. 

4.11 that 

Let us recall that for a topological space X the collection {UAK| 

UGS(X), K of first category in X} forms a a-field <B (X). Then the 

following result is an immediate consequence of Corollary 4.12. 

4.13 Corollary: 

Let X be a topological space,Y a regular Hausdorff space,and F:X-> 

XTY) u.s.c.Then there exists a ffi (X)-(B( Y)-measurable selection for F. 

As a further consequence of the above corollary we obtain a result 

on continuous selections due to Hasumi [28]. Let us recall that a 

topological space X is called extremally disconnected if U is open 

for every open set U C x. 

4.14 Corollary: (Hasumi [28]) 

Let X be an extremally disconnected space, Y a regular Hausdorff 

space, and F: X -»• fl£ (Y) u.s.c Then there exists a continuous 

selection for F. 

Proof: According to Corollary 4.12 there exists a selection f for F 
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with  

^ ^ " "1 1 ;?FC ,i ( 1 ) 

for every U € *(Y). Since (1) implies f"1(U) C f ^ U > C f"""L(u) and 

since *?-T-(uT *s °P e n <-ue to the fact that X is extre^ally disconnec­

ted we know that 
f"1(U) is open (2) 

for all U £ G(Y). By complementation we deduce from (1) that 

f-1(A) C f_1(A) C f. X( A) (3) 

for all A G (Y). 

Now let U £ 6(Y) be given. Then there exists a family (V.).ei in 

G(Y) with 

U= U V. = U V. 
iЄi

 x
 iЄi

 x 

Since, due to (2), f (V.) is open we have 

f-Ҷvp c f-Ҷv̂ ) c f-Ҷv̂ ) c f-Ҷv̂ ) 

(•O 

(5) 

From (3) we obtain 

f Ҷ7.) з f"1
^) (6), 

Combining (4), (5), and (6) yields 

f
_ 1
(u)= u f"

1
(v",) <- 0(X). 

iCl
 x 

Our nextaim is to apply Theorem 4.7 in a measure theoretic con­

text. For this purpose we have to collect some definitions and 

facts about measure spaces. 

4.15 Definitions: 

a) A measure space (X ,0t»u) is said to be strictly localizable iff 

there exists a collection $ of pairwise disjoint sets from (X 

of strictly positive finite measure such that 

(i) A eflLO VD.ei>: A n D G(X 

(ii) u(A)= E u(AnD) 
D€i> 

b) A measure space (X,0l»u) is said to be complete iff B 6 (X for all 

B C x with B C A for some u-nullset A € fa . 
c ) (X,0L,M,T) is said to be a topological measure space iff (X,0L,u) 

is a measure space and T is a topology on X with T C Q, 
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d) A measure space (X,CX,U) (resp. topological measure space 

(X,0UU»T) n a s a lifting (resp. strong lifting) iff there exists 

a lifting (resp. strong lifting) e: €(.-»- ©Lw.r.t. t n e ^ - idea l of 
U-nullsets. 

H-.16 Remarks: 

(i) Obviously any a-finite measure space is strictly localizable. 

The same is true for Radon measure spaces.(see, for instance, 

Schwarz [53], p.46, Thm.13). 

(ii) Maharam [M-HI (for the a-finite case) and Ionescu-Tulcea [31] 

have shown that every complete strictly localizable measure 

space has a lifting, 

(iii) For a topological measure space (X,0L,U,T) with u(U) > 0 for 

U G T\{0} the existence of a strong lifting is known in each 

of the following cases: 

a) (X,T) is second countable and (X,(X,u) is finite (see Graf 

[21]). 

b) (X,T) is an analytic space.and (X,0l,u) is a-finite (see 

Schwarz [53], p.132, Lemma 21). 

c) OX", T) is a metrizable locally compact space, u is a Radon 

measure on (X,T) and (X is the a-field of u-measurable sets 

(Ionescu-Tulcea [33], p.129). 

d) (X,T) is a locally compact group, u is the Haar (Radon) 

measure on (X,T) and (X is the a-field of u-measurable sets 

(Ionescu-Tulcea [32]). 

e) (X,T) is the quotient of a locally compact group G with 

respect to a closed subgroup H, u is a quasi-invariant 

Radon measure on X (i.e.V g G G VB e CB(X): u(B) = 0 «=> 

u(g,B) = 0), and OL is the a-field of u-measurable sets 

(Kiipka [36]). 

The following corollary was conjectured by Christensen and indepen­

dently proved by the author [22, 23] , and Talagrand [55]. It is 

also possible that H. v. Weizsacker, who communicated Christensenfs 

conjecture to the author, has an unpublished proof for the same 

result. 

4.17 Corollary: (Graf [23], Talagrand [55]) 

Let (X,0LfU»T) be a strictly localizable complete topological 

measure space which has a strong lifting 0. Moreover, let Y be a 

regular Hausdorff space and F:X + % (Y) u.s.c Then there exists an 
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&-(B( Y)-measurable selection for F. 

Proof: With the notation of Theorem 4.7 let !3fc=O(0l) , (B=fc(Y). Since 

*JLis Boolean isomorphic to 0LL ÔvWe know that *Vl is complete. Define 

P: T(Y) -*& by *(A)= 0(F"
1
(A)). Then $ is a U-homomorphism with 

$(A) c F" (A) for all A e*3'(Y). According to Theorem 4.7 there 

exists a selection f for F with f~
1
(U) 6 ^ ^ -j) for all U e &(Y). 

Due toageneralized version of a theorem of Maharam (see Ionescu 

Tulcea [33], p. 55 ) we have %^rm „
 N

 c
 OL and the proof of the 

KvQJ , U ) 
theorem is finished. 

The following result of Losert L40 J shows that there is a close 

connection between the existence of measurable selections and the 

existence of some kind of lifting. To state this result let us re­

call that the B^ire <*-field (Ba(X) is the cr-field generated by all 

continuous real-valued functions on X (see also [33], p.169, Thm.2) 

4.18 Proposition: (Losert [40]) 

Let X be a completely regular Hausdorff space and 1-: (B(X) "** R a 

measure. Then the following conditions are equivalent: 

(i) For every completely regular Hausdorff space Y and every u.s.c. 

F:X "*• 3C(Y) there exists a (B(X) -(Ba(Y) --measurable selection for 

F. 

(ii) There exists a Boolean homomorphism 0:(B(X) ->(B(X) such that 

9(A)= 9(B) for all A,B G ffl(X) with u(AAB)=0 and 0(C) C C for 

all C 6 T(X) . 

Proof: 

(i) =>(ii): Let Y be the Stone representation space of (B(X), -l/
n
\» 

i.e. Y is the set of all ultrafiltesrs in (B(X) which do not 

meet y~
1
(0) with its Boolean topology. Define F:X -*-3C(Y) by 

F(x)= {y 6 Y |y converges to x }. Then F is u.s.c. There exists, 

therefore, a (B(X) -(Ba(Y)-measurable selection f for F. The map 

0:(B(X) -*<B(X) defined by 0(B)= f"
1
( {y € Y |B 6 y }) is a Boolean 

homomorphism with t h e desired properties. 

(ii) =>(i): Let Y be a completely regular Hausdorff space, 

F:X -* ̂ ( Y ) u.s.c. With the notation of Theorem 4.7 let % = ©((B( X) ), 

(B=fc(Y). Then St is isomorphic to (B(X), -1(Q\ anci» therefore, complete. 

The map *:7(Y) + tJC defined by *(A)= ©(F_1(A)j is a U-homomorphism 

with G(F"1(A)) C F~1(A) for all A e^F(Y). Hence, Theorem 4.7 yields 

the existence of a selection f for F with f 1 ( U ) e ^ / m ,j\ for 
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every U 6 €>(Y). For open 7 -sets U C Y one has VO(ffl,U) * K Q and, 

therefore, f" (U) € ffi(X) . Thus f has the desired properties. 

4.19 Remark: (Losert [40]) 

Using the above proposition and a rather involved construction 

Losert [40] has shown that there is a compact space X, a Radon 

measure u on X, a compact space Y, and a continuous surjective map 

p: Y -*- X which has no ffi(X) -ffia( Y)-measurable section. 

It was Kupka [36] who first realized that Corollary 4.17 is very 

useful in the framework of topological group theory. 

4.20 Corollary: (Kupka [36]) 

Let G be a locally compact group, H a closed subgroup of G, u a 

quasi-invariant Radon measure on G/H , and 0L the a-field of u-mea-

surable sets in G/H. Then there exists an Ot-ffi(G)-measurable sectionf 

for the quotient map IT : G •+ G/H such that f(K) is relatively com­

pact for every compact subset K C G/H 

Proof: It is well-known that there exists a closed subset M of G 

such M (1 if (K) is a non-empty compact subset of G for every compact 

subset K of G/H (see, for instance, Bourbaki [5], p.51 Prop.8). 

Define F: G/H -*3<.*(M) by F(x)= TT~ ( X ) 0 M. One can see that F is 

u.s.c. Thus, Corollary 4.17 combined with Remark 4.16 (iii) a) 

yields the desired result. 

In this context Kupka [36] posed the following problem. 

4.21 Probl-em: 

In the situation of the above corollary, does there always exist a 

Lusin u-measurable section for IT ? 

As application of Corollary 4.20 we obtain the following result. 

4.22 Application: 

Every closed subgroup H of an amenable locally compact group G is 

amenable. 

Proof: Let m: L (G) -*•' |R be a left-invariant mean. Let TT,U, and 0L 

be as in Corollary 4.20. Let f be an ft-©(G)-measurable section for 

IT . Define T: £ b(H) -*» L°°(G) by T(h)(x)= h(x"
X f(tr(x))). Then T is 
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pôsitive and lineaг with Tl=l. Therefore mf
=raoT is a left-invariant 

mean on H. 

In [Зб] Kupka also asked the question whether in the situation of 

Coгollary 4.20 there always exists a Baire measurable section for *. 

f:G/H -*• G is called Baiгe measurable iff it is <Ba(G/H )-©a(G )-measu-

rable. The following result is a partial answer to Kupka
f
s question. 

4.23 Proposition: (Graf-Măgerl [ 2 5 ] ) 

Let G be a compact group, H a closed subgroup of G and ÏÏ:G •> G/H 

the quotient map. Then ÏÏ has a Baire measurable section. 

By embedding G into the product of compact metrizable groups and a 

transfinite induction argument the proof of the above proposition 

can be гeduced to proving a result which is again a corollary of the 

main theorem of this section. Before wë òan formulate this corollary 

we need to say what the Bockstein separation property for a topolo-

gical space is. 

4.24 Definition: 

A topological space X is said to possess the Bockstein separation 

property (BSP) iff any tw0 disjoint open sets in X can be separated 

by open Jr -sets. 

4.25 Remark: 

a) Bockstein [4] has shown that arbitrary products of Polish spaces 

have the BSP. 

b) Due to a result of Pelczyiíski ([48], Thm.7.5 and C o r . 5 . 1 1 ) every 

compact group has the BSP. 

Our nextlemma gives a characterization of spaces with the BSP. 

4.26 Lemma: 

A topological space X has the BSP if and only if the closure of 

every open set in X is a G.-set. 

Proof: 

"=>" : Let X have the BSP and let U C X be open. Then there are open 

<ï -sets V and W in X with W П V= 0 , U C V and X\U C w. Obviously 

U П W= 0 and, tћerefore, X\Ü= W which shows that Ü is a G^-sets. 

"4-*": Now let U,V Є fc(Y) be disjoint. Def. V
!
: = X\ÏÏ and Uf= X\V! 
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Then Vf and Uf are disjoint open*±a-sets with VCV
f and U C X\Tf=Uf. 

Now we are in the position to prove the following corollary of 

Theorem 4.7. 

-1.27 Corollary: (Graf-Magerl [25]) 

Let X be topological space with BSP, Ckthe a-field generated by the 

open 3~ -sets in X, Y a separable metric space, and F:X -»-3o(Y) u.s.c. 

Then there exists an 0C-(B(Y)-measurable selection for F. 

Proof: With the notation of Theorem 4.7 let*3t=0land let (B be any 

countable base for the topology of Y. Then *& is obviously K-complete 

for all ic < card (B. The map *: T(Y) + *# defined by »(A)= F"--(A) 

is a U -homomorphism with *(A) C F~1(A) for all A G'iJXY). Hence, 

according to Theorem 4.7, there exists a selection f for F with 

f"1(U) e'X^fl -j) for all U G 6(Y). Since fc((B,U) * KQ we have 

f̂cCffi U ) = anc* t n e c o n c l u s-- o n °f "the theorem follows. 

4.28 Problem: 

It would be interesting to know whether the topological spaces X 

with the BSP are characterized by the fact that any u.s.c. compact-

valued correspondence from X to any separable metric space admits 

a selection as described in Corollary 4.27. 

In most of the results proved in this section the correspondences 

have been upper semi-continuous and compact-valued. This is a 

rather severe restriction. But, using an idea quoted in Dellacherie 

([lol. p.217) we shall show how more general results can be obtained 

from our .special ones. 

4.29 Proposition: 

Let X and Y be Hausdorff spaces and let u be a finite Radon measure 

on X. Assume that for every K 6 & ( X ) and for all G:K -*.**(Y) u.s.c. 

there exists a (B(K) -©(Y)-measurable selection for G. 

If F:X + lp.*(Y) satisfies 

u(X) = sup{ v(irx(K))|K C Gr F, K compact} 

then there exists a (B(X) -(B(Y)-measurable selection for F. 

Proof: According to the assumptions about F there exists an increa­

sing sequence (K ) ~ -.. of compact subsets of Gr(F) with lim U(ITV 

n nt |N = X 
(K ))= y(X), i.e. 
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N:= X \ U TT V(
K ) i s a y-nullset. Since the map -• (K )->Y, __ A n A n 

neN 

x -> {y 6 Y|(x,y) 6 K } is an u.s.c. compact-valued correspondence we 

know that there exists a (B(TT (K )) -(B(Y) measurable map 
X n \i fr,: M O * Y w i t h Cx,f(x)) 6 K for a l l x 6 7rv(K ) . Obviously n X n it n X n J 

f: X -> Y defined by 

f n ( x ) , x 6 K n \ n u Kv 

f ( x ) = ' V _ 1 

6 F(x) a r b i t r a r y , x G N 

is a (B(X) -(B(Y)-measurable s e l ec t ion for F. 

4.30 Corollary: 

Let X be a Hausdorff space, u a Radon measure on X, and Gv, the 

tf-field of u-measurable sets. Assume that (X,Gl,u) has a strong 

lifting. Moreover, let Y be a Hausdorff space and let F:X •*• Tpa(Y) 

have agraph which is capacitable w.r.t. every capacity on X x Y. 

Then F has an 01-(B( Y )-measurable selection. 

Proof: The corollary follows immediately from Corollary 4.17 com­

bined with Prop. 4.29. 

4.31 Remark: 

F:X -*• *p. (Y) satisfies the assumption of Corollary 4.30 if G r ( F ) is 

a K-analytic set contained in some tj(, -set (see Choquet [8], p.155, 

Theorem 9.5).| One major application of measurable selection theorems 

is the proof of existence and uniqueness of preimages of a given 

measure (see, for instance, Landers-Rogge [38], Lubin [4l], Ershov 

[13], [14], Lehn-Magerl [39], Graf [22], [ 2 4 ] ) . In [22] it is shown 

how one can derive the following rather general theorem (a special 

case of which has been proved by Edgar [ 1 2 ] ) from Corollary 4.17. 

4.32 Proposition: (Edgar [l2], Graf [ 2 2 ] ) 

Let (X,t3L,P) be a finite measure space, Y a Hausdorff space, and 

p: Y -> X (B(Y ) - (X-measurab le such that 

( i ) y (X )= s u p ( u * ( p ( K ) )|K C Y, K compact} 

and ( i i ) VK € & ( Y ) : y * ( p ( K ) ) = inf(u*(p(U))|K c U, U open}. 

Then there exists an (X-(B(Y)-measurable map f: X -*• Y such that: 

a) VA 601: y ( A A f " 1 p " 1 ( A ) = 0 

b) v=uof is a Radon measure on Y with vop = u. 
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